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Abstract: Lakes play an important role in the water ecosystem on earth, and are vulnerable to climate
change and human activities. Thus, the detection of water quality changes is of great significance for
ecosystem assessment, disaster warning and water conservancy projects. In this paper, the dynamic
changes of the Poyang Lake are monitored by Synthetic Aperture Radar (SAR). In order to extract
water from SAR images to monitor water change, a water extraction algorithm composed of texture
feature extraction, feature fusion and target segmentation was proposed. Firstly, the fractal dimension
and lacunarity were calculated to construct the texture feature set of a water object. Then, an iterated
function system (IFS) was constructed to fuse texture features into composite feature vectors. Finally,
lake water was segmented by the multifractal spectrum method. Experimental results showed that
the proposed algorithm accurately extracted water targets from SAR images of different regions
and different imaging modes. Compared with common algorithms such as fuzzy C-means (FCM),
the accuracy of the proposed algorithm is significantly improved, with an accuracy of over 98%.
Moreover, the proposed algorithm can accurately segment complex coastlines with mountain shadow
interference. In addition, the dynamic analysis of the changes of the water area of the Poyang Lake
Basin was carried out with the local hydrological data. It showed that the extracted results of the
algorithm in this paper are a good match with the hydrological data. This study provides an accurate
monitoring method for lake water under complex backgrounds.

Keywords: fractional dimension; synthetic aperture radar; texture feature; water extraction

1. Introduction

Inland lakes are an important part of the biochemical and hydrological cycles of the
earth, which are very vulnerable to climate change and human activities. The dynamic
changes of water such as water scope, water level/depth, flow rate and water quality
of the lake are closely related to flood or drought disasters, biodiversity and ecological
protection, and are also closely related to human activities such as agricultural development
and urbanization construction [1–4]. The traditional way to monitor lakes is to set up
hydrological monitoring stations for observation. However, monitoring stations are few
or inadequate in many remote regions, thus it is extremely difficult to carry out dynamic
analysis and research on large-scale lakes due to limited observation information. Remote
sensing is one of the most effective methods for monitoring lake water at present, since
it has a fast response speed and wide field of view [5–7]. Since remote sensing images
with long time series and largescales can be used to study the change of water areas
dynamically, remote sensing technology is also of great significance in studying the rules
of water areas [8,9].

Currently, water monitoring via remote sensing technology is mainly focused on
optical satellite and synthetic aperture radar (SAR) satellite. Optical data such as Landsat
and GF-2 can obtain multispectral images and NDVI indices, and have become commonly
used in waterline mapping with its good spatial and temporal resolution [10–14]. However,
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due to the interference of cloud and light intensity, it is difficult for optical satellites to
provide adequate time-series data to continuously monitor the change of water dynamically.
In contrast, SAR such as a GF-3 remote sensor emits C-band microwaves to obtain wide
range and high-resolution images throughout all times and all weather, and has a powerful
imaging capacity of 12 modes to provide polarimetric images. Thus, SAR is more suitable
for detecting dynamic changes in water monitoring [15].

The range of a lake is the most important hydrological element in monitoring the
dynamic changes of lake water, which lays the foundation for flood warning, water re-
sources planning projects, ecosystem services, wetland and biodiversity assessment and
other important research directions [16–18]. Thus, the extraction of lake water is a key
step in lake water monitoring. In recent years, many water extraction methods using SAR
images have been proposed. The threshold method becomes a common method due to
its high computational efficiency. Cazals et al. [19] used a threshold method to detect
the hydrological information of coastal marshes based on S-1A data, and the accuracy
approached 82%. Tian et al. [20] proposed an improved OTSU method to extract water area
by comprehensively considering the variance of both internal and inner classes. Zhang
et al. [21] proposed an adaptive threshold segmentation method based on wavelet energy
and gradient. The wavelet energy features were used to perform rough segmentation of
SAR images, and then the gradient threshold was used to perform precise segmentation of
SAR images. However, the threshold-based method does not consider the spatial charac-
teristics of SAR images, and it is difficult to select the optimal threshold in multiple time
series SAR images, making the threshold method vulnerable to image noise and intensity
inhomogeneity [22]. In addition to the threshold-based method, Shao et al. [23] reported
that the K-means clustering method was used to identify barrier lakes from the background
of SAR images. Leng et al. [24] used the fuzzy C-means (FCM) algorithm to obtain three
classes of SAR images, namely water, background and middle region. Li et al. [25] used
the active contour model (ACM) fitted by local Gaussian distribution to draw the dam and
lake lines. Leng et al. [26] extracted the water body of Poyang Lake (PYL) in China using a
local narrow-band ACM method. The second-order OTSU threshold method was first used
for rough segmentation of SAR images. Then geometric active contour (GAC) method
was used for accurate segmentation of SAR images, with a missed detection rate of about
0.71%. Although the reported methods and techniques are of great significance for the
extraction and identification of lake water bodies, there exists some noticeable defects. For
example, threshold-based methods and FCM algorithms generally have better effects only
on simple water scenes. The GAC method is robust but requires a strict initial boundary,
and normally has low computational efficiency for large-scale SAR images [27]. Therefore,
it is necessary to develop a new method for water extraction from large-scale SAR images
under complex backgrounds.

