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Human activity, life span, and quality of life are enhanced by innovations in science and technology. Aging individual needs to take
advantage of these developments to lead a self-regulated life. However, maintaining a self-regulated life at old age involves a high
degree of risk, and the elderly often fail at this goal.Thus, the objective of our study is to investigate the feasibility of implementing a
cognitive inference device (CI-device) for effective activity supervision in the elderly. To frame the CI-device, we propose a device
design framework along with an inference algorithm and implement the designs through an artificial neural model with different
configurations, mapping the CI-device’s functions to minimise the device’s prediction error. An analysis and discussion are then
provided to validate the feasibility of CI-device implementation for activity supervision in the elderly.

1. Introduction

A cognitive inference device (CI-device) may be defined
as a smart portable device embedded with smart cognitive
programs that mimic human perceptions, judgments, think-
ing, and other cognitive functions to enhance the inference
capabilities of the device. Human intelligence is natural and
sufficiently standard to accomplish self-regulated physical
and mental activities; however, increasing chronological and
physiological age may degrade these physical and mental
utilities, which ultimately leads to the decay of physical
functions and natural intelligence in the course of aging.
Activity supervision in the elderly is a tedious task for any
young individual; a CI-device may instead be employed to
manage this task. Activity supervision encompasses activity
administration, management, assistance, and control, which
become much more essential for older individuals to lead a
self-regulated life in their own home; that is, instead of self-
reliance, the elderly must rely on the CI-device to continue
day-to-day activities smoothly. In the CI-device, human
intelligence can bemapped onto amachine intelligence to act
as a smart assistive device for the elderly. Human activity and
life span are enhanced by advances in science and technology.

The elderly population is concerned about the progress of the
socioeconomic environment and advancements in research
in medicine and health, which could prolong the normal
human life span and improve the quality of life. In major,
economically established countries, the percentage of the
population that is elderly is expected to rise to 25% of the total
populations by 2030 [1]. Thus, specific wellness applications
need to be developed to determine the status of the elderly
individual’s daily activities in terms of leading a self-regulated
life [2, 3]. In addition, activity-tracking systems may be
developed to track and gently notify the elderly of deviations
in activity without compromising privacy [4].

Different types of brain wave patterns may be identified
in an elderly brain in accordance with elderly activities:
alpha, beta, gamma, theta, and delta patterns [5]. In the
context of using a CI-device, elderly individuals use a wireless
electroencephalography (EEG) data acquisition system on
a smart cap to record their brainwaves directly through
their hair and transmit them to the CI-device for further
analysis and exploration. The smart cap uses wireless micro-
EEG sensors to provide adequate autonomy and comfort
to the elderly without the threat of critical data loss. The
CI-device can accept wave patterns from the elderly brain,
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Figure 1: CI-device interacting with an elderly individual and external applications.

analyse those patterns to identify thoughts and activities,
and interact with the elderly and external applications as
described in Figure 1. Thus, the CI-device acts as an assistive
interface between the elderly individual and the environment
and external world. The identified activities of the elderly
can be classified into different activity sets based on their
characteristics and behaviours. The activities of the elderly
can be broadly classified into three types: periodic activities
in the elderly, aperiodic activities in the elderly, and sporadic
activities in the elderly. Periodic activities are normal daily
activities that are performed at regular intervals, such as
a morning walk, bedtime bath, breakfast, lunch, dinner,
and sleeping at night. Sporadic activities may be defined as
irregular periodic activities, for example, taking medicine
during the week, and aperiodic activities are unstructured
and nonperiodic activities, for example, reading books or
watchingmovies. In general, a periodic activity can be treated
as a common activity; however, the sporadic and aperiodic
activities are signified as exclusive elderly activities due to
individual variations.

