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two-Level protein Methylation 
prediction using structure model-
based features
Wei Zheng  1,3,6, Qiqige Wuyun2,3,6, Micah cheng4, Gang Hu  3* & Yanping Zhang5*

protein methylation plays a vital role in cell processing. Many novel methods try to predict methylation 
sites from protein sequence by sequence information or predicted structural information, but none of 
them use protein tertiary structure information in prediction. In particular, most of them do not build 
models for predicting methylation types (mono-, di-, tri-methylation). To address these problems, 
we propose a novel method, Met-predictor, to predict methylation sites and methylation types 
using a support vector machine-based network. Met-predictor combines a variety of sequence-based 
features that are derived from protein sequences with structure model-based features, which are 
geometric information extracted from predicted protein tertiary structure models, and are firstly used 
in methylation prediction. Met-predictor was tested on two independent test sets, where the addition 
of structure model-based features improved AUC from 0.611 and 0.520 to 0.655 and 0.566 for lysine 
and from 0.723 and 0.640 to 0.734 and 0.643 for arginine. When compared with other state-of-the-art 
methods, Met-predictor had 13.1% (3.9%) and 8.5% (16.4%) higher accuracy than the best of other 
methods for methyllysine and methylarginine prediction on the independent test set I (II). Furthermore, 
Met-predictor also attains excellent performance for predicting methylation types.

Protein methylation is one of the most important post-translational modifications1, which generally occurs at the 
lysine or arginine residues of a protein. Arginine methylation has two types: mono-methylation, which means 
the arginine is methylated once, and di-methylation, which can be symmetric or asymmetric, where the arginine 
residue is methylated twice (Fig. 1). The process of arginine methylation can be catalysed by protein arginine 
methyltransferases (PRMTs). The arginine methylation can be detected in transcription regulation, RNA process-
ing, signal transduction, DNA repair, genome stability, and some cancers2. Similarly, lysine methylation mainly 
occurs on histones, which involves the addition of one to three methyl groups to the ε-Nitrogen atom on the 
lysine residue, catalysed by histone lysine methyltransferases (HKMTs or PRDMs). In other words, the lysine 
can be methylated once, twice, and three times (Fig. 1), corresponding to the three types of lysine methylation: 
mono-methylation, di-methylation, and tri-methylation. The lysine methylation has been widely studied in H3 
and H4 histone proteins, which play a vital role in various protein processes, such as heterochromatin compac-
tion, X-Chromosome inactivation, and transcriptional silencing or activation3,4. Recent evidence has found that 
HKMTs can also modify the function of some non-histone proteins5,6.

Since the arginine methylation and lysine methylation play important roles in gene regulation, many human 
diseases are related to them, such as cancer, coronary heart disease, multiple sclerosis, rheumatoid arthritis, and 
neurodegenerative disorders7. Thus, understanding the regulatory mechanism of methylation is essential for dis-
ease treatment. The first and fundamental step will be identifying protein methylation sites. Although experi-
mental methods can be used to confirm the protein methylation sites, these experimental methods are often time 
consuming and expensive. As the number of protein sequences explodes, a large variety of alternative computa-
tional methods are required for the accurate identification of the potential protein methylation sites. Currently, 
various computational methods have been employed to predict methylation sites from protein sequences. Those 
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methods can be categorized as two groups, homologous detecting-based method and machine learning-based 
method. The idea of homologous detecting-based method8 is to assign the arginine or lysine residue of the query 
sequence as methylation or non-methylation site based on the annotation of the aligned residue of the homolo-
gous sequence detected by BLAST9 which searches homologous sequences from a database of protein sequences 
with known methylation sites. Most of the machine learning-based methods10–15 make use of the support vec-
tor machine (SVM) classifier to build models, while iPTM-mLys16 and MePred-RF17 utilize the random forest 
(RF). The features employed in these machine learning-based methods are as diverse as: disorder18,19, orthog-
onal binary coding scheme10, bi-profile Bayes feature20, solvent accessible surface area11, secondary structure11, 
position-specific profiles21, enhanced feature encoding scheme22, composition of K-spaced amino acid pairs23, 
pseudo amino acid composition21, and K-gap amino acid pairs encoding scheme15. For instance, MeMo10 is a 
web server for the protein methylation prediction implemented in SVMs. MASA11 combines the SVM with the 
sequence and structural characteristics of proteins to identify methylation sites on lysine, arginine, glutamate, 
and asparagine. PLMLA12 incorporates protein grouped weight and position weight amino acid composition, 
secondary structure and amino acid physicochemical properties to predict methylation and acetylation of lysine 
residues based on an SVM classifier. PMeS13 is developed for the prediction of protein methylation sites based on 
an enhanced feature encoding scheme and SVM. MethK14 is constructed using SVM with amino acid compo-
sition and accessible surface area to identify lysine-methylated sites on both histones and non-histone proteins. 
PSSMe24 employs the information gain feature optimization method to identify species-specific methylation sites. 
iLM_2L15 utilizes the composition of k-spaced amino acid pairs feature coding scheme and the SVM classifier to 
predict lysine methylation sites and their methylation degrees. More recently, GPS-MSP25 is built for the predic-
tion of different types of methyllysine and methylarginine residues in proteins using the Group-based Prediction 
System (GPS) algorithm.

Figure 1. The methylation and demethylation processes for arginine and lysine. The histone on the top of 
the picture (PDB: 1KX5) includes four subunits: H2A, H2B, H3, and H4. There are many methylarginines 
and methyllysines on the H3 and H4 subunits (red letters). The methylation of arginine is shown on the 
left. Arginine methylation has three types: mono-methylation, symmetric di-methylation, and asymmetric 
di-methylation, which can be catalysed by Type I/II protein arginine methyltransferases (PRMTs). The 
methylation and demethylation of lysine are shown on the right panel, which also includes three types: mono-
methylation, di-methylation, and tri-methylation. The lysine methylation can be catalysed by histone lysine 
methyltransferases (HKMTs or PRDMs), whereas the demethylation of lysine can be catalysed by lysine-specific 
histone demethylases (KDM1A and KDM2A).
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Although these methods have their own advantages, there are still some limitations that need to be addressed. 
First, the datasets used in model training did not include enough updated and non-redundant methylation sites. 
Second, most methods only built models for methylation site prediction but did not take the methylation types 
into account.

