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Abstract

Cognitive decline and carotid artery atheroma are common at older ages. In community-dwelling subjects, we assessed
cognition at ages 70, 73 and 76 and carotid Doppler ultrasound at age 73, to determine whether carotid stenosis was
related to cognitive decline. We used latent growth curve models to examine associations between four carotid meas-
ures (internal carotid artery stenosis, velocity, pulsatility and resistivity indices) and four cognitive ability domains
(memory, visuospatial function, crystallised intelligence, processing speed) adjusted for cognitive ability at age | I, current
age, gender and vascular risk factors. Amongst 866 participants, carotid stenosis (median 12.96%) was not associated
with cognitive abilities at age 70 or cognitive decline from age 70 to 76. Increased ICA pulsatility and resistivity indices
were associated with slower processing speed (both P <0.001) and worse visuospatial function (P=0.036, 0.031,
respectively) at age 70, and declining crystallised intelligence from ages 70 to 76 (P=0.008, 0.006, respectively). The
findings suggest that vascular stiffening, rather than carotid luminal narrowing, adversely influences cognitive ageing and
provides a potential target for ameliorating age-related cognitive decline.
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Introduction

Carotid stenosis increases with age, is a major risk
factor for embolic stroke,! and may reduce cerebral
blood supply. Cognitive decline and dementia also
increase with advancing age,” and vascular risk
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factors and stroke are associated with higher rates of
cognitive decline and dementia.>* White matter
hyperintensities (WMH) are a common finding indica-
tive of vascular disease on neuroimaging in older
people, are associated with reduced cerebral blood
flow,? cause cognitive decline and increase the risk of
dementia and stroke.®

Carotid stenosis induced by placing wires around the
internal carotid arteries (ICA) is used as a model of
ageing-related cognitive impairment (Holland et al.,
2015).7 However, in humans, the association between
carotid stenosis and cognition is less clear.®” In several
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studies (total n=12,887), the presence of carotid ather-
oma as indicated by plaque area or intima-media
thickening (IMT), but not luminal narrowing was asso-
ciated with declining cognitive function or demen-
tia.!'® The Framingham study (n=1975) found
variable associations between carotid IMT or sten-
osis>50% and cognitive function or WMH."
However, carotid endarterectomy to remove tight sten-
osis did not influence cognitive decline five years later.'”
Other studies (total n=1300)'*!7 found the cross-sec-
tional association between carotid IMT or stenosis and
WMH was due to shared co-association with age and
vascular risk factors. Several studies found that
increased systemic vascular or ICA stiffness, as indi-
cated by raised pulse pressure or carotid pulsatility
or resistivity indices, was associated with declining cog-
nitive function'®'” and/or WMH."?** No studies exam-
ined trajectories of different cognitive domains
and their associations with markers of carotid ather-
oma and stiffness while correcting for prior cognitive
ability, a major determinant of cognitive ability at
older ages.”!

The present analysis aimed to determine if carotid
stenosis is associated independently with performance
level and/or change in key cognitive domains between
ages 70 and 76 in a large, narrow-age sample of com-
munity-dwelling subjects.

Methods
Participants

The Lothian Birth Cohort 1936 is a prospective study
of subjects born in 1936, most of whom took a general
mental ability test in the Scottish Mental Survey of
1947 (SMS 1947) at age 11. Those living in the
Edinburgh area at about age 70 years were recruited
into a longitudinal study of ageing. The protocols,?**
cognitive profiles,** vascular risk factors'”*> and other
relevant analyses®® are published.

Cognitive, physical and health assessments were per-
formed at mean ages of 70, 73 and 76 years; carotid
Doppler ultrasound (DUS) was performed at age 73.
Carotid imaging and all data analyses were blind to all
other test results including cognition.

Ethics and reporting guidelines

The study was approved by the Multi-Centre Research
Ethics Committee for Scotland (Wave-1: MREC/01/0/
56), the Lothian Research Ethics Committee (Wave-1:
LREC/2003/2/29), and the Scotland A Research
Ethics Committee (Waves-2 and 3: 07/MREO00/58).
Written informed consent was obtained from all
participants. The study was conducted according to

the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) Guidelines.

