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ABSTRACT

Protein dynamics are important for understanding
protein function. Unfortunately, accurate protein dy-
namics information is difficult to obtain: here we
present the DynaMine webserver, which provides
predictions for the fast backbone movements of pro-
teins directly from their amino-acid sequence. Dy-
naMine rapidly produces a profile describing the sta-
tistical potential for such movements at residue-level
resolution. The predicted values have meaning on an
absolute scale and go beyond the traditional binary
classification of residues as ordered or disordered,
thus allowing for direct dynamics comparisons be-
tween protein regions. Through this webserver, we
provide molecular biologists with an efficient and
easy to use tool for predicting the dynamical char-
acteristics of any protein of interest, even in the
absence of experimental observations. The predic-
tion results are visualized and can be directly down-
loaded. The DynaMine webserver, including instruc-
tive examples describing the meaning of the profiles,
is available at http://dynamine.ibsquare.be.

INTRODUCTION

Dynamics are fundamentally related to protein function (1).
Especially intrinsically disordered proteins (2,3) are strik-
ing examples of the essential role played by dynamics. They
fulfill key biological functions despite lacking a consistent
three-dimensional structure, instead adopting an ensem-
ble of conformations (4), so challenging the long-standing
structure–function paradigm (5). Even though their amino-
acid residues sample many different conformations, their
sequence context remains important and can determine
whether they prefer certain conformations to others (6).
Understanding dynamics and disorder still poses significant

challenges, mainly because accurate protein dynamics infor-
mation and its relation to conformation and function re-
main difficult to obtain, both experimentally and computa-
tionally.

Computationally, molecular dynamics is an excellent tool
to obtain a timeline of protein dynamics (7,8), but it re-
quires dedicated resources, while the results are variable
and depend on the starting structures and calculation setup.
Nuclear Magnetic Resonance (NMR) is the leading ex-
perimental technique to study dynamics and conforma-
tional states of proteins in solution at atomic resolution
(1,9). Functionally important protein motions range from
fast, small-scale fluctuations (sub-nanosecond timescales)
to slow (microsecond timescale and above), global confor-
mational transitions, like loop rearrangements or domain
reorganizations. NMR spin relaxation experiments give in-
formation about fast local movements, but require substan-
tial effort and the resulting data are not routinely deposited
in public databases. Atomic-level NMR chemical shifts give
instead an averaged picture of local fast dynamics up to the
microsecond and low millisecond range (10) and are freely
accessible and abundantly available for a diverse collection
of proteins from fully structured to disordered (11).

Through statistical analysis, we have recently leveraged a
large amount of NMR chemical shift data for proteins in so-
lution to obtain a quantitative insight into the relationship
between the amino-acid sequence and backbone dynamics
(12). The DynaMine predictor developed from these data
predicts the residue-level potential of a protein for back-
bone dynamics based on sequence information alone, as op-
posed to previous approaches (13,14). This opens up the
vast amount of available protein sequences lacking struc-
tural information for dynamics analysis. In addition, we
were able to show that exploiting this dynamics information
is sufficient to predict disorder with accuracy comparable to
the most sophisticated existing disorder predictors (15–17)
without relying on any prior disorder annotation or struc-
tural information. This provided an independent evidence
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of the already anticipated link between dynamics and struc-
tural disorder (18,19). Finally, in eight case studies covering
a broad range of distinct structural and functional proper-
ties, we demonstrated the potential of the predictor in dis-
tinguishing regions of different structural organization (12).

Here, we present the DynaMine webserver, which incor-
porates this novel predictor and provides easy access to pre-
dicted dynamics profiles for protein sequences. For the web-
server, we have also enabled predictions for short peptides,
further validated the method, and determined ranges of pre-
dictive values where a residue is likely to be rigid, flexible,
or has highly context-dependent dynamics. Through this
server we aim at providing molecular biologists with an effi-
cient and easy to use tool for estimating the dynamical char-
acteristics of any protein of interest, even in the absence of
experimental observations.