In reality, a CI-device cannot think as humans think, but
it can give expert opinions to the elderly based on intelligent
information previously embedded in the device. The current
research trend encourages researchers to transform human
intelligence into device intelligence so that the device can act
as if it were human. Researchers can use intelligent tools to
design and train the artificial neural system on the CI-device
to incorporate human perception, thinking, and judgment
in such a way that no gap can be distinguished between
natural (human) and computational (machine/device) intel-
ligence. In this work, we discuss a smart device design
framework accompanied by an inference algorithm to embed
human intelligence into a CI-device for self-regulated activity
supervision in the elderly. In the design framework, we
mainly discuss the functional analysis and modelling of the
CI-device followed by a device learning process through
a fuzzy-based backpropagation neural network algorithm
(FBN-algorithm).We also conduct a broad review to identify
systems or devices and their functions or operations that have

already been examined or developed for activity supervision
in the elderly.

The overall organisation of this paper is as follows.
Section 2 discusses the related work in activity supervi-
sion in the elderly with the assistance of the latest tools
and devices. Our proposed CI-device design framework
along with its inference algorithm is discussed in Section 3.
Section 4 highlights the analysis and discussion of the pro-
posed CI-device aimed at wide implementation in activity
supervision in the elderly. Finally, Section 5 presents our
conclusions.

2. Related Work

Though a substantial amount of healthy aging research
has been completed or remains in progress, there is still
a lack of appropriate cost-effective cognitive solutions to
effectively solve the real time hazards of aging in society. The
progressive growth of the elderly population worldwide will
create serious consequences in the near future. Day by day,
with the advancement of science and technology, healthcare
systems are being developed to allow the elderly to maintain
self-regulated lives in their own homes. A smart power-
monitoring device has been proposed that assists the elderly
to identify and regulate home electrical appliances used for
daily activities [6]. Basically, in activity supervision systems
in the elderly, sensors and actuators have widespread and
ubiquitous applications in real-time home monitoring sys-
tems to care for the elderly [7]. Advances in sensor technology
enhanced with advanced health care systems for the elderly
provide home medical assistance to disabled elderly to allow
them to perform their self-regulated activities securely at
home [8]. The main goal of smart home monitoring systems
for the elderly is to provide a highly cost-effective, safe, and
secure solution for the purpose of wellness [9]. The work
in [10] has focused on the development of an electronic
monitoring device to detect illness in the elderly and alert
the individual at the receiving end to immediately perform



The Scientific World Journal 3

the necessary remedial actions. An infrared (IR) sensor-
based activity-monitoring device for the elderly is proposed
in [11] to detect and monitor abnormal elderly activities
and behaviours in a home-based healthcare environment.
The work in [12] proposes a simple health care-monitoring
system for the elderly by considering the design of both the
software and hardware components that can be successfully
applied in health community services for the elderly. The
use of visual sensors in both in-home and community-based
activity monitoring systems may compromise privacy and
security; however, it is realistically simpler and easier to
embed them into the elderly individual’s living environment.
The work in [13] concentrates on the use of visual sensors
in an older individual’s living environment to allow care
professionals to efficiently observe the individual’s activities
and to take immediate remedial actions in case of any serious
activity disorders.With the evolution of the internet of things
(IoT), each and every device will soon have communications
abilities. Thus, the authors in [14] propose the use of the
IoT in a smart home-monitoring framework for remote
monitoring and control of household appliances, so that the
elderly can easily lead an independent life. Life is tedious for
elderly individuals who suffer from dementia, so a system is
proposed in [15] to monitor the behavioural situation of such
elderly patients in terms of position localisation and motion.
Cognitive science studies human natural intelligence, that
is, human perception, conception, and judgment capability.
Such intelligence can be mapped to a cognitive sensor
network to develop a smart home-monitoring system for the
elderly. Such an intelligent system can perform various com-
plex functions, such as detecting abnormal behaviour and
remotely monitoring home appliances, that is, monitoring
electrical appliances, water use, and the bed [16]. The work
in [17] recommends a generic approach to develop intelligent
ambient devices for managing agile and complex human
behaviours for application in a wide variety of domains.

However, very few prior studies address any use of
cognitive intelligence devices for an activity and behavioural
supervision system that is able to assist the elderly in
maintaining a self-regulated life. Thus, we introduce a CI-
device for activity supervision in the elderly to address the
gap between natural intelligence and device intelligence. To
our knowledge, this is a new alternative effort in the direction
of activity supervision in the elderly using a CI-device.