Health assessments

Health assessments included medical history, physio-
logical measurements, and blood samples (full details
in Deary et al.??). We recorded self-reported (at inter-
view) hypertension, diabetes, hypercholesterolemia
(all either medically diagnosed and/or on relevant
drugs), history of ischaemic heart disease (IHD),
stroke, peripheral vascular disease, or other circulatory
problems (diagnosed by GP or hospital doctor), and
smoking (current versus stopped >1 year ago or
never smoked). Blood pressure (average of three sitting
and standing measures at each of three waves of test-
ing), plasma haemoglobin Alc (HbA1C) and total
serum cholesterol were measured.

Cognitive functions

Cognitive functions were tested in four domains
designed to measure multiple aspects of ageing-relevant
cognitive ability: visuospatial ability, processing speed,
memory, and crystallized intelligence.’*?” Visuospatial
ability was measured by Matrix Reasoning and Block
Design from the Wechsler Adult Intelligence Scale
Third Edition, WAIS-III, and Spatial Span Forward
and Spatial Span Backward from the Wechsler
Memory Scale Third Edition, WMS-III. Memory was
measured by Logical Memory, Verbal Paired
Associates, and Digit Span Backwards from the
WMS-III. Processing speed was measured by Symbol
Search and Digit Symbol from the WAIS-III, Choice
Reaction Time and Inspection Time. Crystallized intel-
ligence was measured by the National Adult Reading
Test (NART), the Wechsler Test of Adult Reading
(WTAR), and Verbal Fluency (C,F,L).>*?” We
included, as a covariate, participants’ cognitive ability
scores on the Moray House Test No. 12 from
the SMS1947, obtained when participants were aged
11 years.?

Carotid ultrasound imaging

Carotid ultrasound imaging was performed on a
Siemens Antares Premium Colour Doppler scanner
(Siemens AG, Erlangen, Germany) with 7.5 MHz vari-
able frequency probe by experienced neurovascular
ultrasonographers, all cross checked by a consultant
neuroradiologist. We recorded: carotid IMT in the
common carotid arteries (CCA) and carotid bulbs
bilaterally (mean of three calliper measures from each
artery); flow velocities (after at least five minutes rest
supine with head on pillow) in the ICA (peak systolic,
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end diastolic), common carotid artery (CCA), external
carotid artery (ECA) and vertebral artery (VA) bilat-
erally. We determined the maximum stenosis affecting
the ICA (or carotid bulb or CCA if located there)
using validated calliper measurement®® and ICA peak
and end diastolic velocities and ICA/CCA peak
systolic velocity ratio,” according to the North
American Symptomatic Carotid Endarterectomy Trial
(NASCET) definition.

Statistical modelling

To test the assumption that the pattern of missing
values due to inter-wave dropout was acceptably
random, we explored the potential influence of missing
observations upon inferential results by considering the
prognostic effect of subsequent dropout on each of the
observed variables. For this we divided the study
sample into two: those who completed the study, and
those who dropped-out at some time after the first
measurement at age 70. We tested for differences in
participant characteristics between these two groups,
using t-tests or Pearson Chi-square as appropriate.

We grouped the cognitive tests into four categories
representing: visuospatial ability, processing speed,
memory and crystallized ability, as explained previ-
ously.”’” We standardised the cognitive tests and
arranged the scale directions so that lower scor-
e=lower (worse) cognitive function. We developed
measurement models for each of the four cognitive
domains separately and tested their longitudinal invari-
ance across three measurement occasions (at ages 70, 73
and 76 years, corrected for age 11 1IQ) using the R
semTools package. The models were developed in a
standard procedure: explore different orders for the
indicators, eliminate negative residual variances, free
residual covariances according to modification indices
to obtain best goodness of fit, then test and assess lon-
gitudinal measurement invariance.

We derived measures of carotid disease taking the
average of right and left values. We used maximum
ICA stenosis (0 to 100%),?® the peak systolic ICA vel-
ocity, the pulsatility and the resistivity indices calcu-
lated from the ICA velocity waveform.?’ The stenosis
percentages and the ICA velocity, pulsatility and resist-
ivity indices, were categorised on an ordinal scale
derived from the sample quintiles. The stenosis values
were divided into 10% steps (0-9%, 10-19%, etc.) to
reduce skewness. The peak ICA velocities were grouped
by 10% increments of velocity (cm/s). The pulsatility
and resistivity indices were analysed in raw units. We
also tested the four measures in their standard devi-
ation units (equivalent to “beta weights” in multiple
regression) so their effects were more comparable.
Although carotid pulsatility and resistivity were

highly correlated, being related by a formula,” we
modelled both separately to compare their effects.