MATERIALS AND METHODS

The DynaMine webserver is implemented in Python lan-
guage with the exception of JavaScript used for handling
a few front-end functionalities. The webserver architecture
highly decouples management of the user sessions and web
interface (front-end) from the elaboration system (back-
end), which includes input/output queues, scheduler and
elaboration engine. In the elaboration engine reside the
core DynaMine modules for prediction and results prepa-
ration. Input/output queues are accessible also to the front-
end, which takes care of sending jobs to the back-end and
displaying the results. Server front-end and back-end can
reside on separate machines with different characteristics
and performance requirements. This architecture grants the
server future scalability allowing for expansion on multiple
machines.

The aim of the webserver is to predict residue-level back-
bone dynamics from the protein sequence in the form of
backbone N-H S2 order parameters, which represent how
restricted the movement of an atomic bond vector is with re-
spect to the molecular reference frame. The values vary be-
tween 1, for fully restricted (rigid conformation), and 0, for
fully random movement (highly dynamic); the DynaMine
predictions represent the statistical potential for a residue
to adopt certain N-H S2 values. The S2 estimations under-
lying DynaMine are based on NMR chemical shift values,
and cover a timescale from femtosecond up to microseconds
and low milliseconds (10).

The backbone N-H S2 order parameter values resulting
from the prediction (S2

pred) take into consideration the lo-
cal sequence environment provided by a number of residues
preceding and following the target residue in the sequence.
In order to extract the local sequence context of a residue,
the DynaMine webserver includes a pre-processing step in
which an input sequence is segmented by sliding a win-
dow of size w on each residue of the sequence. These seg-
ments provide the sequence context and hence the input
features for predicting the S2

pred value associated with a sin-
gle residue. In the original implementation (12), the window
w was restricted to 51 residues. In the webserver proposed
here, we also provide predictions for protein sequences of
shorter length, varying between 5 and 50 residues. This
novel feature is provided by a collection of sibling predic-

tors trained on the same dataset but with sliding windows
w of decreasing size (from 25 to 5 in steps of 2). Every pre-
dictor consists of a linear regression model that has been re-
trained for the webserver on backbone S2 values for 210 880
residues in 1952 proteins (combining previous training and
test sets used in (12)); these S2 values (S2

RCI) were estimated
with the Random Coil Index (RCI) (20) from a carefully as-
sembled dataset of NMR chemical shift data extracted from
the BioMagResBank (BMRB) (11). The predictive models
have been trained in the same learning setting as described
in (12). Details on the cross-validation performance of these
additional predictors are reported in the Results section.

For fully independent validation of the retrained predic-
tors, an additional dataset of 110 sequences was compiled
as described before (12), except that two additional filters
were employed. The first one selects only BMRB entries re-
leased during 2013, which are not in our training set, and the
second one checks the number of available chemical shifts
per entry. If the entry contains less than 1.2 times the to-
tal number of residues C or H chemical shifts, or 0.6 times
for N, the entry is discarded. This measure ensures that the
RCI software can calculate good estimates of the actual S2

value, since its performance decreases if less chemical shift
data are available.

We also extracted a dataset of 1757 NMR structures from
the Protein Data Bank (PDB), for which S2

RCI values were
available, to better qualify the twilight zone where dynamics
are context-dependent (see the Results section). Based on
STRIDE (21) and DSSP (22,23) secondary structure assign-
ments, we defined for each residue in each protein a ‘unique’
secondary structure code if the secondary structure assign-
ment was fully consistent across all models in the NMR en-
semble, and a ‘consensus’ code for the most frequently as-
signed secondary structure for that residue. Residues were
given an ‘ordered’ (O) status if the same secondary struc-
ture code was uniquely assigned by either method, or if
both methods assigned matching helix (H) or beta-strand
(E) consensus secondary structure. This resulted in 101 570
residues with code ‘O’; they are part of a well-defined sec-
ondary structure element and are unlikely to experience any
conformational averaging. Residues without a uniquely as-
signed secondary structure code by either method, and with
a non-assigned or coil (C) consensus code from both meth-
ods, were assigned as ‘disordered’ (D). This indicates that
the structure calculation protocol could not produce a con-
sistent answer, nor assign secondary structure for the ma-
jority of the models; 24 593 residues were assigned this ‘D’
status. All other 62 880 residues were considered as having
undefined structure and were grouped in the gray‘gray zone’
(G) class.