Aiming to address these limitations, we proposed a novel tool, Met-predictor, to predict methyllysine, 
methylarginine, and their methylation types from protein sequence. We introduce two groups of features, 
sequence-based features and structure model-based features, for the methylation prediction. The sequence-based 
features include amino acid compositions and K-spaced amino acid pair compositions, which are calculated 
directly from protein sequences, as well as disorders, solvent accessible surface areas, secondary structures, and 
position-specific profiles, which are predicted from protein sequences using corresponding third-party tools9,26–31.  
The structure model-based features are geometric information extracted from predicted protein tertiary struc-
ture models, which are firstly used in the prediction of methylation sites. With these features, a support vector 
machine (SVM) based network is built to predict the lysine and arginine methylation sites and their methylation 
types (Fig. 2). First, we collected highly accurate experimental protein structure data for both lysine and arginine 
methylation sites to analyse the geometric information and structural properties around methylation sites, which 
demonstrated that the structure model-based features should be critical to the improvement of the methylation 
prediction. Furthermore, a large variety of sequence data was collected and divided into the training set for train-
ing models and the independent test sets for testing the predictive performance of the Met-predictor method. 
We compared several distinct classifiers and employed the feature selection procedure and the sliding window 
optimization strategy in order to improve the overall predictive performance. The Met-predictor approach was 
compared with the existing state-of-the-art methods on the independent test sets. The results indicated that the 
Met-predictor method is highly competitive for both arginine and lysine methylation predictions, especially 
when the structure model-based features were added. Met-predictor and all data are available at https://source-
forge.net/projects/met-predictor.

Methods
Sequence dataset. Given the difficulty of solving an experimental protein structure, we can see far more 
protein sequences in Uniprot32 than known structures in the Protein Data Bank33 (PDB). As this gap dramatically 
increased, we built a sequence dataset to test the performance of the Met-predictor, so that we can include enough 
updated and non-redundant methylation sites for model training.

All data is extracted from the UniProtKB/Swiss-Prot database (www.uniprot.org), PhosphoSitePlus (www.
phosphosite.org) and dbPTM (http://dbptm.mbc.nctu.edu.tw/), for both lysine and arginine methylation sites. 
To remove the highly-homologous sequences and avoid such overestimation of the prediction accuracy of built 
models, we clustered the protein sequences with a threshold of 30% identity level using CD-HIT34. Finally, 20% 
of lysine or arginine data was randomly selected as an independent test set to compare performance with other 
existing predictors, while the other 80% was used as the training set for the training models. Recently, we found 
the dbPTM 2019 database35 was updated and accessible, where more experimentally validated PTMs from availa-
ble databases and through manual curation of literature are integrated. Therefore, we further collected the meth-
ylation data from dbPTM 2019 database, and removed 30% sequence identity with our already-built training 
and test set. Additionally, we excluded the redundancy with the training sets of other state-of-the-art methods, 
such as, iLM_2L, MethK and GPS-MSP, which are used in this study for comparison. This new dataset includes 
a variety of newly determined methylation sites that have not been used in any existing methods for training 
and testing. We also notice that there are a large number of methylation sites and mono-methylation sites in 
the new dataset, but the numbers of di- and tri-methylation sites are insufficient. For example, the number of 
tri-methylation sites for lysine in the new dataset is only 6% of the training set. Thus, we use the data built from 
the dbPTM 2019 database as an independent test set II for an objective and fair comparison with other existing 
methods.

Table 1 shows the statistics of the final datasets for both lysine and arginine methylation. In total, we collected 
5894 experimentally verified lysine methylation sites from 2849 protein sequences, and 5005 experimentally ver-
ified arginine methylation sites from 2723 protein sequences. Negative samples were randomly selected from all 
arginine and lysine residues that were not marked by any methylation information on the same proteins, with a 
ratio of 1:1 of positive versus negative sites, because the positive samples (methyllysine or methylarginine resi-
dues) in the datasets are considerably less than the negative samples. Different types of methylation (mono- and 
di- for arginine, and mono-, di-, and tri- for lysine) were also taken into account in data collection (Table 1) and 
further analysed. Detailed descriptions of sequence dataset construction are listed in the Text S1 of Supplement 
Information.

Structure dataset. Although there is insufficient structure data as listed in the PDB, we also collected 
highly-accurate experimental structure data from the PDB for both lysine and arginine methylation sites in order 
to analyse the usefulness of the structure model-based features of the methylation sites. Although the structure 
dataset is relatively small (Table 1), it is enough to make a significance test and demonstrate the usefulness of the 
structure model-based features. Note that this structure dataset is only used for feature analysis, rather than for 
model training or testing. The steps of structure dataset construction are as follows:

Step 1: Data collection. Based on the sequence dataset, we mapped the Uniprot IDs to PDB IDs from the Uniprot 
website, to get 5918 and 6152 structures from the PDB. For each Uniprot ID, all of its corresponding X-ray struc-
tures with resolution better than 3 Å in PDB were selected. Here, we got 4999 and 4900 structures for the lysine 
methylation dataset and the arginine methylation dataset, respectively. We then used blastclust9 to generate 485 
clusters for the lysine methylation dataset and 511 clusters for the arginine methylation dataset with a sequence 
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identity cut-off of 30%. In each cluster, we selected the longest sequence as the representative sequence. We fur-
ther removed all structures with a sequence length <50, ending with 429 and 520 structures for the lysine meth-
ylation dataset and the arginine methylation dataset, respectively.

Step 2: Methylation site annotation. In this step, we first mapped methylation site annotations to structures. Any 
methylation site in the lysine methylation sequence dataset but mutated into non-lysine residue in the structure 
was not annotated, and the same with the arginine methylation dataset. The structures were removed if: (a) 
Structures did not have the side-chain atom “NZ” in lysine residue or “NH1” and “NH2” in arginine residue; (b) 
Structures did not have any methylation annotated site. After the first step, we got 151 and 99 protein structures 

Figure 2. The flowchart of the methylation site and type prediction for arginine and lysine. Met-predictor 
combines two types of features: sequence-based features and structure model-based features. An SVM based 
network is built to simultaneously predict methylation sites as well as the methylation types of lysine and 
arginine.
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for the lysine methylation dataset and the arginine methylation dataset, respectively. These proteins cover 218 
experimental methyllysine sites and 128 experimental methylarginine sites. Similar to many function site data-
sets, positive samples in the methylation site dataset are considerably less than negative samples. In the lysine 
methylation dataset, the radio of positive samples to negative samples was 1:15, and 1:12 in the arginine methyl-
ation dataset (Table 1).

features. In this study, we incorporated two types of features: sequence-based features and structure 
model-based features.