We developed latent growth models (Figure 1) for
each of the four cognitive domains. We included the
four carotid measures (and age at baseline and sex as
covariates) in each model to test the association
between incremental increases in stenosis, ICA velocity,
pulsatility and resistivity indices, on the intercept (i.e.
association with cognitive abilities at age 70) and slope
of the trajectory of cognitive change (i.e. change in cog-
nitive abilities between ages 70 and 76). We used all
available data and did not impute any missing vari-
ables. Age was centred on 70 years. Sex was centred
on female. Details of model loadings are given in
Supplementary Tables 1 (intercept) and 2 (slope).
Goodness of fit was assessed using Chi-square, the
RMSEA, and CFI, provided by structural equation
software under maximum likelihood estimation. The
model controlled time-varying fluctuations in vascular
risk by including a vascular risk factor latent variable
(VRF) at each time-point. Vascular risk was measured
by diastolic blood pressure, blood cholesterol, blood
HBAIlc, history of cardiovascular disease, hyper-
tension, and hypercholesterolaemia as previously'’
which developed a well-fitting VRF latent trait
(RMSEA =0.02, CFI=0.99), i.e. a measurement
model using structural equation modelling. This
allowed us to compare the association between stenosis
and cognition with and without controlling for VRF.
Including VRF also allowed us to test its effect as a
time-varying predictor upon fluctuation in cognitive
function between ages 70 and 76. Finally, we tested
associations between carotid stenosis, ICA velocity,
pulsatility and resistivity indices per standard deviation
increase (rather than by incremental increases) and cog-
nition at age 70 (intercept) and change in cognition
between age 70 and 76 (slope). We did not adjust for
multiple comparisons because in any one analysis, there
were relatively few comparisons (we assessed each of
the four carotid parameters separately, and used
latent variables rather than raw individual risk factors).

Results

There were 1091 participants of mean age 69.53
(SD +0.83) at wave-1 (49.8% were female), 866 partici-
pants of mean age 72.49 (SD +0.71) at wave-2 and 697
participants of mean age 76.25 (SD £ 0.68) at wave 3.
The median stenosis obtained in 820 participants at
wave 2 was 10.0% (mean 12.96%), of whom 1.7%
had > 50% stenosis, and 0.12% had > 75% stenosis.
Table 1 gives the cognitive test results, vascular risk
factor and imaging findings at each wave. The propor-
tion of participants with hypertension, diabetes, hyper-
cholesterolaemia and cardiovascular disease increased,
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Figure |. Diagram of the model developed to test the association between cognitive abilities at ages 70, 73 and 76, vascular risk
factors and carotid stenosis.

Note: The u; are repeated measurements of vascular risk, (VRF), ith variable at jth time-point: diastolic blood pressure (average of
three tests, sitting), blood cholesterol, blood (hbalc), history of cardiovascular disease, history of high blood pressure, and history of
high cholesterol. The y; are repeated measurements of cognitive function (F). Four kinds of cognitive function were modelled
separately: visuospatial processing, (indicated by task performance in matrix reasoning, block design, spatial span forward, and spatial
span backward), memory, (indicated by verbal paired associates, logical memory, and digit span backwards), processing speed,
(indicated by choice reaction time, inspection time, digit symbol search, and symbol search), and crystallized intelligence, (indicated
by NART, WTAR, and verbal fluency). The repeated measurements were made on three occasions of testing at ages 70, 73 and 76,
respectively. The measurement time points have average interval 3.3 years, (SD =0.5 years).

Factors ‘intercept’ and ‘slope’ represent the baseline level at age 70 and the rate of change of the cognitive ability factor (F) from age 70
to 76. Age at baseline, sex, age || 1Q, and stenosis are time-invariant covariates with effects on the intercept and slope of the linear
trajectory of cognition over time. Age at baseline was centred on 70 years. Sex was coded 0 for female and | for male. Age || 1Q was
centred on 100 and scaled for standard deviation of 15. Four kinds of stenosis measure were considered in turn: percentage stenosis,
velocity, pulsatility, and resistivity. The percentage stenosis measured as the average of left and right carotid stenosis, and the resulting

percentages were categorised on an ordinal scale cut in 0% stenosis groups.

and of current smokers fell, between waves-1 and -3.
This reflects that the participants who provided data at
all three waves (‘completers’) differed significantly from
those who did not (‘dropouts’; Table 2). Those who
provided data at all three waves had higher IQ at age
11 (101.54 vs. 97.3, P <0.001), performed better on all
current tests of cognition in all domains (all P <0.001),
were less likely to be current smokers (7% vs. 19%,
P <0.001) or to have hypercholesterolaemia (33% vs.
44%, P=0.015). However, they were no different in
terms of carotid parameters, proportion with diabetes,
hypertension or cardiovascular disease.

