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The organization of biological sequences
into constrained and unconstrained parts
determines fundamental properties of
genotype – phenotype maps

S. F. Greenbury and S. E. Ahnert

Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK

Biological information is stored in DNA, RNA and protein sequences, which

can be understood as genotypes that are translated into phenotypes. The

properties of genotype–phenotype (GP) maps have been studied in great

detail for RNA secondary structure. These include a highly biased distri-

bution of genotypes per phenotype, negative correlation of genotypic

robustness and evolvability, positive correlation of phenotypic robustness

and evolvability, shape-space covering, and a roughly logarithmic scaling

of phenotypic robustness with phenotypic frequency. More recently similar

properties have been discovered in other GP maps, suggesting that they may

be fundamental to biological GP maps, in general, rather than specific to the

RNA secondary structure map. Here we propose that the above properties

arise from the fundamental organization of biological information into

‘constrained’ and ‘unconstrained’ sequences, in the broadest possible

sense. As ‘constrained’ we describe sequences that affect the phenotype

more immediately, and are therefore more sensitive to mutations, such as,

e.g. protein-coding DNA or the stems in RNA secondary structure. ‘Uncon-

strained’ sequences, on the other hand, can mutate more freely without

affecting the phenotype, such as, e.g. intronic or intergenic DNA or the

loops in RNA secondary structure. To test our hypothesis we consider a

highly simplified GP map that has genotypes with ‘coding’ and ‘non-

coding’ parts. We term this the Fibonacci GP map, as it is equivalent to the

Fibonacci code in information theory. Despite its simplicity the Fibonacci GP

map exhibits all the above properties of much more complex and biologically

realistic GP maps. These properties are therefore likely to be fundamental to

many biological GP maps.
1. Introduction
Biological evolution is characterized by the inheritance, mutation and trans-

lation of biological information. This information is stored sequentially, in

DNA, RNA and protein sequences. Such sequences are more generally referred

to as genotypes. Much of biological research investigates in some form or other

how specific genotypes translate into biological phenotypes. In recent years, the

larger-scale study of genotype–phenotype (GP) mappings has attracted

increasing attention, particularly in the context of RNA secondary structure

[1–7], which provides a biologically relevant, yet tractable system for the

study of entire GP maps. The RNA secondary structure map has yielded a

number of insights. Firstly, genotypes vastly outnumber phenotypes: 1.7 �
107 possible sequences of RNA of length L ¼ 12 map to just 57 phenotypes,

and 1.1 � 1012 sequences of length L ¼ 20 map to 11 218 phenotypes [7]. Sec-

ondly, the distribution of the number of genotypes per phenotype is highly

biased. For instance, 95% of all L ¼ 20 genotypes map to 10% of all phenotypes

[7]. Thirdly, almost all phenotypes can be accessed via a small number of point
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Figure 1. Three examples of genotype sequences, which map to two differ-
ent phenotypes in the Fibonacci genotype – phenotype map. Reading from
the left the sequence is regarded as ‘coding’ up to the first occurrence of
the ‘stop codon’ sequence 11. Thereafter the sequence is regarded as
‘non-coding’. Each possible coding sequence represents a different phenotype,
whereas the non-coding sequence leaves the phenotype entirely unaffected.
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mutations of the genotypes of any given phenotype. This

observation is typically referred to as shape-space covering

[1,6,7] and is evidence for the short paths that connect any

two phenotypes in the densely connected and highly regular

genotype network of point mutations. The structure of the GP

map has consequences for evolution, as has also been demon-

strated by the study of robustness and evolvability of RNA

secondary structure. Wagner [3] introduced quantitative

measures of robustness and evolvability that measure the

resilience of a phenotype to mutations of its genotypes, and

the potential for a phenotype to change into a different

phenotype in order to adapt. These quantities can be defined

on both the genotypic and phenotypic level. In RNA second-

ary structure, genotypic robustness and evolvability are

negatively correlated. This represents a trade-off that seems

inevitable at the genotypic level—a given genotype can

either be surrounded by genotypes of the same phenotype

(and therefore be robust) or by genotypes of many other

phenotypes (and therefore be evolvable) but not both at the

same time. In the same system, however, phenotypic robust-

ness and evolvability are positively correlated, demonstrating

how biological organisms can be both robust and evolvable at

the same time. The reason for this lies in the ‘shape’ of the

phenotypes in genotype space. Phenotypes take the form of

one or several connected components in the genotype net-

work. These components are often referred to as neutral

networks [2] as their edges describe neutral mutations of

the genotype, which leave the phenotype unchanged. Some

indication of the topological properties of these networks is

given by the observation that robustness of a given pheno-

type scales logarithmically with the size of its genotype

network [5,7]. All the above observations have been made

in RNA secondary structure, but it has recently been estab-

lished that most of these properties can also be found

across different GP maps, such as the HP model of protein

folding [6,7] (where a biased distribution of genotypes per

phenotype has been known for some time to exist [8]) and

the Polyomino model of biological self-assembly [7,9,10].

