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ABSTRACT Methicillin-resistant Staphylococcus aureus sequence type 72 (ST72) is
prevalent in South Korea and has shown resistance to multiple antimicrobials. ST72
isolates display different levels of resistance to the antistaphylococcal lysostaphin.
Draft genome sequencing of ST72 human isolates exhibiting lysostaphin resistance
or susceptibility was performed to better understand the mechanism of lysostaphin
resistance using subtractive genomics.

Community-associated methicillin-resistant Staphylococcus aureus (MRSA) sequence
type 72 (ST72) has emerged as a nosocomial infection that causes pneumonia, en-

docarditis, and skin and soft tissue infections (SSTIs) in South Korea (1, 2). Due to the
multidrug resistance of community-associated ST72, we evaluated the efficacy of lysos-
taphin as an effective antistaphylococcal bacteriocin that specifically eradicates S. aur-
eus by cleaving the pentaglycine bridge in the cell wall (3, 4).

Human ST72 isolates (K07-561 and K07-204) used in the study were originally iso-
lated by the Asia Pacific Foundation for Infectious Diseases, in South Korea (2). The dif-
ferent levels of susceptibility/resistance of K07-561 and K07-204 to lysostaphin were
evaluated (4). The isolate K07-561 showed lysostaphin susceptibility, while K07-204 dis-
played an ;1,000 times higher level of lysostaphin resistance upon treatment with 2 U
of lysostaphin for 5min (Fig. 1). These human ST72 isolates, K07-204 (lysostaphin resist-
ant) and K07-561 (lysostaphin susceptible), represent an attractive model for elucidating
the unknown mechanism of antibiotic and enzybiotic resistance. Therefore, we selected
the isolates K07-204 and K07-561 as representative strains for genome sequencing to
understand the genetic differences between the resistant and sensitive phenotypes.

A single colony was inoculated in 10ml of tryptic soy broth (TSB) under orbital shak-
ing culture conditions (200 rpm) at 37°C for 16 h. The cells were harvested by centrifu-
gation. Genomic DNA from K07-204 and K07-561 was isolated by the phenol-chloro-
form extraction method (5). Briefly, the high-molecular-weight genomic DNA was
sheared by using a Covaris S2 ultrasonicator system to obtain 350-bp DNA fragments.
Libraries were prepared with the TruSeq Nano DNA sample preparation kit (Illumina,
Inc., San Diego, CA, USA) by following the manufacturer’s protocol. Products were
quantified using a Bioanalyzer 2100 system (Agilent, Santa Clara, CA, USA). Genomes
were sequenced with a 150-bp paired-end Illumina NovaSeq 6000 platform. The qual-
ity control results were generated using FastQC software (v.0.10.1). Trimming of low-
quality bases with a score below Q20 was performed using Sickle (v.1.3.3) (6), resulting
in 21,289,096 and 28,904,426 surviving read pairs for K07-204 and K07-561, respec-
tively. The genomes were assembled de novo using IDBA-UD (v.1.1.1) (7). The genome
assembly of K07-204 and K07-561 yielded 66 and 58 contigs, respectively. The
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predicted lengths of the de novo-assembled genomes of K07-204 and K07-561 were
found to be 2,310,534 bp and 2,149,433 bp, respectively. The GC contents of K07-204
and K07-561 were 32.92% and 32.88%, respectively. Contigs were annotated using the
Prokaryotic Genome Annotation Pipeline (PGAP) (8). The K07-204 genome contained
2,168 coding genes, 40 tRNA sequences, and 1 rRNA sequence. K07-561 contained 2,040
coding genes and 21 tRNA sequences in its genome. The available genome sequences
and their subtractive genomics in future studies will not only decode the novel genetic
basis of the mechanisms of resistance to antibiotics and lysostaphin but also broaden
the therapeutic interventions used against MRSA.

Data availability. The draft genome sequencing data for K07-204 and K07-561
are available in the GenBank database under the accession numbers JACSIU000000000.1
and JACORE000000000.1, respectively. Raw sequencing reads for K07-204 and K07-561
were deposited in the Sequence Read Archive (SRA) under BioProject/BioSample accession
numbers PRJNA637991/SAMN15163378 and PRJNA637996/SAMN15163770, respectively.
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FIG 1 Responses of S. aureus ST72 strains to lysostaphin. Differential responses of K07-204 and K07-
561 at various concentrations of lysostaphin are shown.
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