At age 70 (i.e. intercept), older age at wave-1 testing
(mean 69.53, SD +0.83) was associated with signifi-
cantly worse performance in all four cognitive domains
(estimates — 0.134 to —0.214, all P <0.001). Lower age
11 IQ was also associated with significantly worse

performance in all four cognitive domains (estimates
0.035 to 0.047, all P<0.001); in other words, a 10
points higher IQ at age 11 was associated with
0.47 x SD higher score on crystallised, and about a
0.36 x SD higher score on memory, speed and visuo-
spatial cognitive tests at age 70. Being male (vs. female)
was associated only with memory (positively) and
visuospatial function (negatively), both P <0.001,
Table 3.

Between age 70 and 76, all four cognitive domains
declined their rate of decline being between 0.02 and 0.1
standard deviations per three-year interval (all
P <0.01, Supplementary Table 2). Considering the
slope of cognitive decline between ages 70 and 76
(Table 3), subjects who were older at wave-1 had sig-
nificantly slower decline in visuospatial function and
memory (estimates 1.092 and 1.004, respectively, both
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Table 1. Characteristics of participants at ages 70, 73 and 76 years.

Age 70 Age 73 P Age 76 pP°
N 1091 866 697
Sex
Female 543 (49.8)
Male 548 (50.2)
Age 69.53 (0.83) 72.49 (0.71) <.001 76.25 (0.68) <.001
IQ age || 100 (14.99)
Crystallised:
Wechsler test of adult reading 41.02 (7.17) 41.01 (6.97) 0.973 41.09 (7.03) 0.819
National adult reading test 34.48 (8.15) 34.38 (8.18) 0.783 35 (8.04) 0.132
Verbal fluency 42.42 (12.54) 43.18 (12.94) 0.19 42.9 (12.76) 0.666
Memory:
Logical memory 44.07 (10.43) 45.56 (10.39) 0.002 45.75 (10.94) 0.723
Verbal paired associates 20.23 (7.41) 20.8 (7.68) 0.104 20.13 (7.76) 0.096
Digit span backwards 7.73 (2.26) 7.81 (2.29) 0.445 7.77 (2.37) 0.701
Speed:
Inspection time 112.14 (11) 111.22 (11.79) 0.084 110.17 (12.53) 0.099
Choice reaction time 0.64 (0.09) 0.65 (0.09) 0.075 0.68 (0.1) <.001
Digit symbol 56.6 (12.93) 56.4 (12.31) 0.729 53.81 (12.93) <.001
Symbol search 24.71 (6.39) 24.61 (6.18) 0.736 24.6 (6.46) 0.988
Visuo-spatial:
Spatial span forward 7.68 (1.64) 7.63 (1.66) 0.54 7.57 (1.63) 0.44
Block design 33.79 (10.32) 33.64 (10.08) 0.745 32.18 (9.95) 0.004
Matrix reasoning 13.49 (5.13) 13.17 (4.96) 0.165 13.04 (4.91) 0.59
Spatial span backward 7.04 (1.74) 7.06 (1.61) 0.769 7.05 (1.59) 0.858
Carotid:
Stenosis (%) 12.96 (N =820)
Velocity (m/s) 32.26 (N=817)
Pulsatility index 1.28 (N=817)
Resistivity index 0.68 (N=817)
Diabetes:
Yes 91 (8.3) 95 (1) <.001 82 (11.8)) <.001
Smoking:
Current 125 (11.5) 73 (8.4) <.001 44 (6.3) <.001
Ex 465 (42.6) 378 (43.6) 293 (42.1)
Never 501 (45.9) 415 (47.9) 359 (51.6)
Systolic BP: 149.78 (19.2) 148.81 (18.95) 0.265 148.31 (19.56) 0.615
Diastolic BP: 81.35 (10.31) 78.07 (9.86) <.001 78.97 (10.47) 0.083
Cholesterol (total): 5.45 (1.16) 5.15 (1.15) <.001 5(1.2) 0.012
HbAIC 5.93 (0.77) 5.75 (0.66) <.001 5.85 (0.63) 0.006
CVD:
Yes 268 (24.6) 250 (28.9) <.001 236 (33.9) <.001
Hypertension:
Yes 433 (39.7) 425 (49.1) <.001 378 (54.3) <.001
Hypercholesterolaemia:
Yes 386 (35.4) 356 (41.1) <.001 328 (47.3) <.001