A variety of different sequence-based features are included to build methylation prediction models. The 
sequence-based features can be further divided into 12 subtypes36: location coding (LC), position weight amino 
acid composition (PWAA), encoding based on grouped weight (EBGW), composition of k-spaced amino 
acid pairs (CKSAAP), K nearest neighbours score (KNN), physicochemical and biochemical property from 
AAindex database (AAindex), secondary structure (SS), relative solvent accessibility predicted from protein 
sequences (seqRSA), disorder type (Disorder), half sphere exposure predicted from protein sequences (seqHSE), 
position-specific scoring matrix (PSSM), and evolutionary information from HHblits (HH). The LC, PWAA, 
EBGW, CKSAAP and KNN features are calculated directly from protein sequences. In detail, LC features show 
the location information of a residue; PWAA features give the position information of a residue in a sliding win-
dow; EBGW features indicate the hydrophobicity and charged property of residues; CKSAAP features represent 
the composition of k-spaced amino acid pairs; KNN features calculate the percentage of positives in the K nearest 
neighbours of a residue based on the training dataset. On the other hand, the AAindex, SS, seqRSA, Disorder, 
seqHSE, PSSM, and HH features are predicted by some third-party tools from protein sequences. In detail, 
AAindex features are physicochemical and biochemical properties of an amino acid extracted from AAindex 
database30; SS features are the predicted secondary structure by PSIPRED26; seqRSA features include the relative 
solvent accessibility and backbone torsion angles predicted by SPINE-X28; Disorder features represent natively 
disordered residues recognized by DISOPRED227; seqHSE features are the half sphere exposure predicted by 
SPIDER-HSE31; PSSM features represent position-specific scoring matrix generated by PSI-BLAST9; HH fea-
tures give the evolutionary information generated by HHblits29. Detailed descriptions are shown in Text S2 of 
Supplement information.

Furthermore, structure model-based features are introduced into the methylation prediction for the first time. 
The structure model-based features are extracted from the predicted structure models, rather than the experi-
mental protein structures. This is because the number of experimentally determined protein structures is lagging 
far behind the number of protein sequence since the experimental determination of protein structures is time 
and money consuming. Therefore, the first step is to build the structure models from protein sequences. In detail, 
the PfamScan37 package is employed to automatically separate a whole sequence into several domains. Then, 
HHpred38 software, which is a fast protein tertiary structure predictor, is used to predict the structure models of 
the above domain fragments as well as the whole protein sequence. Finally, the structure model-based features are 
calculated directly from the predicted structure models from HHpred.

The structure model-based features can be divided into four subtypes: convex hull of protein surface (CHOPS), 
half sphere exposure calculated from predicted structure models (strHSE), residue and L1 depth (Depth), and rel-
ative solvent accessibility calculated from predicted structure models (strRSA). Specifically, the CHOPS39 features 
represent the convex hull of protein surfaces, which is a measure to evaluate the locations of atoms in a protein. 
For example, atoms locating on the protein surface, where it is easier to contact with other proteins, will have a 
lower CHOPS value, while atoms locating in pockets of the protein surface, where it is more difficult to contact 

Dataset Methylation types
Methyllysine
proteins/sites

Methylarginine
proteins/sites

Training set

mono- 313/465 598/883

di- 123/172 285/479

tri- 88/117 —

Total 485/721 818/1278

Independent test set I

mono- 77/110 159/231

di- 30/45 69/103

tri- 27/32 —

Total 121/180 205/311

Independent test set II

mono- 2239/4973 206/323

di- 7/21 110/217

tri- 6/6 —

Total 2243/4993 1700/3416

Structure dataset Total 151/218(#3313) 99/128(#1515)

Table 1. Statistics of the lysine and arginine methylation datasets, covering different types of methylation 
(mono- and di- for arginine, and mono-, di-, and tri- for lysine). The training set is used for training models, 
while the two independent test sets are used for an objective and fair comparison with other existing methods. 
The experimental structure dataset is collected for analysing structure information of the methylation sites. The 
number with # indicates the number of negative samples.
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with other proteins, will have a higher CHOPS value. The strHSE features are the half sphere exposure calculated 
from the predicted structures by Biopython40,41 tool. Half sphere exposure42, which is a measure to evaluate the 
solvent exposure of a protein, is defined by the number of Cα atoms in two half-spheres around a residue’s Cα 
atom, where one of the half-spheres corresponds to the side-chain’s neighbourhood, while the other half-sphere is 
in the opposite direction. The Depth features include the residue depth43 and L1 depth44. The depth of an atom in 
a protein is defined as the distance between the atom and the nearest surface water molecule. The strRSA features 
represent the relative solvent accessibility calculated by NACCESS45 based on the predicted structure models. 
The relative solvent accessibility is defined as the ratio of the accessible surface area of a residue, observed in its 
three-dimensional structure, to that observed in an extended tri-peptide conformation. Detailed definitions can 
be found in the Text S3 of Supplement Information.

Feature selection method based on different subtypes of features. The feature selection is per-
formed based on different subtypes of features to remove redundant features and improve prediction perfor-
mance, since feature redundancy may lead to the disadvantageous impact on prediction. The used features in this 
study include sequence-based features and structure model-based features. These features can be further divided 
into 16 subtypes: LC, PWAA, EBGW, CKSAAP, KNN, AAindex, SS, seqRSA, Disorder, seqHSE, PSSM, and HH 
belonging to sequence-based features, as well as CHOPS, strHSE, Depth, and strRSA contained in structure 
model-based features.

First, the Pearson Correlation Coefficient (PCC) between the feature vector and the true classification label 
vector on the training set was used to rank each subtype of features. Thus, 16 PCC-ranked lists corresponding 
to 16 subtypes of features were generated. Then, for each subtype of features, a stepwise feature selection was 
employed based on the support vector machine (SVM) classifier. At each round of stepwise feature selection, 
the accuracy of 5-fold cross-validation on the training set was calculated. The next feature from the PCC-ranked 
list was added if the accuracy increased. Finally, 16 optimal feature sets corresponding to 16 subtypes of features 
were obtained. The 16 subsets of selected features were further integrated to form the final features used in the 
Met-predictor to build models for methylation prediction. Through this feature selection method, we can reduce 
the feature dimensions and maintain the diversity of features at the same time. Furthermore, an SVM-based 
network was built to predict methylation types. The parameters of the SVM classifier were trained using the grid 
selection tool in LibSVM46 on the training set. The flowchart of Met-predictor is shown in Fig. 2.