THE WEBSERVER INTERFACE

Input

On the submission page of the webserver the user can pro-
vide as input one or more protein sequences in FASTA for-
mat, either by copy-pasting them in a text field of the sub-
mission form, or by uploading a plain text file with the in-
formation. Alternatively, the user can provide a Uniprot ID,
which will be used to automatically retrieve the protein se-
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quence from the Uniprot database (24). The user also has
the option to ask for an email notification of the results.

An example of input is provided on the submission page
by clicking on the ‘Example’ button; this will automatically
fill in the form with the FASTA sequence or Uniprot ID of
the human cellular tumor antigen p53. Details on the web-
server usage can also be found on the website help pages
(http://dynamine.ibsquare.be/help).

Processing phase

Once a job is submitted, the user is redirected in the same
browser window to a webpage reporting the status of the
job (queued, running or finished), which is automatically
refreshed every 10 s until job completion. Jobs submitted to
DynaMine are executed in parallel on the computing cores
of the server. The DynaMine scheduler implements a First
Come First Served (FCFS) policy. To guarantee a fair use
of the server, a maximum of 10 sequences per submission
is allowed. During the calculation, each sequence is first
segmented based on a sliding window of w residues. The
size w depends on the length of the input sequence. The re-
sulting segments are then provided as input features of the
central target residue to the specific DynaMine predictor
trained for that segment length. The predictions are then re-
assembled to finally build a dynamics profile of the complete
amino-acid sequence. This normally happens in the order of
seconds depending on the server load and the length of the
submitted sequences. If the user provided an email address,
she/he will be notified as soon as the results are available
by an email containing a link to a page that visualizes the
results.

Output

At job completion, the user is automatically redirected to
the results page, which interactively displays the predictive
results. This page can be bookmarked to check the results
at a later time; they are stored for 1 week. The results are
presented for each submitted protein in three different ways
(see Figure 1): (i) as an annotated plot of the backbone dy-
namics profile, (ii) as a tailored graphical representation of
the protein sequence, and (iii) as a detailed report for all the
residues in the sequence.

The plot of the backbone dynamics profile (i) reports the
amino-acid sequence on the x axis and the S2

pred values on
the y axis. More rigid and more flexible regions are sepa-
rated by a twilight zone (gray band in Figure 2), which we
define in the Results section.

In the graphical representation of the protein sequence
(ii) the size and color temperature of the residues reflect
their degree of backbone flexibility (see Figure 1). Colors
range from red (flexible - low S2

pred) to blue (ordered - high
S2

pred). (iii) Detailed predictions are by default shown for
residues having an S2

pred value greater than 0.9; moreover,
two pop-up menus provide the user with the possibility to
filter the predictions with a value greater or smaller than a
chosen threshold, depending on whether the user needs to
focus on more rigid or more flexible regions (see Figure 1).

All the outputs described above can be downloaded sepa-
rately for each submitted protein from different links on the

results page. These include predictions provided as a plain
text file and graphical depictions also provided in high reso-
lution (EPS format). Alternatively, the user can download a
single .zip file linked at the top of the results page that con-
tains the results for all the sequences submitted in a single
job (see Figure 1).