In this paper, Poyang Lake was selected as the main research area and SAR images
were used to study the lake water dynamically. Poyang Lake is the largest freshwater
lake in the Yangtze River Basin, with a complex environment such as folded waterline
distribution in mountainous areas and dense buildings and human activities in urban
areas. Thus, a water extraction algorithm was constructed to study the lake water and its
change law by using the fused fractal features of SAR images. Since real images are fractal
in nature [28], fractal models can characterize images with robustness. However, a single
fractal dimension is normally not sufficient, thus many multifractal methods have been
proposed in recent years for many image processing applications such as retina images [29],
ultrasound images [30], multispectral images [31] and SAR images [32].

In our study, the fractal dimension and lacunarity were first calculated to construct
the texture feature set. Then, the texture feature sets were fused into composite feature
vectors using the Iterative Function System (IFS). Finally, the multifractal spectrum method
was used to segment the water objects. Experimental results showed that the proposed
algorithm accurately extracted the lake water of Poyang Lake. Compared with other water
extracting algorithms, the proposed algorithm has a lower false alarm rate for Poyang Lake,
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Dongting Lake and Taihu Lake, and the least misjudgment caused by the speckle noise.
The dynamic analysis of time-series SAR images in Poyang Lake combined with the local
hydrological data shows that extraction results by the proposed algorithm are consistent
with the local hydrological data, and the area of Poyang Lake changes sharply during the
flood season.

2. Research Preparation
2.1. Research Area

The main research area is Poyang Lake in Jiangxi Province, China (Figure 1). Poyang
Lake is the largest freshwater lake in China and a major hydrological subsystem in the
middle of the Yangtze River Basin [33]. The water level of Poyang Lake varies greatly
each year. During the rainy season (June to September), the area of Poyang Lake can reach
3500 km2. In the dry season (November to April), Poyang Lake covers less than 1000 km2,
with only a few channels remaining.
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Figure 1. Remote sensing image of Poyang Lake.

2.2. Dataset

All of the data studied in this paper are SAR images taken by GF-3 satellite. GF-3
SAR data is provided by the National Satellite Marine Application Service Center with the
assistance from Dr. Peifang Wang’s team from Hohai university. The GF-3 satellite provides
high spatial resolution, broad width, high accuracy, multiple modes SAR images with long
working time. It is capable of acquiring C-band multi-polarization images with a resolution
of 1–500 m and a width of 10 m–650 km. In our study, GF-3 satellites are observed in three
modes: Fine StripMap I (FSI), Fine StripMap II (FSII) and Standard StripMap (SS). The
resolution of SAR images is 5 m or 10 m. The degree of polarization of images is HH.

2.3. Data Preprocessing

In order to transform the original electromagnetic reflection data of SAR into images
that are easily processed and can be compared quantitatively, the original data is prepro-
cessed as follows: radiation calibration, complex data conversion, multi-view processing
and image filtering. Firstly, the backscattering energy intensity of SAR images is converted
into a backscattering coefficient, so that the images with different time phases are compara-
ble. Next, the complex SAR data are converted into SAR amplitude data. Then, Envi V5.3
software is used for multilook processing and filtering of SAR data.