?P-value reflects significance of difference between ages 70 and 73 ®P-value reflects significance of difference between ages 73 and 76. Stenosis is mean of
left and right. Note: Values are mean(SD) or N(%) unless otherwise stated.
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Table 2. Differences between those providing data at all three
waves (‘completer’) and those who provided data at only two or
one wave (‘dropout’).

Completer  Dropout P
Age 69.5 (697) 69.59 (394) 0.091
Sex

Female 48 (337) 52 (206)

Male 52 (360) 48 (188) 0.212
1Q age |1 101.54 (655) 97.3 373) <.00l
Crystallised

Wechsler test of 41.59 (694) 40.03 (395) <.001

adult reading

National adult 35.1 (695) 33.4 (394) <.001

reading test

Verbal fluency 43.24 (695) 40.97 (392) 0.003
Memory

Logical memory 45.44 (691) 41.7 397) <.001

Verbal paired associates ~ 21.16 (655) 18.71 (404) <.001

Digit span backwards 7.93 (695) 7.4 (395) <.00l
Speed

Inspection time 113.27 (644) 110.3 (397) <.00I

Choice reaction time 0.63 (685) 0.66 (399) <.00I

Digit symbol 58.45 (684) 53.44 (402) <.001

Symbol search 25.42 (687) 23.47 (399) <.001
Visuo-spatial

Spatial span forward 7.79 (689) 7.49 (397) 0.004

Block design 35.09 (690) 31.51 (395) <.00I

Matrix reasoning 14.1 (688) 12.45 (398) <.001

Spatial span backward 7.2 (687) 6.76 (397) <.001
Carotid

Stenosis 12.6 (673) 14.6 (147) 0.123

Velocity 32.28 (672) 32.16 (145) 0.919

Pulsatility 1.27 (672)  1.31 (145) 0.176

Resistivity 0.68 (672) 0.69 (145) 0.774
Diabetes

Yes 7 (51) 10 (40) 0.104
Smoking

Current 7 (50) 19 (75)

Ex 43 (297) 43 (168)

Never 50 (349) 38 (152) <.001
SBP 148.92 (696) 151.3 (392) 0.054
DBP 81.09 (696) 81.81 (392) 0.286
Cholesterol 545 (620) 546 (434) 0.836
HbAIC 5.93 (491) 593 (570) 0.95
CVD

Yes 23 (l61) 27 (107) 0.145
Hypertension

Yes 38 (262) 43 (171) 0.067
Hypercholesterolaemia

Yes 33 (227) 40 (159) 0.015

Note: The number of subjects in each group is given in parentheses.

P <0.001) with a weak effect on crystallised intelligence
(estimate 0.247, P <0.015), but not processing speed.
Being male (vs. female) was weakly associated with
slower decline in crystallised intelligence (estimate
0.366, P=0.029) but not the other cognitive domains.
Higher age 11 IQ was associated with faster decline in
visuospatial function but not other cognitive domains
(estimate — 0.029, P=0.008, Table 3).

There was no association between age 11 1Q and
carotid parameters (Supplementary Table 3). In the
eighth decade, neither increasing degrees of carotid
stenosis, whether expressed in 10% increments
(Table 4) or by standard deviation increases
(Supplementary Table 4), nor ICA velocities were asso-
ciated with either cognition at age 70 or change in cog-
nition between ages 70 and 76, without or with vascular
risk factor adjustment. At age 70, increasing pulsatility
and resistivity indices were both associated with poorer
processing speed (e.g. pulsatility index estimate —0.149,
P <0.001; resistivity index —0.148, P=0.034) and
more weakly with visuospatial function (e.g. pulsatility
index, estimate —0.079, P=0.033; resistivity index,
estimate — 0.082, P =0.033). Controlling for VRF
made little difference to the strength of these associ-
ations (Table 4).