This raises the question whether the observed properties

are fundamental characteristics of biological GP maps. In

this paper, we argue that this is the case, and that these prop-

erties are a result of the way in which biological information

is organized into sequences that contain distinct regions that

code for a phenotype, and non-coding regions that do not.

This distinction is of course not clear-cut. Intergenic and

intronic DNA may still code for a phenotype, such as micro-

RNAs, for example, and parts of most protein-coding DNA

can be mutated without any discernible phenotypic conse-

quences. But it is indisputable that, largely speaking, exonic

DNA is mutationally far more constrained than intronic or

intergenic sequences. In RNA secondary structure, a bimodal

distribution in the neutral mutation rates of constrained and

unconstrained sequences has been demonstrated [5,11,12].

These results show that mutations in the loop regions of sec-

ondary structure are much more likely to leave the phenotype

unaffected than mutations in the stem regions. We consider

here a simple model with a genotype that is divided into

regions that code for a phenotype, and ones that do not,

and show that this model gives rise to all the properties

observed in the RNA secondary structure GP map and

other GP maps, as outlined above. This provides a strong

argument that the fundamental organization of biological

information into a series of constrained and unconstrained
sequences has profound effects on the structure of biological

GP maps, and thus on the translation of genotypes into

phenotypes, and the course of biological evolution.
2. The Fibonacci GP map
In our model, there is only one coding and one non-coding

region, and every distinct sequence in the coding region

codes for exactly one phenotype, while the non-coding part

of the sequence leaves the phenotype entirely unaffected.

Genomes are binary sequences of fixed length in our

model, and starting with the first digit the sequence is con-

sidered ‘coding’ until a ‘stop codon’ is encountered, after

which the sequence is considered ‘non-coding’. Each possible

sequence up to the first occurrence of the stop codon

uniquely maps to a distinct phenotype. The sequence after

the first stop codon, on the other hand, is completely free

to mutate, giving rise to the neutral space of the phenotype.

For a stop codon sequence of ‘11’, this GP map is equivalent

to the Fibonacci code in information theory [13]. This is

because the Fibonacci code reads a sequence of binary

digits from left to right, up to (and including) the first occur-

rence of ‘11’ in the sequence. Such a binary sequence d forms

a Fibonacci code word, and can be mapped to the space of

integers by calculating
Pjdj�1

i¼1 diFðiþ 1Þ, where di is the ith
digit of d, jdj is the length of the sequence d and F(i) is the

ith Fibonacci number, i.e. F(l) ¼ 1, F(2) ¼ 1, F(3) ¼ 2, etc.

We therefore term this GP map the ‘Fibonacci GP map’

(figure 1). The 10 shortest coding sequences are given in

table 1. Note that sequences without a stop codon do not

map to a valid phenotype and are assigned to an ‘undefined’

phenotype, similar to the trivial, non-folding phenotype in

RNA, or the UND structure in the Polyomino GP map [7].

Throughout this paper, we will assume a sequence length

of L ¼ 16 for the genotypes of the Fibonacci GP map. All

results are robust, and also hold for sequence lengths other

than this. The Fibonacci GP map was implemented in

Python through exhaustive enumeration of L ¼ 16 genotypes.

This enabled us to calculate all the numerical results in

this paper, shown as the red data points in figures 2–5.

These results are also available as part of the electronic
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Figure 2. (a) The distribution of neutral space sizes in the Fibonacci GP map is highly biased. The rank distribution follows a power law (simulation in red, analytical
prediction kra in black). (b) Corresponding distributions for RNA (L ¼ 12, blue) and polyominoes (S3,8, green) follow similarly biased distributions [7].