performance evaluation. In this study, Matthews’s correlation coefficient (MCC), accuracy (ACC), sen-
sitivity (SEN) (also called recall), specificity (SPE), precision (PRE), prevalence-corrected precision (CPRE)47, 
area under the receiver-operating characteristic (ROC) curve (AUC), and area under the precision-recall curve 
(PRAUC), were applied to evaluate the performance of Met-predictor on the training set for building predic-
tion models by the SVM classifier and on the independent test sets for comparing with other existing methods. 
Among them, AUC and PRAUC were calculated by the area under the ROC curve and precision-recall curve, 
which are commonly used to evaluate a classifier or method. In addition, MCC, ACC, SEN, SPE, PRE and CPRE 
are calculated by the following formulas:

=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN( )( )( )( ) (1)

=
+

+ + +
ACC TP TN

TP TN FP FN (2)

=
+

SEN TP
TP FN (3)

=
+

SPE TN
TN FP (4)

=
+

PRE TP
TP FP (5)

=
+ × −

CPRE SEN
SEN r SPE(1 ) (6)

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives, and false negatives, 
respectively. r is the expected ratio of negative to positive numbers in the real-world data, which is listed in the 
Table S1.

Results
Analysis of compositional biases around methylation sites. Two Sample Logo48 was adopted to 
show the compositional biases between methylation and non-methylation sites of lysine and arginine (Fig. 3). 
As shown in Fig. 3, there were substantial differences between lysine and arginine. The lysine (K) was enriched 
around lysine methylation sites, especially on the downstream, while the threonine (T), aspartic acid (D), and 
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glutamic acid (E) were depleted around lysine methylation sites. For arginine methylation, the glycine (G) and 
arginine (R) were enriched at both upstream and downstream fragments, whereas leucine (L) and glutamic acid 
(E) were depleted around arginine methylation sites. Note that there is no side-chain for glycine (G). Therefore, 
the highly enriched glycine (G) around methylarginine may result in more opportunity for transferring a methyl 
group to the ε-Nitrogen atom of the side-chain of the arginine residue. Generally, the enriched residues and 
depleted residues had distinct differences between lysine and arginine methylation sites. Thus, building specific 
predictors for different methylated residues is necessary. More importantly, since there were considerable compo-
sitional biases between methylation sites and non-methylation sites for lysine and arginine, the sequence-based 
features, which incorporate the information from amino acid compositions, such as PWAA and CKSAAP fea-
tures, should be useful for the methylation prediction.

Analysis of structure model-based features on the experimental structure dataset. We have 
built an experimental structure dataset which contains 218 methyllysine sites and 128 methylarginine sites 
(Table 1) for analysing the effect of the structure model-based features, which include the geometric information 
and structural properties around methylation sites. Note that, here, the geometric information and structural 
properties were extracted directly from experimental protein structures, rather than extracted from predicted 
structure models, in order to obtain more accurate information for analyses.

Four types of structure model-based features, CHOPS, strHSE, Depth and strRSA, were calculated on the 
structure dataset.

For the CHOPS features, Fig. 4 shows the distribution of methylation sites in each CHOPS value. CHOPS 
means the convex hull of protein surfaces. Atoms locating on the protein surface are easier to contact with atoms 
on other proteins, so that these atoms would have a lower CHOPS value. However, atoms locating in pockets of 
protein surface are more difficult to contact with atoms on other proteins, resulting in a higher CHOPS value. For 

Figure 3. The compositional biases around the methylation sites compared to the non-methylation sites based 
on the two-sample logo. Only amino acid residues enriched or depleted around lysine methylation sites are 
shown. Each logo contains 41 residue fragments with 20 upstream and 20 downstream. Note that the scopes 
of the Y-axis for lysine and arginine are different. The lysine residue is represented by “K” while the arginine 
corresponds to “R”.

Figure 4. The CHOPS feature analysis for lysine and arginine methylation prediction. The bar represents the 
number of methylation samples on different CHOPS values for lysine and arginine methylation. For lysine, 
46.1% (100/217) methylation samples have a CHOPS value of 1, which means these methylation samples are 
located at the first convex hull of the protein surface, and for arginine, there are 34.6% (44/127).
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lysine, 46.1% (100/217) of methylation sites had a CHOPS value of 1, which means these methylation sites were 
located at the first convex hull of the protein surface. For arginine, there were 34.6% (44/127) of methylation sites 
located at the first convex hull of the protein surface. For both lysine and arginine, the average CHOPS values for 
methylation samples were significantly lower than non-methylation samples (5.98 vs 7.62 for arginine and 4.40 
vs 6.76 for lysine) with the p-values of 2E-03 and 4.57E-08. Tables S2 and S3 give the p-values calculated by the 
Student’s t-test or Wilcoxon signed-rank test, which is adopted based on whether the samples follow a normal 
distribution or not by Shapiro-Wilk test. The pairwise two-tailed test is made to test whether there are significant 
differences between positives and negatives. If there are significant differences, the pairwise one-tailed test is used 
to test whether the average value of one group is significantly higher or lower than the average value of the other 
group.

For the strHSE features, four kinds of HSE (HSEAU, HSEAD, HSEBU, and HSEBD, based on whether both 
the Cα and Cβ positions (B) or only the Cα positions (A) are used, as well as whether the half-sphere is an up 
half-sphere (U) or a down half-sphere (D)) were calculated with different cut-off radius varying from 5Å to 30Å. 
As shown in Fig. S1, the HSEs of non-methyllysine were significantly greater than those of methyllysine with 
p-values all less than 8.0E-03 (P-values are shown in Tables S2 and S3), when the cut-off radius was greater than 
10Å. For arginine, when the cut-off radius was greater than 25Å, there was a statistically significant difference 
between the HSEs of methylarginine and non-methylarginine with p-values all less than 2.4E-02 (P-values are 
shown in Tables S2 and S3).

For the Depth features, the L1 depths were calculated with the cut-off radius varying from 5Å to 30Å, and the 
results are shown in Fig. S2. These results indicated that both residue-level and atom-level L1 depths of methyl-
lysine sites were significantly lower than those of non-methyllysine sites with p-values all less than 2.0E-02 
(P-values are shown in Tables S2 and S3), when the cut-off radius was greater than 5Å. For arginine, a similar 
trend can be found when cut-off radius was greater than 20Å, which indicates that L1 depth is a good type of fea-
tures for distinguishing methylation sites, especially for lysine.