After vascular risk factor adjustment, both pulsati-
lity and resistivity indices were associated with the slope
of decline in crystallised cognition between age 70 and
76 (estimate pulsatility —2.280, P=0.008; resistiv-
ity — 7.839, P=0.006), but not with decline in process-
ing speed, visuospatial function or memory, whether
controlled for VRF or not (Table 4). The same pattern
was seen when pulsatility and resistivity indices were
analysed in standard deviation units (Supplementary
Table 4).

Discussion

Carotid stenosis has been proposed as a risk factor for
cognitive decline and dementia. However, neither car-
otid stenosis nor ICA flow velocity explained the vari-
ance in the level of four key cognitive domains at age 70
in this highly characterised narrow-age cohort. Neither
carotid feature was associated with the rate of decline in
performance in any cognitive domain between ages 70
and 76 either, despite obvious declines in cognitive
function over time in this key decade for cognitive
ageing. Instead, measures of vascular stiffness, pulsati-
lity and resistivity indices both associated with signifi-
cantly poorer processing speed and visuospatial task
performance at age 70, which persisted after correcting
for age, premorbid 1Q and vascular risk factors that
reflected concurrent and historical disease. Hence,
arterial stiffness rather than falling blood flow from
cervical carotid obstruction contribute to impaired
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Table 3. Covariate effects on the intercept (age 70) and slope (age 70-76).

Intercept age 70

Slope (change age 70-76)

Covariate Cognitive function Est SE P Est SE P

Age at baseline Crystallized —0.134 0.027 <0.001 0.247 0.102 0.015
Memory —0.186 0.039 <0.001 1.092 0.109 <0.001
Speed —0.214 0.035 <0.001 0.114 0.088 0.197
Visuospatial —0.187 0.035 <0.001 1.004 0.125 <0.001

Sex Crystallized 0.022 0.045 0617 0.366 0.167 0.029
Memory 0.254 0.065 <0.001 0.344 0.399 0.389
Speed 0.013 0.060 0.826 0.220 0.148 0.137
Visuospatial —0.535 0.056 <0.001 0.477 0.353 0.177

1Q at age |1 Crystallized 0.047 0.001 <0.001 0.002 0.004 0.591
Memory 0.036 0.002 <0.001 -0.007 0.014 0618
Speed 0.035 0.002 <0.001 -0.003 0.005 0.562
Visuospatial 0.037 0.002 <0.001 -0.029 0.011 0.008

Note: Covariates are centred close to their respective means. Age at baseline is centred on 70 years. Sex is coded 0 =female, | =male. Age |1 IQ is

centred on 100 and is in units of its standard deviation.'® The intercept represents the expected level of cognitive function when all covariates are at
their centred values, (age 70, female, average 1Q at age | I). Each covariate effect represents additive change in the intercept per unit increase in the
covariate. Change in the intercept is in units of the standard deviation of its marker variable at wavel, i.e. standardised co-efficients. The slope
represents the rate of change in cognitive function, in units of the standard deviation of its marker variable at wavel per unit time of 3.3 years,
(the average wave interval). Each covariate effect represents additive change in the slope per unit increase in the covariate. A positive effect indicates a

less negative slope.

cognitive functioning among relatively healthy commu-
nity-dwelling older adults. The presence of these asso-
ciations at age 70, but general lack of association with
decline in cognitive domains from age 70 to 76, suggests
that the vascular stiffness-cognition association occurs
over a very long period of time. This might indicate that
midlife vascular disease is the trigger for cognitive
decline in later life, or that some other as yet undeter-
mined co-associated variable that increases vascular
malfunction,®® is responsible.

The limitations include that few subjects had tight
stenosis, but severe carotid stenosis iS uncommon in
community-dwelling subjects, or indeed even in
patients with recent stroke where typically fewer than
10% have > 50% stenosis.>’ However, we analysed the
continuum of stenosis from none to severe on the basis
that any effect of stenosis is unlikely to start only above
a critical point. The follow-up period (six years) is rela-
tively brief to detect effects on cognitive trajectories and
longer periods should be examined. The cohort lacks
ethnic diversity and the findings should be replicated in
other populations. We cannot provide data on pulse
wave velocity (not measured in LBC36) but PWV has
been associated with cognition® and WMH in other
studies and we previously showed that PI and RI
related to WMH in LBC36.>° Future studies should
assess if PWV can substitute for carotid PI/RI measures
as a risk predictor for failing cognition. We did not
have carotid imaging at wave-1 or wave-3 but consider