Table 1. The 10 shortest phenotype sequences in the Fibonacci GP map.
The first column gives the phenotype ID in form of an integer. The second
column shows the genotype sequence that defines the phenotype. Each
genotype sequence corresponds to a Fibonacci code word. The third column
shows the Fibonacci number F(n). The fourth shows the decomposition of
the phenotype ID in terms of the genotype sequence, or Fibonacci code
word. The last symbol in each sequence (always a one) is ignored. The ith
symbol represents a contribution of F(i þ 1), so that, e.g. 1011 represents
F(2) þ F(4) because the first and third entries of the sequence are ones.

phenotype (n) genotype F(n) decomposition

1 11 1 F(2) ¼ 1

2 011 1 F(3) ¼ 2

3 0011 2 F(4) ¼ 3

4 1011 3 F(2) þ F(4) ¼ 4

5 00011 5 F(5) ¼ 5

6 10011 8 F(2) þ F(5) ¼ 6

7 01011 13 F(3) þ F(5) ¼ 7

8 000011 21 F(6) ¼ 8

9 100011 34 F(2) þ F(6) ¼ 9

10 010011 55 F(3) þ F(6) ¼ 10
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supplementary material. The Polyomino GP map S3,8 was

also enumerated exhaustively, using Cþþ, and is identical

to the implementation described in detail in [7]. The RNA

secondary structure GP map was exhaustively enumerated

using the Vienna package [14] with default parameters,

again following the implementation in [7].
2.1. Biased distribution of the number of genotypes per
phenotype

The distribution of the number of genotypes per phenotype—

or in other words, the size distribution of the neutral spaces—

is heavily biased in the case of RNA secondary structure

[1,6,7,15] and the Polyomino model [7]. This bias in the GP

map can strongly affect evolutionary outcomes [16]. The

same biased distribution is also exhibited by the Fibonacci

GP map (figure 2), and follows a power law, with few
large neutral spaces and many small ones. Analytically,

we can confirm this by considering that each coding

sequence maps to a distinct integer, representing a distinct

phenotype, and that, as this integer increases, the length of

the coding sequence increases by one every time a new

Fibonacci number is reached. As the distance between two

consecutive Fibonacci numbers is simply the preceding

Fibonacci number, this means that the number C(l ) of

phenotype sequences of length l is equal to F(1 2 1). The

nth Fibonacci number is, to a good approximation given by

FðnÞ � fn=
ffiffiffi
5
p

, where f ¼ 1þ
ffiffiffi
5
p

=2 is the Golden Ratio, so

that the number C(l ) of different coding sequences of

length l is

CðlÞ � fl�1ffiffiffi
5
p :

If the total genome length is L, the number of genotypes f (l )

that map to a particular phenotype with coding sequence

length l is 2L2l. Hence the number of phenotypes with a

neutral space of size f (l ) is C(l ), which means that

f ðCÞ � 2L�1�logfð
ffiffi
5
p

CÞ ¼ kCa,

which is a power law, with k¼ 2L�1�logfð
ffiffi
5
p
Þ and

a ¼ �ðlog2 fÞ
�1: Some studies have plotted the size of the

neutral space size against its rank [6,7]. In the Fibonacci GP

map, the rank r of a neutral space in terms of its size is

given by the integer that the coding sequence maps to in

the Fibonacci code. As there are F(l ) phenotype sequences

of length l þ 1 and the sum of the first l Fibonacci numbers

is F(l þ 2) 2 1, the number N(l ) of phenotype sequences of

length up to and including l is given by

NðlÞ ¼ Fðlþ 1Þ � 1:

The rank of a sequence of length l is the number of

phenotype sequences of length up to (but not including) l,
plus one. In other words, the rank is given by r ¼ F(l ), and

thus, to a good approximation l � logfð
ffiffiffi
5
p

rÞ: The size f
of the neutral space, which is f ¼ 2L2l is therefore related to

its rank by

f ðrÞ � kra,

where k¼ 2L�logfð
ffiffi
5
p
Þ and a is the same as above—in other

words, another power law, which is broadly what has been

found for RNA and polyominoes [1,6,7,15]. These power

laws are a direct result of the hypercube-like structure of
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Figure 3. (a) Results for the Fibonacci GP map: (i) genotypic robustness is negatively correlated with genotypic evolvability. (ii) Phenotypic robustness is positively
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the point mutation network of genotypes, in which neutral

components (connected sets of genotypes of the same pheno-

type) are hypercube-like subspaces of lower dimensionality.