For the strRSA features, the average RSA and side-chain RSA of methyllysine sites were 0.552 and 0.624, 
which were significantly greater than 0.513 and 0.578 for non-methyllysine sites with p-values of 5.0E-03 and 
3.0E-03 (P-values are shown in Tables S2 and S3). For arginine, even though the RSAs of methylation sites were 
greater than those of non-methylation sites, there were no substantial differences.

Overall, these analyses on the experimental structure data indicated that structure model-based features can 
be useful to distinguish methylation sites from non-methylation sites. Therefore, we employed the structure 
model-based features into the support vector machine (SVM) classifier for training and independent testing in 
order to improve the prediction performance. However, in the training set and independent test sets, there are no 
experimental structures for most of proteins. Instead, we used HHpred38 to predict the structure model for each 
protein sequence, and calculated the structure model-based features based on the predicted structure models.

The selection of classifier, feature, and sliding window size. First, we compared the performance 
of different classifiers on the 5-fold cross-validation of the training set. Here, the accuracy (ACC in Eq. (2)) was 
employed as the performance index to evaluate the performance of different classifiers. Tables S4 and S5 give the 
comparisons of performances based on the SVM, neural network, random forest and Bayes classifiers for lysine 
and arginine methylation prediction. For a fair comparison, the same features (all of the sequence-based and 
structure model-based features without performing the feature selection) were used for distinct classifiers to build 
models. The SVM classifier is implemented by LibSVM tool46, while the neural network, random forest and Bayes 
classifiers are implemented by Scikit-learn packages49 in Python with default settings. We found that the SVM 
classifier showed excellent performance for the prediction of methylation sites and methylation types. However, 
for lysine and arginine methylation sites prediction, the neural network and random forest classifiers performed 
poorly with accuracies less than 0.5 for most of sliding window sizes. The Bayes classifier was interior to the SVM 
classifier on the prediction of methylation types. Therefore, the SVM classifier was used in Met-predictor to build 
models for the independent tests with other existing methods. Note that the accuracy values of random forest 
and neural network classifiers on di- and tri-methylation prediction were relatively high. This is due to the fact 
that there are fewer samples for the di- and tri-methyllysine (172 for di- and 117 for tri-methyllysine as shown in 
Table 1) but much higher dimension of features (more than two thousand as shown in Table S6), which may lead 
to the over-fittings by random forest and neural network classifiers.

To avoid over-fitting in model training, we made the feature selection based on the feature selection method 
described in the “Feature selection method based on different subtypes of features” section. Tables S7 and S8 
show the performance of the feature selection method with different sliding window sizes for lysine and arginine 
methylation prediction on the training set. When the feature selection was performed, the accuracy values were 
improved at least 8.7%, 4.7%, 8.1%, 8.6% and 1.1% for methylarginine, mono-methylarginine, di-methylarginine, 
methyllysine and mono-methyllysine prediction among different sliding window sizes. However, for di- and 
tri-methyllysine prediction, the feature selection reduced the accuracy performance because of the over-fitting of 
model training based on all of the features, where there were fewer samples for the di-and tri-methyllysine. Thus, 
the feature selection method is required to avoid over-fitting in model training and improve the performance of 
methylation prediction. Furthermore, the feature selection method can reduce the dimension of features, which 
would speed up the methylation prediction and improve efficiency. As shown in Table S6, the dimension of fea-
tures reduced from 5013 to 154 for lysine and 155 for arginine.

Since different sliding windows may have distinct prediction performances, optimization of the sliding win-
dow sizes is required for selecting features and training models. The sliding windows were considered ranging 
from size 9 to 23, which covers all sliding window sizes used by previous methods10–15,24,25 about the prediction of 
methylation sites and methylation types. The accuracy was also employed as the performance index to evaluate 
the performance of different sliding window sizes. For each sliding window size, the 5-fold cross-validation was 
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utilized based on the support vector machine (SVM) classifier to build the model and calculate the predicted 
accuracy. Figure 5 shows the predicted accuracy of each model based on different sliding window sizes. The slid-
ing window sizes with the highest accuracy were chosen. For both lysine and arginine methylation, the sliding 
window size of 17 was selected. For mono-methylation prediction, the sliding window size of 17 was also selected 
for arginine, while 23 was selected for lysine. Overall, for both lysine and arginine, different sliding window sizes 
had stable accuracy values for methylation site and mono-methylation. But for di-and tri-methylations, the accu-
racies fluctuated strongly among different sliding window sizes.

prediction performance on training dataset. The predicted performances of the 5-fold cross-validation 
on the training set are shown in Table 2. For lysine and arginine methylation site prediction, the addition of 
structure model-based features reached a relatively better performance with the AUCs of 0.692 and 0.752 
than utilization of only sequence-based features with the AUCs of 0.679 and 0.749. Furthermore, for the 

Figure 5. Predicted accuracy (ACC) of 5-fold cross-validation based on the training dataset for sliding window 
size ranging from 9 to 23. (A,B) Lysine methylation prediction based on sequence-based features and based on 
sequence-based features and structure model-based features. (C,D) Arginine methylation prediction sequence-
based on sequence-based features and based on sequence-based features and structure model-based features.