3. Water Extraction Algorithm

The primary problem of preprocessed SAR images in the process of water monitoring
and dynamic analysis is the extraction of water. The water extraction algorithm proposed
in this paper consists of three steps: texture feature extraction, feature fusion and target
segmentation, as shown in Figure 2. The first step is to improve the extraction method of
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fractal dimension and lacunarity, then the texture feature set describing a water object is
constructed. In the second step, the fractal dimension and lacunarity of an SAR image are
fused into composite feature vectors by IFS. Finally, the multifractal spectrum method is
used to realize target segmentation.
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Figure 2. Flow chart of the proposed algorithm.

3.1. Extraction of Texture Features

The background environment of the Poyang Lake region is complex, with many folded
waterlines in mountainous areas, and dense human buildings and activities around the
lake. Therefore, the water targets in SAR images are heavily interfered with. In general,
quiet waters with a very low radar backscattering coefficient (CRB) are shown as black
areas in SAR images, as shown in Figure 3a. Since the roughness of land is generally greater
than that of water, water usually appears darker than land in SAR images. However, in
some special cases, the backscattering intensity (IBR) of the water may be increased, which
allows the water to appear brighter than land. In Figure 3b,c, the yellow circles indicate
the water surface. The difference in brightness between the two images may be caused by
wind, flowing water, or low wind speeds. In Figure 3a, the bright areas in the blue circle
represent objects floating on the water. On the other hand, shadows in SAR images as
shown in the mountain regions. In Figure 3a,b, red circles appear dark, and may lead to
false extraction sincethe backscattering intensity is similar to that of water.
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Figure 3. SAR image of Poyang Lake taken by GF-3 satellite. (a) SAR image of local regions of
Poyang Lake obtained by HH polarization. The red circles are mountains, and the blue circle contains
the boats on the water; (b) SAR images of local regions of Poyang Lake obtained by HH polarization.
The red circles are the shadows and the yellow circle are the water surface; (c) SAR images of Poyang
Lake obtained by VV polarization. The yellow circles show how water with different scattering
characteristics could appear either bright or dark.
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The fractal feature in texture describes the roughness of the object in the image, so it
can better distinguish the artificial target from the natural target in the SAR image. The
lacunarity feature represent the surface fluctuation characteristics, which are suitable for
eliminating the interference of shadows in the mountainous environment. Therefore, in
this paper the fractal dimension and lacunarity of SAR image texture features are selected
to extract lake water.

Fractal features have inherent self-similarity, and random processes with self-similarity
can be described by fractional Brownian motion. By establishing fractional Brownian
random fields, the spatial distribution of random fields can be described. The preprocessed
SAR image is defined as I(x, y). If the gray value of SAR image satisfies the discrete
fractional Brownian random field (DFBR) field model, then the increment r to an arbitrary
pixel I(x0 − y0) is defined as:

r =
√
(x− x0)

2 + (y− y0)
2, ∆I(r) = |I(x, y)− I(x0 − y0)| (1)

Since the increment of the DFBR field is a stationary process satisfying the average
ergodicity, and the first and second order absolute moments of the increment of DFBR field
are isotropic, then the H parameter can be expressed as:

H = H(r)

=
log( 1

Nr ∑
r>1
|I(x,y)−I(x0,y0)|)−log( 1

N1
∑

r=1
|I(x,y)−I(x0,y0)|)

log(r)

(2)

where Nr is the number of pixels of distance r between I(x, y) and I(x0 − y0). According
to Equation (2), multiple data point pairs can be calculated, and the data point pairs can
be fitted based on the least square method. The slope of the fitting line is the value of the
H parameter.

According to the definition of fractal dimension, the fractal dimension of the SAR
image in the DFBR model DH can be obtained by Equation (3).

DH = 3− H (3)

Since the self-similarity of SAR images can only be satisfied at a certain scale, we use
the ε blanket method to extract fractal features when the self-similarity precondition cannot
be satisfied, and use the measurement criteria to improve the calculation accuracy of the
blanket method.