The dimension of these subspaces equals the number of

unconstrained bases. The biased distribution of neutral

space sizes in RNA exhibits a shallower gradient for larger

neutral spaces, and a steeper one for smaller spaces. The

reasons for this more complex distribution may lie in the defi-

nition of the phenotype, because RNA structures with the

same simple loop structure in different positions will consti-

tute different phenotypes. This freedom leads to a larger

number of phenotypes with large neutral network sizes

than one would get by simply considering the number of
constrained and unconstrained sites. It is, however, also a

relatively small effect on the order of magnitude of the

entire distribution.
2.2. Evolvability and robustness
Biological organisms have to be both robust against

mutations of the genotype, and also capable of adaptation,

and evolvable. On a genotypic level, these two properties

are opposed—a genotype can either be robust (surrounded

by genotypes of the same phenotype) or evolvable (sur-

rounded by genotypes of many other phenotypes). Wagner

[3] showed that while this holds true on a genotypic level,
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resulting in a negative correlation of genotypic robustness

and evolvability, the converse holds true for phenotypes:

phenotypic evolvability and robustness are positively corre-

lated. Defined precisely, genotypic robustness is the fraction

of neutral mutations per genotype, and genotypic evolvabil-

ity is the number of distinct phenotypes that are within one

mutation of the genotype (and are not the same phenotype

as that of the genotype). By contrast, phenotypic robustness

is defined as the average fraction of neutral mutations per

genotype across a given phenotype. This correlates positively

with phenotypic evolvability, defined as the total number of

distinct other phenotypes that are within one mutation of any

of the genotypes belonging to the given phenotype.

In the Fibonacci GP map, the robustness rg of a given

genotype g, meaning the fraction of neutral mutations out

of all possible ones, is

rg ¼ 1� l
L

� �
,

where l is the length of the coding sequence. The genotypic

evolvability eg is simply:

eg ¼ l,

if there is a second stop codon in the sequence, and

eg ¼ l� 1,

if there is no second stop codon, as any mutation to the
first stop codon will lead to the undefined phenotype. The

negative correlation between rg and eg is therefore trivial.

As the genotypic robustness is the same for every geno-

type of a given phenotype, the phenotypic robustness rp,

being the average of the genotypic robustness rg over the

phenotype, is equal to rg:

rp ¼ 1� l
L

� �
¼ rg:

The phenotypic evolvability is the total number of pheno-

types that are accessible from the genotypes of a given

phenotype via single-point mutations. Recall that we have

F(l þ 1) 2 1 phenotype sequences of length up to and includ-

ing l. We have two possible mutations of the stop codon. The

first mutation turns ‘11’ into ‘01’, which means that the last

L 2 l þ 1 bases in the sequence can be any Fibonacci code

sequence of length L 2 l þ 1, starting with a 1. There are

F(l 2 1) such sequences of length l, because the sequence

has to either start with ‘10’ and then be followed by any Fibo-

nacci sequence of length l 2 2, or start with ‘11’. The first

mutation therefore gives rise to F(L 2 l ) phenotypes. The

second possible mutation of the stop codon, turning ‘11’

into ‘10’ simply leads to F(L 2 l þ 1) 2 1 phenotypes, because

any phenotype sequence of length L 2 l can follow. We can

also access another l 2 2 phenotypes by mutating the pheno-

type sequence before the stop codon. Note that this always
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leads to distinct phenotypes, regardless of whether a new

stop codon is generated by the mutation or not. Counting

the undefined phenotype as another phenotype, the total

phenotypic evolvability therefore is

ep ¼ lþ FðL� lþ 2Þ � 2 � l� 2þ fL�lþ2ffiffiffi
5
p :

The scaling of phenotypic evolvability ep with phenotypic

robustness rp is therefore

ep ¼ Lð1� rpÞ � 2þ fLrpþ2ffiffiffi
5
p :

This has a positive gradient if

fLrpþ2ffiffiffi
5
p . 1,

which is always the case, as L . 0 and rp . 0. Phenotypic evol-

vability and robustness are therefore positively correlated in the

Fibonacci GP map (figure 3), in line with the results observed

in RNA secondary structure [3] and the Polyomino GP map

[7]. The expression for ep offers an important insight into the

possible reasons behind the positive correlation of phenotypic

evolvability and robustness, as the first term in the equation,

L(1 2 rp) 2 2 would by itself lead to a negative correlation

between ep and rp. This term corresponds to mutations of the

phenotype sequence. The second term, fLrpþ2=
ffiffiffi
5
p

, corre-

sponds to mutations of the ‘stop-codon’ sequence, in other

words, to mutations of the boundary between coding and

non-coding sequence in the genotype. This term provides the

positive correlation between phenotypic evolvability and

robustness, as the corresponding mutations provide access to

much wider range of phenotypes.