3. CI-Device Design Framework

To design a CI-device for activity supervision in the elderly,
we present a pattern-inference cycle for pattern recognition
in the elderly, an activity-inference framework for activity
identification in the elderly, and an FBN-algorithm for device
learning to ensure functional and operational efficiency.
We broadly classify this section in three stages. Stage-1
highlights the general functional analysis of the CI-device.
Stage-2 includes the functional modelling aspects needed
to construct an intelligent device design framework. Stage-3
describes the learning process of the CI-device. The learning
process ensures that the CI-device will obtain the necessary

knowledge to supervise the elderly in almost all expected
circumstances.

3.1. Stage-1 (Functional Analysis). The functional analysis
stage of the CI-device aims to explore the feasibility of the
expectations of the elderly. The CI-device may be employed
as a cluster controller in a smart home-monitoring cluster
in addition to providing activity supervision of the elderly.
Therefore, the device remotely monitors different sensors
attached to household equipment, such as the gas metre,
pressure sensor, electrical metre, and smoke detector. The
CI-device extracts data from these sensors, transforms the
data into tactical knowledge, and informs the elderly about
their operational status (see Figure 2). The CI-device also
acts as a decision maker to regulate the sensors attached to
the household equipment [28] and will be a useful tool to
allow the elderly to remotely monitor household equipment
without any physical inspection. The Zig Bee module can
be fabricated in a CI-device to interact with those sensors
[29]. The CI-device should have a smartphone-like display
to visualise the status of individual household equipment
and a USB interface to connect to external peripherals. The
EEG-regulated smart home-monitoring system can supervise
the smart sensors attached to the household equipment.
For an EEG-regulated smart home-monitoring system, the
EEG data-intensive CI-device may be designed to interpret
and decode the older individual’s thoughts and intentions to
generate the instructions to control the sensors attached to
the household equipment.The IoT is an evolution of wireless
access and network technology [30].With the intervention of
IoT technology in a wireless smart home-monitoring system,
the IoT chip in every household appliance can be designed
to transform it into an IoT object. The IoT object may have
the ability to co-ordinate with the CI-device when required
to transmit its status and other information. Thus, the
interaction between household IoT appliances and CI-device
allows the elderly to more easily perform their activities
of daily living. Overall, the CI-device should support the
following functions to assist the elderly.

3.2. Functional Expectations for a CI-Device in the Elderly

(i) It tracks activity in the elderly before and after
completion.

(ii) It gently reminds the individual of any activity if it
is not completed in time or any deviation from the
normal standard is identified.

(iii) It accepts the individual’s brain wave patterns and
assists in some thinking, memorising, and memory-
recall processes.

(iv) It supports the elderly individual’s decision-making
process.

(v) It coordinates all of the elderly individual’s activities
effectively.

(vi) It links with external applications for effective coop-
eration and interactions.
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Figure 2: CI-device remotely monitors different household equipment attached with smart sensors.

(vii) It coordinates all of the sensors attached to household
equipment, informs the elderly individual in cases
of need or emergency, and performs any necessary
actions.

(viii) In case of sickness, the CI-device should generate
phone calls and messages to the healthcare centre or
well-wishers of the elderly individual to take instant
counteractive actions.

Due to its intelligence and self-learning capabilities, the
CI-device should carefully monitor the elderly individual’s
activity and make suggestions when required. For example,
if the elderly individual forgets to switch off the heater after
cooking, then the CI-device either should gently prompt
the individual to switch off the heater or should direct the
electrical sensor attached to the heater to disconnect. To

determine the probability of device usage in the elderly
based on their ability to perform daily life activities, real-
time observation data have been collected. Let C1, C2, and
C3 be three clusters of elderly individuals such that C1
includes those individuals who perform all of their daily life
activities without any device assistance, C2 includes those
individuals who perform all of their daily life activities with
standard device assistance, and C3 includes the individuals
who perform their daily life activities with major device
assistance. We find the migration rate of the elderly from
one cluster to another cluster by computing the transition
probability of present-period elderly individual’s interest with
respect to the next-period elderly individual’s interest as
described in Table 1.

Table 1 indicates the consistency of an elderly individual’s
interest within consecutive periods, with a trend toward an
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Table 1: Elderly individual’s interest transition probability based on
statistical observation.