In the ε blanket method, the gray value of the pixels in the SAR image I(x, y) is
regarded as the height information. Construct blankets of height 2ε areon both sides of the
image plane I(x, y). The surface area of the predicted area is the blanket volume divided by
2ε.Therefore, for different ε blanket layers, the surface area can be calculated accordingly.

Assuming that the gray function of the SAR image is z = f (x, y), then the gray
function z is a curved surface in three-dimensional space (x, y, z). If an appropriate scale is
selected, two blankets covering the image surface from above and below can be constructed,
and the area of the image surface can be determined by the volume of the upper and lower
felt layers. The measured surface area varies with the selected scale. The coverage area of
the double-layer blanket is:

Aε =

∑
i,j
[uε(i, j)− bε(i, j)]

2ε
(4)

where uε(i, j) and bε(i, j) are the values of the corresponding positions of the upper and
lower blanket, respectively. According to the measurement criterion, the exponential form
of the fractal dimension A(ε) can be obtained:

A(ε) = Kεd−Dε (5)
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where d is the topological dimension and K is the weighted constant. The fractal dimension
Dε of the image is obtained by fitting logarithm and line:

log A(ε) = log K+(d− Dε)log(ε) (6)

In addition, we used the lacunarity feature to overcome the shadow interference in the
lake waters (the red circle in Figure 3a). The lacunarity feature represents the fluctuation
characteristics of the surface of the object and describes the intensity of texture change on
the surface of the image, which is suitable for SAR images with a complex background.

For an SAR image I(x, y) of size N×N, assume that there is a sliding box of size L × L
on the image window W ×W. For each L × L sliding box, the maximum and minimum
values of the pixels in the frame are Max(i, j) and Min(i, j) respectively, and the difference
can be expressed as:

δ(i, j) = Max(i, j)−Min(i, j) (7)

Box quality Mi,j is defined as the fluctuation degree of pixel intensity in the local area
of the image:

Mi,j = ceil[kδ(i, j)/L] (8)

where k is the weight coefficient. The probability function of box mass Q(M, L) is:

Q(M, L) =
n(M, L)

(W − L + 1)2 (9)

Then the lacunarity Lac on the scale L is:

Lac =

∑
M

M2Q(M, L)

[∑
M

MQ(M, L)]2
=

var(M)

[E(M)]2
+ 1 (10)

where E(M) and var(M) are the expectation and variance of M, respectively. From the
above equation, the lacunarity of the center pixel of the image window can be obtained.
By moving the W ×W window across the entire image, the lacunarity for each pixel can
be calculated.

3.2. Feature Fusion Based on IFS

In order to fuse the previously obtained fractal dimension DH , Dε, and lacunarity
Lac into joint features for segmentation, an IFS-based method is proposed to construct
feature vectors. Linear transformation of composite feature images is established to solve
the problem that single feature can only meet the hypothesis conditions at a certain scale.
Composite feature vectors representing images from multiple dimensions are constructed,
which is conducive to the fusion of multiplefeatures for subsequent segmentation.

IFS is a finite set of compressed transformations on Rn: {wi, i = 1, . . . , N}. The
transformation of a compact subset B ⊂ Rn is

W(B) =
N
∪

i=1
wi(B) (11)

The singularity A in W is an attractor of IFS, and can be obtained by any initial compact
set B ⊂ Rn:

A = W(A) = lim
k→∞

Wk(B) (12)

In this paper, we need to learn from the set of control points {(ti, xi), i = 0,1, . . . , N} to
approximate the curve of the image boundary. These curves are usually fractal (continuous
but nowhere differentiable), where theattractor is the graph of control points interpolated
by the function f, i.e., for each i, f(ti) = xi. Although the structural solution cannot be
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obtained in general, Barnsley’s collage theorem gives an approximation that the attractor is
close to the IFS of A.