2.3. Phenotype coverage
Ferrada & Wagner [6] observed that a large fraction of all

phenotypes is accessible via a small number of point

mutations from almost any genotype. The number of pheno-

types accessible from a single genotype via a single-point

mutation is the genotypic evolvability l. The average length

of the phenotype sequence is

ðFðLþ 1Þ � 1Þ�1
XL

i¼2

iFði� 1Þ � L:

The number of phenotypes accessible through n
mutations is therefore approximately

Pn
k¼1

LCk: For n ¼ L/2

this is approximately 2L21, which is already considerably

larger than fLþ1=
ffiffiffi
5
p

by a factor of ð2=fÞL�1 (as f2 �
ffiffiffi
5
p

).

We therefore expect the majority of phenotypes to be

accessed in less than n/2 mutations.

The above approximations are confirmed by the compu-

tational results shown in figure 4, and are in line with the

results of Ferrada and Wagner for RNA secondary structure

and the HP model of protein folding, as well as with the Poly-

omino model [7].

2.4. Robustness versus frequency
It has been demonstrated that the phenotypic robustness in

biological GP maps is much higher than one would expect

for randomly distributed phenotypes [17–19], and scales

roughly logarithmically with frequency [5,7]. The Fibonacci

GP map exhibits the same relationship of robustness versus
frequency (figure 5). The reason for this is straightforward:

phenotypic robustness is rp ¼ 1 2 (l/L) and the normalized

phenotypic frequency is fp ¼ 22l. We therefore have

rpð fpÞ ¼ 1þ
log2 fp

L
,

which describes the logarithmic relationship observed in

figure 5.
3. Discussion and conclusion
Recently, one of the first empirical GP maps was studied by

constructing the genotype networks for the binding site reper-

toires of 193 transcription factors in yeast and mice [20]. This

work showed that transcription factors with large binding

site repertoires have binding sites that are more robust and

evolvable. As the degree to which mutations affect the binding

affinity of a site strongly depends on the mutated position in

the binding site, transcription factor binding sites contain con-

strained and unconstrained sequences. They therefore provide

another example of a GP map that exhibits some of the proper-

ties discussed above for the Fibonacci, Polyomino and RNA GP

maps, as well as genotypes with constrained and uncon-

strained parts. It would therefore be very interesting to

investigate this empirical GP map more closely in the light of

the sequence constraints and their effect on the GP map.

The Fibonacci GP map is arguably the simplest possible

GP map with genotypes that contain coding and non-

coding sequences. Nevertheless, it exhibits many of the

properties that have been observed in the far more complex,

and biologically realistic RNA secondary structure GP map,

as well as in other evolutionary models, such as the Polyomino

GP map. This implies that these structural properties of the

maps are a result of the bimodal distribution of sequence con-

straints. In the Fibonacci GP map, the coding part is heavily

constrained, while the non-coding part is completely free to

mutate. As discussed above, the coding and non-coding

parts of real genomes are constrained to a less definitive

extent, but the bimodal nature of sequence constraints, both

in RNA [5,11,12] and in form of the fundamental division of

genomes into genes and intergenic sequences, and exons and

introns, is undisputable. Importantly, the boundary between

coding and non-coding sequences is itself part of the

sequence—the ‘stop-codon’ in the Fibonacci GP map. In

RNA, the arrangement with lowest free energy determines

the bonds that form in the secondary structure, which means

that in RNA this boundary is not a defined subsequence, but

is nevertheless altered directly by mutations of the sequence

that change a sequence position from a stem to a loop, or

vice versa, because changes in the sequence alter the optimal

thermodynamic arrangement of the molecules. The fact that,

in all the GP maps discussed in this paper, the boundary

between coding and non-coding sequences is subject to

mutations is the likely reason for one of the most crucial prop-

erties of biological GP maps, namely the positive correlation

between phenotypic evolvability and robustness [3], which

explains how organisms can be both robust and evolvable.

As the analytical calculation of this relationship in the Fibo-

nacci GP map shows explicitly, the most important

contribution to ep comes from the terms that represent the

possibility of the stop codon mutating. The Fibonacci GP

map therefore offers strong evidence that the sequential
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nature of biological information determines the fundamental

structure of GP maps, which in turn has a profound impact

on the course of biological evolution. It also provides an

analytical framework for the further study of the relationship

between GP maps and evolution.
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