RESULTS

Validation, performance assessment and statistics

We reassessed the performance of the webserver predictors
on the training dataset described in the Materials and Meth-
ods section (1952 proteins) through 10-fold cross-validation
experiments. Figure 3 shows the cross-validation results for
the different DynaMine predictors trained based on differ-
ent sliding windows w (x axis). The boxplots show the dis-
tributions of the Pearson’s correlation (r) (Figure 3A) and
the Root Mean Square Error (RMSE) (Figure 3B) over
the 10 folds. The gray dot on each boxplot represents the
mean r and RMSE cross-validated performance of the cor-
responding DynaMine predictor. The predictors trained on
w smaller or equal to 25 are used to predict the dynamics of
protein sequences shorter than w+2 residues, with the ex-
ception of sequences between 50 and 25 residues, which are
predicted by the w = 25 predictor. We also further validated
the retrained webserver predictors on unseen data for 110
new proteins for which extensive chemical shift values be-
came available in the BMRB during 2013 (see the Materials
and Methods section). By testing DynaMine on this new
dataset, we obtained a performance in line with the cross-
validation results (mean r = 0.63 and mean RMSE = 0.14).

We then explored in more detail whether the predictions
work equally well on proteins with different characteristics.
We first analyzed the distributions of r and RMSE com-
puted for each sequence separately. Figure 4 shows that the
median performance on this set is actually better than the
mean one (r = 0.66 and RMSE = 0.13); nevertheless, one
can spot a few sequences (outliers) for which it is very dif-
ficult to accurately predict dynamics. We investigated on
this same independent dataset the presence of a bias in the
DynaMine predictions for sequences that have an associ-
ated structure in PDB (25). Figure 5 shows that DynaMine
has no significant bias in its predictive performance on se-
quences that have an associated structure in the PDB (74
of the 110) with respect to sequences that do not have one
(the remaining 36). By means of Wilcoxon tests, we could
not find a statistically significant difference between the per-
formance distributions on these two separate groups of se-
quences (p-value equal to 0.738 when comparing the r dis-
tributions and 0.9416 when comparing the RMSE distribu-
tions).

Statistics. DynaMine has been successfully tested on all
the 541 561 sequences in UniProtKB/Swiss-Prot (release
October 2013) and on 9 056 346 sequences from the D2P2

database (26). The webserver already received in less than 3
months since its opening online, 128 unique visitors from 29
countries, 72 cities, and 258 job submissions from outside
the authors’ institutions (data based on Google Analytics
statistics and DynaMine server logs).

http://dynamine.ibsquare.be/help


Nucleic Acids Research, 2014, Vol. 42, Web Server issue W267

Figure 1. Output shown by the DynaMine webserver in a job results page for a sample protein sequence (human tumor suppressor p53, Uniprot ID:
P04637). Graphical depictions of the predictions are shown as a dynamics profile of the amino-acid sequence and as a tailored graphical representation of
the protein sequence, where the size and color temperature of the residues, ranging from red (flexible - low S2

pred) to blue (ordered - high S2
pred), reflect their

degree of backbone flexibility. On the right-hand side, the list of residues with DynaMine predictions above a value of 0.9 is shown. Two pop-up menus are
provided to filter the predictions according to the user visualization needs.

Figure 2. Prediction for the glucagon peptide as available from the web-
server with added annotation for the secondary structure as seen by NMR
in a lipidated analogue in water (2M5Q, red) and TFE (2M5P, blue), and
by X-ray diffraction in an analogue with substitutions (1BHO, brown).

Defining the twilight zone for context-dependent dynamics

The original article (12) suggests the presence of a ‘gray
zone’; residues with predictions in this zone have highly
context-dependent dynamics. We attempted to more accu-
rately define this ‘gray zone’ based on STRIDE and DSSP
secondary structure assignments for a set of NMR struc-
tures from the PDB (see the Materials and Methods sec-
tion). By using per-residue assignments (built as described
in the Materials and Methods section) as the expected dy-
namics state, we produced Receiver Operating Characteris-
tic (ROC) curves to assess the ability of both the S2