For simple curves in R2, the affine IFS model is very convenient because all possible
two-dimensional transformations can be described by affine transformations,

wi

(
t
x

)
=

[
ai 0
ci di

][
t
x

]
(13)

When the following conditions are met:
t0 < t1 < . . . < tN

ai =
ti−ti−1
tN−t0

ci =
(xi−xi−1)−di(xN−x0)

tN−t0
|di| < 1

It can be proved that there exists a measurement where the mapping wi is contracted
and the attractor of IFS is a function graph of the interpolation points {(ti, xi), i = 0, 1, . . . ,
N}. The free parameter di is the scaling factor in the vertical direction and has the following
relationship with the fractal dimension D of the curve:

N

∑
i=1

aD−1
i |di| = 1 (14)

For the more complex boundary (high curvature boundary), we use the generalized
fractal interpolation function as the attractor of IFS. Its data points are three-dimensional
data {(ti, xi, yi), i = 0, 1, . . . , N}, and the IFS model is expressed as:

wi

 t
x
y

 =

 ai 0 0
ci di 0

cyi 0 0 dyi

 t
x
y

 (15)

A form of cyi can be obtained, by comparing the xi in yi instead of conditions; dyi is
the parameter that satisfies |dyi| < 1.

3.3. Target Segmentation

Since the feature vector set of the SAR image has been obtained, 2D-MFS and K-means
are utilized to segment the target. Firstly, the two-dimensional singular power spectrum
is extended by a Hölder Index. Then, the local MFS features are extracted and the image
segmentation results are obtained by combining the local MFS features with a K-means
method.

Let µ be a measure function on R2. For any point I(x,y) on the graph, let B(I,r) be the
neighborhood of radius r around I(x,y). Then, the local density function α(I) at the point
I(x,y), also known as the Hölder Index, is defined as:

α(I) = limr→0
log(µ(B(I, r)))

logr
(16)

In the previous section, the texture feature vector w of the SAR image is obtained, so
replace µ with w in the above equation.

The power spectrum p corresponding to point I(x,y) can be obtained by following the
following steps:

(1) Define the minimum value αmin and maximum value αmax of the HölderIndex
α(I), respectively αmax = max(α(I)), αmin = min(α(I))

(2) Divide [αmin,αmax] into N parts, αi = 1,2, . . . N represents the ith singular value,
then the power spectrum p is:
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p(αi) = ∑
I(x,y)

α2(x, y),α(x, y) ∈ [[αi,αi+1], i = 1, 2, . . . , N (17)

Then the two-dimensional MFS (2D-MFS) of SAR image is obtained by following the
ensuing method.

For any ε ∈ R, we define

Eε =
{

I ∈ R2 : α(I) = ε
}

(18)

where Eε is the set of all the pixel points I(x,y) with local density ε. Then, 2D-MFS
corresponding to point I(x,y) can be expressed as:

f(ε) =
{

limr→0
logN(r, Eε)

−logr
, ε ∈ R

}
(19)

where N(r,Eε) is the minimum value of radius r that can cover Eε.
Figure 4 is a reference diagram of the 2D-MFS curve. In Figure 4, four main properties

of the 2D-MFS curve are shown: center (εcenter), maximum height (f(ε)max), amplitude
(width f(εmax)− f(εmin)) and its symmetry ( εmax−εcenter

εcenter−εmin
). Since the global MFS method is

complex to calculate, four scalar values (center, width, height and symmetry) of 2D-MFS
are used here, and then a K-means method is used for clustering segmentation. The overall
segmentation steps are summarized as follows:
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1. Calculate the 2D-MFS value f(ε) at point I(x,y) according to Equations (16)–(19).
2. For each 2D-MFS, its four attributes (maximum, center, width and symmetry) are

calculated; each attribute corresponds to an image, and then the four images are
squared and added to generate enhanced texture images.

3. The K-means method is used for clustering segmentation of the enhanced texture images.

4. Experiment and Discussion
4.1. Algorithm Verification

To verify the algorithm proposed in this paper, three SAR images of Poyang Lake
obtained by GF-3 satellite are tested. The GF-3 satellite can acquire C-band multipolar
remote sensing images with a resolution of 1–500 m in 12 imaging modes. In order to verify
the algorithm in this paper under different imaging modes, SAR images of the local area of
Poyang Lake obtained under the imaging modes of SS (standard stripe), FSI (fine stripe 1)
and FSII (fine stripe 2) were selected respectively, as shown in Figure 5a,c,e. Corresponding
results obtained by using the algorithm in this paper are shown in Figure 5b,d,f, in which
the white area is the water target obtained, while the black area is the background. As
seen from Figure 5, the proposed algorithm can segment the SAR images of Poyang Lake
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correctly under different imaging modes, and accurately distinguish complex edges such
as multi-forked tributaries.
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Figure 5. Water extraction results of GF-3 satellite SAR images in different imaging modes. (a,c) and
(e) represent the original SAR images using SS (standard stripe), FSI (fine stripe 1) and FSII (fine
stripe 2) imaging modes, respectively.(b,d) and (f) are the corresponding water extraction results
obtained by using the algorithm in this paper.