Present-period ↓ Next-period →
C1 C2 C3

C1 0.25 0.66 0.09
C2 0.15 0.75 0.10
C3 0.09 0.16 0.75
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Figure 3: Pattern-inference cycle.

increase in the probability of interest in device usage as the
individual ages, as the individual begins to rely on the support
of a CI-device to conduct their daily life activities.

3.3. Stage-2 (FunctionalModelling). Here, we discuss pattern-
inference cycles for the purpose of activity recognition in the
elderly. A pattern-inference cycle is the process of extracting
new patterns from a storehouse of associated patterns that are
encoded in certain forms. When the storehouse is triggered
by a pattern, the associated pattern pair is mapped, which
can be accomplished by associating the previously stored
patterns with currently generated patterns to infer the new
pattern. The pattern-inference cycle (see Figure 3) for the
proposed CI-device assists elderly who are suffering from
amnesia by inferring new patterns. The pattern-inference
cycle begins by receiving the brainwave activity of the elderly,
builds the corresponding activity patterns, maps the pattern
to the stored patterns, and further infers new patterns based
on approximation and partial matching. A neural-based
associative memory mapping mechanism may be embedded
in the CI-device to execute the pattern-inference cycle;
however, the self-directed functioning of the CI-device based
on the behaviours of the individual is an important cognitive
measure to actually identify the in-time requirements for
ambient device assistance in the elderly.

Some text or image patterns related to the activities and
behaviours of the elderly may also be stored in the CI-device,
and by viewing the stored patterns, the elderly individualmay
be able to recognise the new patterns. The CI-device recom-
mends new approximate patterns to the elderly through its
inference capabilities tomeet the individual’s requirements in
terms of thinking, memorising, and memory recall. Mostly,

Table 2: Activity ranking in the elderly.

Fitness value Activity model Rank
𝑋(𝐴
1
) = 5 𝑦

1
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1
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2
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1
) = 1

𝑋(𝐴
4
) = 6 𝑦

2
= 𝑓(𝐴

2
, 6) 𝑅(𝐴

1
) = 2

the pattern inference in the CI-device supports the elderly
in recalling their historical activities and reminding them of
current activities based on partial research or matching. The
activity-inference framework may use the pattern-inference
cycle to analyse historical activity data to infer new activity
patterns in the elderly individual’s behaviour.

3.4. Purpose of Using the Activity-Inference Framework

(i) To identify the activities and behaviours of the elderly
individual through brainwave patterns.

(ii) To explain the interactions and relationships between
the elderly individual and the CI-device.

(iii) To design a controller based on the activity of the
elderly individual and the device’s functional and
operational capability.

3.5. How the Activity-Inference Framework Functions. The
activity-inference framework functions in two steps. Here,
our aim is to design a mathematical model of activity in the
elderly and estimate the activity fitness and ranking.

Operational Function. The activity-inference framework
determines a set of operational activity models for the
target CI-device from which the most suitable model can be
obtained. The activity model in the elderly is denoted by an
operational function, 𝑦 = 𝑓(𝐴, 𝜃), where 𝑦 = the output of
the activity model, 𝐴 = the input activity vector, and 𝜃 = the
corresponding fitness value.

Fitness Selection. Once the structure of the activity model is
known, we can apply a genetic algorithm-based optimisation
technique to determine the fitness vector 𝜃. The fitness
selection is performed through choosing the 𝜃 that best fits
the activity dataset. For instance, let 𝑦

1
= 𝑓(𝐴

1
, 5) in a 10-

point fitness scale for an elderly individual, which shows that
the elderly individual is 50% fit to perform activity 𝐴

1
; that

is, the activity precision = 0.5.