the wave-2 carotid data to be most relevant to our main
interest which was the cognitive trajectory from age 70
to 76, rather than the intercept at age 70. We performed
many comparisons, few of which were significant, and
did not correct for multiple comparisons. However we
modelled each cognitive domain separately; therefore,
the number of directly competing comparisons is only a
quarter of the total. Examination of adjusted and unad-
justed model iterations, separate modelling of highly
correlated pulsatility and resistivity, and two carotid
stenosis measures also constituted a large degree of
overlapping variance. We did not adjust for educa-
tional attainment, as do many studies of cognition in
later life, because we had instead intelligence measured
at age 11 (age 11 1Q). Age 11 1Q is closely related to
educational attainment and to cognition at age 70+.
We did not use education as well as age 11 IQ because
the two are highly correlated and use of both would risk
inflating the association with any variables of interest.
We previously assessed the effects of education on cog-
nition in later life after adjusting for age 11 1Q: educa-
tion had an effect on some specific cognitive domains at
age 704 (the more verbal IQ tests) but not on process-
ing speed, indicating that education may increase par-
ticular intellectual abilities™ but does not affect more
fundamental capabilities like processing speed which
underpin the efficiency of cognitive operations.** The
effect of education on these more verbal aspects of cog-
nition is minor and therefore not justified in addition to
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Table 4. Carotid parameters and cognition aged 70 (intercept) and change between age 70 and 76 (slope).
Intercept age 70 Slope (change age 70-76)
VRF
Cognitive function controlled Est SE P Est SE P
Stenosis Crystallized No 0.007 0.021 0.728 —0.003 0.056 0.959
Yes 0.011 0.022 0.621 —0.031 0.202 0.877
Memory No 0.017 0.030 0.569 —0.297 0.159 0.062
Yes —0.008 0.031 0.799 —0.238 0.187 0.203
Speed No —0.044 0.028 0.116 —0.118 0.062 0.058
Yes —0.031 0.029 0.273 —0.114 0.066 0.083
Visuospatial No —0.023 0.027 0.396 0.020 0.157 0.897
Yes —0.017 0.029 0.556 0.050 0.154 0.744
Carotid velocity Crystallized No 0.026 0.025 0.292 —0.040 0.068 0.563
Yes 0.029 0.026 0.263 —0.185 0.242 0.446
Memory No 0.038 0.037 0.305 —0.065 0.224 0.773
Yes 0.032 0.037 0.394 —0.083 0.252 0.741
Speed No 0.025 0.034 0.463 —0.085 0.074 0.251
Yes 0.026 0.034 0.455 —0.109 0.076 0.149
Visuospatial No 0.034 0.033 0.296 —-0.313 0.168 0.063
Yes 0.039 0.034 0.252 —0.311 0.165 0.060
Pulsatility index Crystallized No 0.087 0.114 0.441 —-0.617 0.349 0.077
Yes 0.065 0.120 0.588 —2.280 0.857 0.008
Memory No —0.006 0.167 0.971 —1.070 0.957 0.264
Yes —0.129 0.171 0.451 —0.675 I.151 0.558
Speed No —0.650 0.150 0.000 0.119 0.339 0.726
Yes —0.598 0.155 0.000 0.293 0.357 0411
Visuospatial No —0.346 0.146 0.017 0.715 0.822 0.384
Yes —0.330 0.157 0.036 1.085 0.794 0.172
Resistivity index Crystallized No 0.324 0.388 0.404 —2.179 1.191 0.067
Yes 0.244 0411 0.553 —7.839 2.867 0.006
Memory No 0.079 0.569 0.889 —4.032 3.233 0.212
Yes —0.338 0.585 0.563 —2.745 3916 0.483
Speed No —2.222 0.512 0.000 0.769 1.140 0.500
Yes —2.026 0.529 0.000 1.353 1.199 0.259
Visuospatial No —1.225 0.498 0.014 2.324 2.777 0.403
Yes —1.160 0.538 0.031 3413 2.706 0.207