Residue Methods
Window
Size MCC ACC SEN SPE PRE CPRE AUC PRAUC

K

Met-predictor(seq) 17 0.261 0.630 0.655 0.606 0.624 0.061 0.679 0.669

     MONO 23 0.206 0.674 0.927 0.215 0.682 0.682 0.674 0.789

     DI 17 0.384 0.692 0.674 0.709 0.699 0.421 0.752 0.746

     TRI 21 0.455 0.726 0.769 0.684 0.709 0.320 0.779 0.746

Met-predictor(seq + str) 17 0.286 0.643 0.662 0.624 0.638 0.064 0.692 0.685

     MONO 23 0.207 0.674 0.925 0.219 0.683 0.683 0.676 0.792

     DI 15 0.390 0.695 0.686 0.703 0.698 0.420 0.756 0.724

     TRI 23 0.359 0.679 0.692 0.667 0.675 0.287 0.754 0.749

R

Met-predictor(seq) 17 0.371 0.685 0.654 0.716 0.697 0.089 0.749 0.759

     MONO 17 0.148 0.703 0.992 0.056 0.701 0.701 0.606 0.761

     DI 19 0.377 0.721 0.409 0.909 0.729 0.729 0.745 0.665

Met-predictor(seq + str) 17 0.380 0.689 0.642 0.737 0.709 0.094 0.752 0.763

     MONO 17 0.184 0.709 0.981 0.101 0.709 0.709 0.636 0.774

     DI 21 0.302 0.692 0.326 0.912 0.690 0.690 0.712 0.607

Table 2. The prediction performance of the Met-predictor based on 5-fold cross-validation on the training 
set. Two versions of Met-predictor are included here: Met-predictor(seq), where only sequence-based features 
are used to build models, and Met-predictor(seq + str), which uses not only sequence-based features, but also 
the novel structure model-based features to build models. The lysine residue is represented by “K” while the 
arginine corresponds to “R”. The definitions of measures MCC, ACC, SEN, SPE, PRE, CPRE, AUC and PRAUC 
are shown in “Performance Evaluation” section and Eqs. (1) to (6).
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prediction of methylation types (mono-, di-, or tri-methylation), there were no considerable improvements 
for mono-methyllysine and di-methyllysine site prediction when adding the structure model-based features, 
whereas the AUC of tri-methyllysine site prediction largely improved from 0.611 to 0.754. For the prediction 
of arginine methylation types, the addition of structure model-based features improved the prediction perfor-
mance of mono-methylarginine, but decreased the performance of di-methylarginine. These results indicated 
that Met-predictor incorporating both sequence-based and structure model-based features has a relatively better 
predictive ability on the training set.

Does the combination of sequence-based features with structure model-based features work?.  
Based on the above analyses on the structure dataset, we found the structure model-based features extracted 
directly from experimental protein structures can help distinguish the methylation sites from non-methylation 
sites. However, in the training set and the independent test sets, there are no experimental structures for most of 
proteins. Therefore, the structure model-based features were extracted from the structure models predicted by 
HHpred38. Here, we analysed the contribution of structure model-based features extracted from the predicted 
structure models to methylation prediction. Furthermore, we examined the effectiveness and rationality of com-
bining sequence-based features with structure model-based features for methylation prediction. All analyses here 
are based on the independent test set I.

Figure 6A and Table S9 show the predictive capabilities of 16 subtypes of features (LC, PWAA, EBGW, 
CKSAAP, KNN, AAindex, SS, RSA, Disorder, HSE, PSSM, HH, CHOPS, strHSE, Depth, and strRSA, which are 

Figure 6. Predictive capability analysis of different types of features. (A) The prediction accuracy (ACC) of 
different models based on 16 subtypes of features, all sequence-based features, and all sequence-based and 
structure model-based features for lysine and arginine. The bar labelled “All seq” corresponds to the accuracy 
of model built by only sequence-based features, while the bar labelled “All seq + str” represents the accuracy of 
model built by both sequence-based and structure model-based features. For lysine, the CHOPS features have 
the highest accuracy, while for arginine the EBGW features are the best. (B) The distributions of classification 
probabilities for methyllysine and non-methyllysine sites. (C) The distributions of classification probabilities 
for methylarginine and non-methylarginine sites. The lysine residue is represented by “K” while the arginine 
corresponds to “R”.
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described in the “Features” section). 16 models were trained on the training set based only on the corresponding 
subtype of features using an SVM classifier, respectively. Then, the accuracy values (ACC in Eq. (2)) on the inde-
pendent test set I were calculated to evaluate the performance of each subtype of features.

For sequence-based features, the model based on KNN features or EBGW features had the accuracy values 
of 0.561 and 0.558 for lysine as well as 0.633 and 0.645 for arginine, which outperformed other sequence-based 
features, while the accuracies of the LC and PWAA features were relatively poor (0.489 and 0.492 for lysine, 
0.497 and 0.492 for arginine). Interestingly, CKSAAP features had relatively higher accuracy value of 0.622 for 
arginine but performed poorly for lysine (0.497). As shown in Fig. 3, there were substantial compositional biases 
between methylation sites and non-methylation sites of lysine and arginine (for example, the lysine (K) was 
enriched especially on the downstream for lysine methylation; the glycine (G) and arginine (R) were enriched at 
both upstream and downstream for arginine methylation). Thus, the residue composition-related features, KNN, 
EBGW, and CKSAAP, can reach relatively good performances. On the other hand, the AAindex features had 
relatively higher accuracy values of 0.572 and 0.642 for both lysine and arginine methylation site prediction. In 
contrast, the Disorder features only performed well for lysine with an accuracy of 0.569. We further combined all 
sequence-based features to build the model and evaluate the prediction performance. We found the integration 
of all sequence-based features can considerably improve the predictive performance for both lysine and arginine 
methylation, reaching the accuracy values of 0.597 and 0.675.

For structure model-based features, CHOPS features had the highest accuracy of 0.606 among all 16 subtypes 
of features, which are even higher than the accuracy of all sequence-based features of 0.597, for lysine methylation 
prediction. Thus, we combined all sequence-based features with all structure model-based features to build a 
final model. The prediction accuracy values of 0.631 and 0.677 based on models integrating both sequence-based 
and structure model-based features were superior to the accuracy values of 0.597 and 0.675 based only on 
sequence-based features, for both lysine and arginine methylation, which indicates that the addition of structure 
model-based features can substantially improve the prediction performance, especially for lysine methylation.

We present in Fig. 6B,C the distributions of classification probabilities for methylation and non-methylation 
sites to further investigate why the addition of structure model-based features can improve the performance. The 
classification probability is the predictive probability of classifying a sample as the methylation site. Thus, a good 
prediction method should have larger classification probabilities for positive samples, while lower classification 
probabilities for the negative sample. For lysine methylation prediction, the peak of the density curve of methyl-
ation probabilities moved to the right (i.e., the average probability improved from 0.545 to 0.553), while the peak 
of non-methylation probabilities moved to the left (i.e., the average probability improved from 0.480 to 0.451), 
when the structure model-based features were added, indicating the usefulness of structure model-based features. 
Furthermore, we found the addition of the structure model-based feature reduced overlapped area between the 
density curves of methylation and non-methylation probabilities (i.e., the overlapped area between two solid 
lines was smaller than the overlapped area between two dashed lines in Fig. 6B), indicating that it may be easier 
to distinguish methyllysine sites from non-methyllysine sites with the help of structure model-based features. 
Similarly, for arginine, the addition of the structure model-based features made the peak of the density curve of 
methylation probabilities move to the right (i.e., the average probability improved from 0.568 to 0.585). Table S10 
shows the statistical significance test on the ability of methylation prediction between the two groups of features. 
The combination of sequence-based and structure model-based features had significantly lower average proba-
bility of non-methyllysine of 0.451, as well as significantly larger average probability of methylarginine of 0.585, 
than the use of only sequence-based features (0.480 and 0.568), with p-values of 5.0E-04 and 1.1E-05 calculated 
by pairwise one-tailed Wilcoxon signed-rank tests, indicating the combination of sequence-based features and 
structure model-based features can be more helpful for both lysine and arginine methylation predictions.