3.6. How to Rank Activities in the Elderly. The activities in the
elderly can be ranked based on fitness value. Let𝑋 be a fitness
function and 𝐴 be an activity in the elderly such that𝑋(𝐴) =
𝑎 fitness value. Given four activities𝐴

1
,𝐴
2
,𝐴
3
, and𝐴

4
, they

can be ranked based on their fitness values such that𝑋(𝐴
1
) =

5, 𝑋(𝐴
2
) = 3, 𝑋(𝐴

3
) = 7, and 𝑋(𝐴

4
) = 6 as described in

Table 2.
The number of activities depends on the elderly individ-

ual, and the activity selection can be made based on ranking;
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ACTIVITY-INFERENCE (bwp)
{

(1) input—brainwave pattern (bwp) from the elderly
(2) process—analyse bwp to infer activity and check activity fitness
(3) output—assist individual in ongoing activity, identify emergencies

and perform needful actions
(4) 𝑃 = {𝑃

1
, 𝑃
2
, 𝑃
3
, 𝑃
4
, 𝑃
5
, . . .}; set of stored pattern types

(5) bwp: newly recorded pattern
(6) 𝑇: activity fitness threshold in the elderly
(7) 𝜃: fitness of ongoing activity
(8) activity: forecasted activity based on bwp pattern
(9) while (not dead brain)
(10) check {
(11) if (bwp = 𝑃

1
)

(12) then activity = “elderly individual in active judgments action”;
(13) elseif (bwp = 𝑃

2
)

(14) then activity = “elderly individual in working action”;
(15) elseif (bwp = 𝑃

3
)

(16) then activity = “elderly individual in undisturbed action”;
(17) elseif (bwp = 𝑃

4
)

(18) then activity = “elderly individual in pensive action”;
(19) elseif (bwp = 𝑃

5
)

(20) then activity = “elderly individual in sound asleep action”;
(21) else
(22) activity = “elderly individual in other actions”;
(23) }

(24) /∗ identification of ongoing activity ∗/
(25) determine 𝜃 dynamically for ongoing activity
(26) if (𝜃 < 𝑇)
(27) then (“elderly individual fit for ongoing activity”)
(28) elseif (𝜃 = 𝑇)
(29) then (“elderly individual may need some device assistance”)
(30) else {
(31) “elderly individual needs major device assistance”,
(32) “identify emergency services and perform needful actions”;
(33) }

(34) }

Algorithm 1: Algorithm for activity-inference from brainwave patterns in the elderly.

however, two activities with the same fitness value may have
the same ranking.The CI-device uses this system to assist the
elderly individual by predicting and reminding the individual
of new activities. Additionally, in some cases, the CI-device
will be able to predict at what time the elderly individual will
perform each activity [31]. A three-step process can be used
in the activity-inference framework.

Step 1. Record the activities of the elderly individual through
brainwave patterns.

Step 2. Analyse those activities using an inference algorithm.

Step 3. Predict new activities and gently remind the elderly
individual in the case of minor or major activity deviations.

The system is suitable for forecasting the periodic and
sporadic activities of the elderly individual through the CI-
device; however, it will be highly complicated for aperiodic
activities.

Inference Algorithm 1. The activity-inference algorithm
(Algorithm 1) is a self-regulated intelligent algorithm that
can be embedded into the CI-device to create automatic
alerts for the elderly individual. While designing the infer-
ence algorithm, we must ensure that a dead brain cannot
generate any wave patterns. 𝑃