4.2. Evaluation Metrics

In order to quantitatively evaluate and compare the accuracy and denoising capacity
of the algorithms, this paper adopts the following three evaluation indexes:

(1) The F1 score is the weighted harmonic mean of precision, and ‘recall’ is used to
measure the accuracy of the algorithms. ‘Precision’ is the fraction of the water pixels
which are labeled correctly, and ‘recall’ is the fraction of all of the labeled water pixels
that are correctly predicted. Thus, the F1 score is given as follows:

F1 =
2·precision·recall
precision + recall

(20)
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(2) False alarm rate (FAR) represents the ratio of dividing a non-water target into a water
target. The closer the FAR value is to 0, the better the segmentation results become. A
perfect image would give FAR = 0.

FAR =
False Postive

True Postive + False Postive
(21)

(3) Equivalent Number of Looks (ENL) is a parameter of multilook SAR images, and
multilooking is performed in order to mitigate speckle noise interference. Therefore,
ENL is a measure of the noise intensity of speckle in an image, and its definition is
as follows:

ENL =
µ2

σ2 (22)

where µ and σ are the mean value and standard deviation of an image, respectively.

4.3. Comparison and Analysis with Other Algorithms

In order to validate the generality of the proposed algorithm, SAR images of Poyang
lake, Taihu lake and Dongting lake were selected (image parameters are shown in Table 1),
and the corresponding water targets were extracted by FCM [24], GAC [26], Markov
random field (MRF) [34] and the proposed algorithm, respectively. MRF utilizes the
contextual information of image pixels. In [34], it presents a PolSAR semantic segmentation
method by employing 3D-DWT to extract multi-scale features and employing MRF to
enforce label smoothness and alignment of label boundaries; thus, contextual information
is fully used during segmentation. The F1 score, false alarm rate and equivalent appearance
number were calculated and are shown in Table 2. The experimental results are shown in
Figure 6.

Table 1. SAR image parameters in Figure 6.

SAR Image Area Image Size (Pixel) Polar Date

A Poyang 6152 × 6182 HH 6 May 2017
B Dongting 5000 × 5373 VV 27 June 2017
C Taihu 5000 × 8618 HH 17 July 2017

Table 2. Quantitative comparison of different water extraction algorithms.

SAR Image Method F1 Score FAR (%) ENL

A Proposed 0.9923 0.31 4.28
FCM 0.8847 6.86 2.82
GAC 0.9010 1.97 2.75
MRF 0.8655 4.59 2.52

B Proposed 0.9912 1.01 4.55
FCM 0.8825 13.87 3.37
GAC 0.8513 16.32 2.50
MRF 0.8463 15.09 2.26

C Proposed 0.9854 2.87 8.05
FCM 0.8068 19.97 5.38
GAC 0.7865 19.61 4.06
MRF 0.51 29.99 4.97
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of Poyang Lake, Taihu Lake and Dongting Lake; the second column of images is the result of the algorithm in this paper; the
image in the third column is the result of FCM; the image in the fourth column is the result of GAC; the image in column 5
is the result of MRF.

In Figure 6, the first column of images is the original SAR image, and the dark area
is the water area. The second column of images is the result of using the algorithm in
this paper. The third column is the results of images obtained using FCM; the image in
the fourth column is the result of GAC, and its initial contour is from the result of FCM.
The image in column 5 is the result of MRF. FCM, GAC and MRF methods fail to deal
with shadows, and there is more mis-segmentation. Figure 7 is the local enlarged image of
Figure 7a and the extracted results of each algorithm.