performance on independent test sets and comparison with existing methods. Aiming to fur-
ther evaluate the performance of the Met-predictor, we compared the Met-predictor with other existing methods, 
including MEMO10, MASA11, PLMLA12, PmeS13, MethK14, iLM_2L15 and GPS-MSP25 on two independent test 
sets. These tools or servers were run with their default settings. The comparison results on the two independent 
test sets are shown in Tables 3 and 4. Matthews’s correlation coefficient (MCC), accuracy (ACC), sensitivity (SEN), 
specificity (SPE), precision (PRE), prevalence-corrected precision (CPRE), area under the receiver-operating 
characteristic curve (AUC), and area under the precision-recall curve (PRAUC) were applied to evaluate the 
performance of methylation prediction (Eqs. (1) to (6)). Note that the probabilities of both positive and negative 
samples are needed to calculate the AUC and PRAUC values. Therefore, we cannot give the AUC and PRAUC 
values of other methods for comparison, because other tools or servers do not output the probabilities for their 
predicted sites or only gives the probabilities of positive sites they predicted.

On the independent test set I (Table 3), Met-predictor incorporating both sequence-based and structure 
model-based features had 13.1% and 8.5% higher ACC than the best of other methods for methyllysine and 
methylarginine prediction. Specifically, for lysine methylation site prediction, the Met-predictor based on only 
the sequence-based features had slightly lower MCC than PmeS method (0.195 vs 0.209). However, the addition 
of structure model-based features had considerably improved the predictive performance of the model from 
MCC of 0.195, ACC of 0.597 and AUC of 0.611 to 0.261, 0.631 and 0.655, respectively, which were considerably 
higher than all other methods. For arginine methylation site prediction, the Met-predictor method based only on 
the sequence-based features had already performed considerably better than other methods on MCC, ACC and 
SEN, but the addition of structure-based features still improved the predictive performance of arginine methyl-
ation. However, the SPE, PRE and CPRE of Met-predictor on both lysine and arginine methylation prediction 
were worse than PmeS, MethK and GPS-MSP. This is because PmeS, MethK and GPS-MSP methods tended to 
predict a tiny number of methylation sites and the small portion of predictions was correct, i.e., the true positives 
(TP) were very small while false positives (FP) were zero. In the existing methods, iLM_2L and GPS-MSP had the 
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ability to build models for determining the methylation types. When compared with iLM_2L, which was designed 
for only lysine methylation prediction, the ACC and SEN of the Met-predictor with both sequence-based and 
structure model-based features were higher on all three types, and the MCC was higher on both mono- and 
di-methyllysines. Similarly, iLM_2L method had higher SPE, PRE and CPRE values for di- and tri-methylation 
prediction, because these two datasets were very small (including only 45 true di-methyllysines and 32 true 
tri-methyllysines), so that this method predicted a very small but accurate number of di- or di-methyllysines (i.e., 
the true positives (TP) were very small while false positives (FP) were zero). GPS-MSP method, which can make 
prediction of methylation types for both lysine and arginine, performed poorly on mono- and tri-methyllysine 
prediction, which is due to the fact that the true positives (TP) and false positives (FP) predicted by GPS-MSP 
were extremely small and even zero (“Nan” values indicated that both TP and FP were zero).

The independent test set II was collected from a recently released database with a variety of newly determined 
methylation sites which have not been used in any existing methods for training and testing. Furthermore, the 
redundancy with the training sets of other state-of-the-art methods was excluded. Therefore, the comparison 
with other existing methods on this dataset should be more objective and fairer. Table 4 shows the performance 