RCI and
S2

pred values to distinguish O from G, and G from D. The
best performance point on each ROC curve was selected as
the closest point to the top left corner of the plot (Table 1),
and based on this analysis we currently employ the 0.80–
0.69 zone as the ‘gray’ intermediate dynamics zone in the
web plots. This classification is likely to change as we ob-
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Figure 3. Boxplots showing the distributions of the Pearson’s correlation (A) and the RMSE (B) over the 10 folds of the cross-validation on the webserver
extended training set (1952 sequences). Mean values (average cross-validated performance) of the distributions are represented as gray dots. Each boxplot
corresponds to a different DynaMine predictor trained for a specific window size w.
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Figure 4. Boxplots of the distribution of Pearson’s correlation and RMSE
computed for each sequence of the independent set (110 sequences) sepa-
rately. The mean of the distribution is represented with a gray dot, and the
median with a black bar.

tain better data for context-dependent regions, such as for
protein regions that fold upon binding.

DISCUSSION

The DynaMine webserver provides easy access to an ef-
ficient and accurate tool to predict protein backbone dy-
namics starting from sequence information only. Dynam-
ics predictions are provided in the form of a dynamics pro-

file of a protein sequence. This profile can be computed
even for short peptides, which tend to be more flexible and
have limited structure, thanks to the inclusion of sibling pre-
dictors that were trained with varying window sizes. As a
case study, we examined glucagon, a well-studied peptide
hormone of 29 residues responsible for raising blood glu-
cose levels (Figure 2). A comparison with three different
structures from the PDB reveals that the predictions remain
valid in this case: a lipidated analogue (red, 2M5P) in wa-
ter adopts helix from residues 15–19 and 21–26, which re-
late well to two peaks above the ‘ordered’ threshold. The
same analogue in the helix-inducing trifluoroethanol (TFE)
co-solvent (blue, 2M5Q) adopts a much more extended he-
lix. The lowest predicted values spanned by this helix are
around 0.6, but most of the residues are encompassed in
the context-dependent region. Finally, in the X-ray diffrac-
tion structure of a substituted analogue (brown, 1BHO) the
helical region corresponds almost exactly to the context-
dependent region. Note that in this case the crystal envi-
ronment provides a changed context as compared to the
training data for proteins in aqueous solution. Additional
examples and case studies can be found at http://dynamine.
ibsquare.be/examples. It is also worth noting that the ac-
tual dynamics observed for a protein will always be context-
dependent and relate to particular (local) conditions, such
as the presence of a cell membrane or ligand binding: the
profiles produced by the DynaMine webserver depict the
statistical potential of a sequence to adopt certain dynamics.
In the provided examples and in Figure 2, we therefore illus-
trate a newly defined intermediate ‘gray zone’ of S2

pred values
that indicates regions of the sequence with highly context-
dependent dynamic behavior, as opposed to regions highly
likely to be rigid (above 0.8) or flexible (below 0.69). This
underlines the potential of DynaMine in distinguishing re-
gions of different structural organization, as already shown
for proteins covering a broad range of distinct structural

http://dynamine.ibsquare.be/examples
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Figure 5. Boxplots of the distribution of Pearson’s correlation and RMSE computed for each sequence of the independent set (110 sequences) separately
and divided between entries that have an associated structure in PDB (structure) and those that do not have one (no structure). The mean of the distribution
is represented with a gray dot, and the median with a black bar.

Table 1. Cutoffs determined between the ordered and ‘gray’ zones of dynamics and the ‘gray’ and disordered zones for the S2
RCI and S2

pred values

Ordered to gray Gray to disordered Ordered to disordered

S2
RCI 0.85 0.66 0.80

S2
pred 0.80 0.69 0.74

and functional properties (12). Finally, the DynaMine web-
server provides visual representations of the predicted dy-
namics profile, which can guide its interpretation and allows
direct dynamics comparison among different sequences.

FUTURE WORK

For this webserver, we plan two main future extensions.
First, the extension to structure-based prediction: we plan
to extract and exploit relevant structural features with the
aim of improving the dynamics prediction for sequences
with an associated structure. Second, we plan to extend the
webserver with the possibility of comparing dynamics pro-
files of sequences provided in a multiple alignment. This
may open the way to the analysis of the dynamics signature
of protein families.
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