The area in the blue box in Figure 7 is the ridge area. It has been discussed that the
shaded part of the mountain area is easily divided into the lake water body by mistake. In
the segmentation results obtained by FCM, GAC and MRF methods, this area is wrongly
divided into the water body, and only the proposed method can correctly judge this area.
In addition, it can be seen from the amplified segmentation results that the noise in the
image background is not completely removed by FCM, GAC and MRF methods, and the
signs of noise can be clearly seen.

From the comparison of quantitative results in Table 2, it can be seen that the seg-
mentation accuracy of the algorithm in this paper is the highest, and it is least affected
by noise.
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4.4. Dynamic Analysis

In order to study the dynamic changes of Poyang Lake, time series SAR images of
the Poyang Lake region are analyzed. The proposed algorithm was used to extract and
measure water bodies at different times in the local area of Poyang Lake in 2017. The
overall contour of the lake extracted from different dates is consistent, but the waterline
has obvious changes. In order to analyze the relationship between water line changes and
upstream water inflow, the water body extraction results of SAR images were combined
with the local hydrological data of the Poyang Lake region in 2017 to form statistical
analyses of the water information of Poyang Lake. The results are shown in Table 3.

Table 3. Statistical results of water body change in Poyang Lake (compared with 11 May 2017).

Date Perimeter/km Perimeter
Change Rate/% Area/km2 Area

Change Rate/%
Coastline

Coefficient

11 May 2017 1219.4 0.0 1599.7 0.0 8.6
30 July 2017 911.7 −25.2 1692.5 5.8 6.3

1 August 2017 1068.3 −12.4 1588.4 −0.7 7.6
12 September 2017 1004.0 −17.7 1690.9 5.7 6.9

In Table 3, the lake area is analyzed by the water extraction results from SAR images,
the lake perimeter is obtained from the local hydrological information, and the shoreline
development coefficient is calculated by the area and perimeter. The shoreline development
coefficient is defined as follows:

DL =
L

2
√
πA

(23)

where L is the length of the shoreline, and A is the water area.
In order to compare the water dynamics of Poyang Lake during the rainy season,

we compared the lake area and circumference from July to September 2017 with the lake
area and circumference on 11 May 2017 (prior to the rainy season). According to the
hydrological data, the Poyang Lake is in flood season in May, the Poyang Lake basin
receives the maximum precipitation in June, and the Poyang Lake basin receives maximum
flooding in late June and early July. On 30 July 2017 the water area of Poyang Lake reached
the maximum, increasing by 5.8% compared with that of 11 May 2017.In August, the water
situation of Poyang Lake was stable, so the water area was reduced. In September, the
water area increased to the same level as that of 30 July 2017, indicating that there was a
new upstream water potential in this region after August. Therefore, the water information
extracted by the algorithm in this paper is consistent with the local hydrological data.
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Usually, when the water body area expands, the circumference also increases. However,
the circumference of Poyang Lake decreases after the water body area increases, which may
be due to the lake bank folding and filling phenomenon (effective within a certain range).
The variation of the shoreline development coefficient also confirms this phenomenon.

5. Conclusions

In this paper, a water extraction algorithm from the SAR images of the lake water
is proposed, which consists of texture feature extraction, feature fusion and target seg-
mentation. Experimental results show that the proposed algorithm accurately extracts
water targets from SAR images of different regions and different imaging modes. For
the SAR images of Poyang Lake obtained by GF-3 satellite, the proposed algorithm is
compared with FCM, GAC and MRF and shows significantly better accuracy than other
algorithms, with an accuracy over 98% and a false alarm rate less than 3%. The proposed
algorithm alsooutperforms other methods in the complex coastline area and mountain
shadow interference. The time series analysis of water changes of Poyang Lake was carried
out by SAR imagingalongsidethe local hydrological data in 2017. The results show that the
water extracted by the proposed algorithm is consistent with the hydrological data. The
water area changes around 6% and the perimeter up to 25%. This study demonstrates that
the water area of Poyang Lake changes significantly during the flooding season, and the
water area could change dramatically in a short period. The monitoring results lay a solid
foundation for the preparation and prediction of flood control and drought prevention in
this region.
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