Intercept and slope notes: Note: Carotid stenosis is the average of left and right ultrasound measures, in units of 10% of stenosis. Effects are shown
for models without vascular risk factor adjustment (VRF) and models that include VRF as a time-varying covariate to indicate whether the stenosis
effect is attenuated when VRF is controlled. Carotid velocity is the average of left and right, in units of 10% velocity measure. Carotid pulsatility is in
units of the raw scale. Carotid resistivity is in units of the raw scale. The effect represents additive change in the intercept or slope per unit increase in

stenosis, velocity, pulsatility or resistivity index.

age 11 IQ in this paper. Strengths include the narrow
age cohort, availability of childhood intelligence, com-
prehensive measures of cognition in older age, large
sample size, statistical power enabling reliable detection
of small effects, and highly trained DUS operators.
To the best of our knowledge, no other studies have
examined associations between four main carotid par-
ameters and multiple domains of cognition during

ageing, corrected for prior intelligence, used a narrow
age cohort to minimise confounding by age, assessed
longitudinal cognitive change, nor corrected for vascu-
lar risk factor exposure. Components of our results are
supported by other studies.” Review articles are incon-
clusive on whether carotid stenosis leads to cognitive
decline.”* For example, declining cognitive function
was associated with carotid plaque area but not luminal



3050

Journal of Cerebral Blood Flow & Metabolism 37(8)

narrowing,'® or carotid volume flow.*® Removal of
tight stenosis by carotid endarterectomy did not affect
cognitive decline five years later.'> Carotid IMT, which
was associated with vascular stiffening not stenosis, was
associated with dementia,''"® and low-ranked glo-
bal cognitive function in middle-aged adults.’®
Alzheimer’s disease is associated with reduced cerebral
blood flow in cross-sectional analyses with age-matched
controls but longitudinal data are lacking.” Vascular
stiffness (see Balucani in|?), rather than luminal narrow-
ing, may be the relevant vascular problem. The increase
in resistivity index points to intracranial vascular dys-
function, vessel stiffening, perhaps lack of reactivity to
increased oxygen demand, or failed clearance of
waste.>” WMH, which are associated with failing cog-
nition also associate most strongly with increased vas-
cular stiffness (of several carotid and systemic vascular
measures) in numerous studies, including previous ana-
lysis from the LBC1936.%° In a small study in stroke-
free subjects with hypertension, a wider CCA diameter
and increased intracranial artery pulsatility index were
associated with WMH.*® We also found no independ-
ent association between IMT'” or carotid stenosis'®!’
and WMH in prior analysis in the LBC1936 or in
patients with stroke.

The results may appear to disagree with experimen-
tal models of vascular dementia in which mild to severe
carotid stenoses are induced by placing metal coils
around the ICA.”* The affected rodents develop cog-
nitive impairments and arteriolar changes resembling
aspects of human lipohyalinosis. It is thought that the
model works by reducing cerebral blood flow, but few
studies measured CBF and placing coils on the carotid
arteries may induce other effects like inflammation,
reduced damping of the arterial waveform provided
by the normal carotid bulb that protects the brain, or
increased intracranial microvessel stiffness. Loss of
normal damping of the arterial waveform would be
consistent with our and other’s*® demonstration of
increased carotid pulsatility and resistivity being asso-
ciated with cognitive decline.

The slower rate of cognitive decline in subjects who
were older at wave-1 requires some thought. Subjects
who were older at wave-1 had poorer cognitive per-
formance, and hence their rate of decline perhaps
was slower because they had already declined compared
with those who were younger at wave-1. Alternatively,
this could reflect survivor bias: older subjects, who
would be expected to have worse cognition at wave 1
versus younger subjects, even within this narrow age
range, may represent the slightly healthier, slightly
higher age 11 1Q end of their age group spectrum
(non-participants either being to ill or not having sur-
vived), and therefore they declined more slowly than
the younger wave-1 subjects amongst whom the

health mix (and agel11Q) may have been wider with
faster decline. Further longitudinal narrow age studies
are needed to improve definition of cognitive trajec-
tories stratified by baseline risk.

Vascular stiffening adversely influences cognitive
ageing and provides a potential target for ameliorating
cognitive decline. Future studies should assess several
domains of cognition and carotid disease in diverse popu-
lations, ideally at younger ages, with long term follow-up,
to determine when vascular stiffening starts. Carotid coil
experimental models should assess flow velocities, pulsa-
tility and resistivity indices to test if altered vascular stiff-
ness, rather than flow reduction, might be responsible for
the cognitive or pathological changes.
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