Residue Methods MCC ACC SEN SPE PRE CPRE AUC PRAUC

K

MEMO 0.104 0.528 0.106 0.950 0.679 0.075 — —

MASA 0.164 0.531 0.067 0.994 0.923 0.301 — —

PLMLA 0.061 0.531 0.517 0.544 0.531 0.042 — —

PmeS 0.209 0.542 0.083 1.000 1.000 1.000 — —

MethK 0.101 0.558 0.019 1.000 1.000 1.000 — —

iLM_2L 0.075 0.531 0.239 0.822 0.573 0.049 — —

     MONO 0.039 0.450 0.218 0.814 0.649 0.648 — —

     DI 0.151 0.522 0.044 1.000 1.000 1.000 — —

     TRI 0.291 0.578 0.156 1.000 1.000 1.000 — —

GPS-MSP 0.130 0.517 0.033 1.000 1.000 1.000 — —

     MONO −0.094 0.383 0.000 0.986 0.000 0.000 — —

     DI 0.106 0.511 0.022 1.000 1.000 1.000 — —

     TRI Nan 0.500 0.000 1.000 Nan Nan — —

Met-predictor(seq) 0.195 0.597 0.633 0.561 0.591 0.053 0.611 0.606

     MONO 0.126 0.617 0.845 0.257 0.641 0.641 0.594 0.705

     DI 0.223 0.611 0.578 0.644 0.619 0.351 0.557 0.553

     TRI 0.194 0.594 0.469 0.719 0.625 0.265 0.611 0.549

Met-
predictor(seq + str) 0.261 0.631 0.644 0.617 0.627 0.061 0.655 0.647

     MONO 0.136 0.622 0.864 0.243 0.642 0.642 0.587 0.699

     DI 0.291 0.644 0.578 0.711 0.667 0.400 0.660 0.601

     TRI 0.221 0.609 0.531 0.688 0.630 0.269 0.664 0.585

R

MEMO 0.282 0.624 0.386 0.862 0.736 0.104 — —

MASA 0.316 0.622 0.305 0.939 0.833 0.172 — —

PmeS 0.176 0.587 0.498 0.675 0.605 0.060 — —

GPS-MSP 0.192 0.550 0.122 0.977 0.844 0.181 — —

     MONO 0.113 0.293 0.048 1.000 1.000 1.000 — —

     DI 0.024 0.505 0.049 0.961 0.556 0.384 — —

Met-predictor(seq) 0.352 0.675 0.637 0.714 0.690 0.085 0.723 0.731

     MONO 0.097 0.746 1.000 0.013 0.745 0.745 0.541 0.755

     DI 0.073 0.633 0.223 0.837 0.404 0.404 0.583 0.579

Met-
predictor(seq + str) 0.355 0.677 0.630 0.723 0.695 0.086 0.734 0.746

     MONO 0.126 0.746 0.978 0.075 0.753 0.753 0.574 0.778

     DI 0.122 0.662 0.194 0.894 0.476 0.475 0.628 0.617

Table 3. Performance comparison of the Met-predictor with other existing methods on the independent test 
set I. Two versions of Met-predictor are included here: Met-predictor(seq), where only sequence-based features 
are used to build models, and Met-predictor(seq + str), which uses not only sequence-based features, but also 
the novel structure model-based features to build models. The lysine residue is represented by “K” while the 
arginine corresponds to “R”. The definitions of measures MCC, ACC, SEN, SPE, PRE, CPRE, AUC and PRAUC 
are shown in “Performance Evaluation” section and Eqs. (1) to (6). The “Nan” for the MCC, PRE and CPRE 
is because both TP and FP are zero, resulting in the measure divided by zero. There are no AUC and PRAUC 
values for other methods because other tools or servers do not output the probabilities for their predicted sites 
or only gives the probabilities of positive sites they predicted. Note that the probabilities of both positive and 
negative samples are needed to calculate the AUC and PRAUC values.

https://doi.org/10.1038/s41598-020-62883-2


13Scientific RepoRtS |         (2020) 10:6008  | https://doi.org/10.1038/s41598-020-62883-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

comparison of the Met-predictor with other existing methods on the independent test set II. Note that the 
MEMO method was not included on the independent test set II, because it is inaccessible after we collected the 
independent test set II. Similar results with the independent test set I can be found. But the performance of each 
method on the independent test set II reduced when compared with independent test set I, which is because the 
independent test set II was brand new so that the over-fitting of model training was avoided. The performance 
of Met-predictor incorporating both sequence-based and structure model-based features on tri-methyllysine 
prediction was considerably excellent, because there was an extremely small number of tri-methyllysine samples 
(only 6 as shown in Table 1). Overall, the Met-predictor outperformed other methods on MCC, ACC and SEN for 
methylation sites prediction and their methylation types.

Discussion
In this study, a novel tool, Met-predictor, is developed for largely improving the performance to identify lysine 
and arginine methylation sites and their methylation types. Met-predictor combines a novel group of structure 
model-based features with an SVM based network to simultaneously predict methylation sites, as well as the 
methylation types (i.e., mono-, di- and tri-methylation) of lysine and arginine. Moreover, a classifier evalua-
tion, an effective feature selection method, and a sliding window optimization strategy are employed in order to 
improve prediction performance.

In the predictive capability analyses of different subtypes of features, the largest contribution came from struc-
ture model-based features for lysine methylation prediction and sequence-based features for arginine methylation 
prediction. For lysine especially, all four kinds of geometric information from predicted protein structures (i.e., 
structure model-based features CHOPS, strHSE, Depth, strRSA) had relatively good performances to distinguish 
positive samples from negative samples. This may be due to the fact that the nitrogen atom in a lysine residue’s 
side-chain will have more opportunity to contact to a methyl group donor when the lysine residue has less sur-
rounding atoms (the values of strHSE are small) and is located at a convex region (the values of CHOPS are 
small). When combining the sequence-based features with the structure model-based features, the Met-predictor 
showed improved prediction performance on two independent test sets.

Residue Methods MCC ACC SEN SPE PRE CPRE AUC PRAUC

K

MASA 0.014 0.501 0.010 0.992 0.574 0.057 — —

PLMLA 0.067 0.533 0.540 0.527 0.533 0.048 — —

PmeS −0.018 0.499 0.004 0.993 0.382 0.027 — —

MethK 0.007 0.500 0.001 1.000 0.667 0.082 — —

iLM_2L −0.005 0.498 0.213 0.783 0.495 0.042 — —

     MONO −0.018 0.493 0.200 0.786 0.483 0.996 — —

     DI Nan 0.500 0.000 1.000 Nan Nan — —

     TRI 0.258 0.625 0.500 0.750 0.667 0.002 — —

GPS-MSP −0.010 0.499 0.002 0.997 0.400 0.029 — —

     MONO 0.004 0.500 0.001 0.999 0.571 0.997 — —

     DI Nan 0.500 0.000 1.000 Nan Nan — —

     TRI Nan 0.500 0.000 1.000 Nan Nan — —

Met-predictor(seq) 0.035 0.517 0.508 0.526 0.518 0.046 0.520 0.513

     MONO 0.006 0.503 0.488 0.518 0.503 0.996 0.506 0.500

     DI 0.000 0.500 0.364 0.636 0.500 0.004 0.504 0.512

     TRI 0.258 0.625 0.500 0.750 0.667 0.002 0.625 0.748

Met-predictor(seq + str) 0.109 0.554 0.532 0.576 0.557 0.053 0.566 0.540

     MONO 0.094 0.545 0.412 0.678 0.562 0.997 0.560 0.538

     DI 0.218 0.545 0.091 1.000 1.000 1.000 0.570 0.547

     TRI 0.577 0.750 0.500 1.000 1.000 1.000 0.625 0.748

R

MASA Nan 0.500 0.000 1.000 Nan Nan — —

PmeS 0.070 0.516 0.074 0.958 0.640 0.064 — —

GPS-MSP 0.113 0.531 0.115 0.948 0.688 0.078 — —

     MONO 0.232 0.586 0.249 0.923 0.764 0.252 — —

     DI 0.091 0.534 0.207 0.862 0.600 0.092 — —

Met-predictor(seq) 0.166 0.583 0.634 0.532 0.575 0.050 0.640 0.666

     MONO 0.370 0.680 0.793 0.568 0.647 0.161 0.749 0.736

     DI 0.044 0.506 0.023 0.989 0.667 0.119 0.530 0.528

Met−predictor(seq + str) 0.262 0.618 0.404 0.833 0.707 0.085 0.643 0.677

     MONO 0.412 0.645 0.290 1.000 1.000 1.000 0.705 0.727

     DI 0.132 0.517 0.034 1.000 1.000 1.000 0.632 0.606

Table 4. Performance comparison of the Met-predictor with other existing methods on the independent test set 
II. Table layout and description are identical to Table 3.
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Furthermore, the proposed method considerably improved the prediction of both lysine and arginine meth-
ylation sites when compared with existing methods. In comparison to iLM_2L and GPS-MSP, which were the 
only existing methods for identifying different methylation types, the higher performance was attained by the 
Met-predictor for mono- and di-methylation site prediction. In the future, we will consider the employment of 
some new types of features and more effective feature selection methods, which may hopefully assist in making 
progress in the prediction of arginine methylation sites and types.
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