1
, 𝑃
2
, 𝑃
3
, 𝑃
4
, and 𝑃

5
are the

alpha, beta, gamma, theta, and delta brain wave patterns,
respectively, that act as stored patterns for the CI-device
to perceive further patterns for analysis and exploration.
Algorithm 1 shows how the CI-device can automatically
recognise the elderly individual’s activity based on inferred
brainwave patterns and shows how it can check the elderly
individual’s needs for assistance. Step 2 of Algorithm 1mainly
performs functional processing, such as pattern transforma-
tion, pattern mapping, activity fitness estimation, emergency
determination, and other relevant tasks. The CI-device, after
receiving the brainwaves, transforms them into standard bi-
polar patterns to perform effective mapping between the
current brainwave patterns and stored patterns to infer new
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approximate patterns for the elderly individual’s ongoing
activities. The CI-device does not hamper the privacy of
the elderly individual while undisturbed; however, during
sleep, the CI-device can also perform EEG monitoring to
determine the overall safety of the elderly individual. In
a real-world implementation of activity supervision in the
elderly, an elderly individual can comfortably use a smart
cap that consists of a wireless EEG monitoring system such
that the sensors can cooperatively record brainwaves directly
through the hair and send the brainwaves wirelessly to
the CI-device to establish the interactions and relationships
between the elderly individual and the CI-device [32]. The
wireless EEG-acquisition system and mobile EEG data-
recording system have a significant role in recording and
transmitting the brainwaves from the elderly individual to
the CI-device without compromising the expected privacy
of the elderly individual [33, 34]. We can incorporate the
CI-device’s functions into a smartphone/watch-like portable
device for convenience. In Algorithm 1, the relative values of
𝑇 and 𝜃 can be measured through the operational function
and fitness selection of the activity-inference framework.
We consider five broad activity categories in the elderly to
cover the range of activities of daily living. These activities
are judgment (active thought activity), work (active physical
activity), undisturbed (active ideal activity), pensive (active
stress activity), and sound asleep (passive physical activity).
All periodic, aperiodic, and sporadic elderly activities also
come under this five-activity classification strategy.The SVM
(support vector machine) based supervised learning mech-
anism may also provide a decent solution for the effective
classification of elderly activities based on certain behaviours
and characteristics [35]. The efficiency of the CI-device is
heavily dependent on the precision of the activity-inference
system; that is, a higher inference accuracy improves the
device’s efficiency. Based on the above discussion, we see that
three influential parameters can be used to assess the CI-
device efficiency: activity accuracy, activity fitness (𝜃), and
inference accuracy.

3.7. Stage-3 (Learning). In this stage, we mainly discuss the
learning mechanism of the CI-device to make it suitable for
activity supervision in the elderly.

3.8. FBN-Algorithm. Here, we focus on the device’s learning
system using the FBN-algorithm. The neural network in
the CI-device can be trained through the FBN-algorithm
to perform various complex functions, such as pattern
recognition, system control, and activity identification and
classification, and overall, it acts as an artificial brain within
the CI-device. The FBN-algorithm provides the knowledge-
acquisition system of the neural network embedded in the
device through the following steps.

Step 1. Design input/output (𝐼/𝑂) data sets by considering
historical activities in the elderly individual.

Step 2. Configure the neural network architecture (NN0,
NN1, and NN2).

Step 3. Configure the type-1 fuzzyweightmatrix for the input-
to-hidden and hidden-to-output layer in the range [−1, +1].

Step 4. Train the neural network by tracing 60% of the 𝐼/𝑂
data sets until the error is acceptably low. During training,
type-1 fuzzy weights are initially assigned, and supervisory
weight adjustments are then performed to minimise the
functional learning error of the CI-device.

Step 5. Test the neural network by tracing 40% of the 𝐼/𝑂
datasets to minimise the functional testing error of the CI-
device.

Step 6. Once the test process is acceptable, use the neural
network in actual CI-device implementation to perform
unknown complex operations. The device’s learning ensures
the self-learning capability to build intelligence in the CI-
device for self-regulated activity supervision in the elderly.

4. Analysis and Discussion

Here, we discuss some empirical suggestions to analyse the
proposed CI-device for the purpose of wide implementation.
If we can develop a small portable device embedded with
an intelligent design framework, then it will be sufficiently
convenient for the elderly to introduce it into their daily
living environment. The CI-device mainly emphasises the
use of an intelligent framework, that is, a pattern-inference
cycle and activity-inference framework followed by an FBN-
algorithm for the smooth supervision of activity in the elderly.
Our work analyses the effort to design a CI-device that
assists elderly individuals with maintaining their activities
of daily living through augmenting and supplementing their
cognitive functions.

We broadly divide the analysis and discussion context
into two major phases. In phase-1, we perform some activity-
level analyses by considering the daily living activities of the
elderly, and in phase-2, we emphasise the implementation
analysis of the CI-device in the daily living activities of the
elderly. However, prior to the analyses, some previous works
are reviewed to ensure the importance of the system and
device investigations to the associated functions in the direc-
tion of activity supervision in the elderly. A detailed review is
presented in Table 3. The review’s details clearly indicate the
keen interest of researchers in either developing a system or
designing a device for the purpose of assisting the elderly.

Device cognition is a challenging issue for current
researchers, given the rapid advancement of medical engi-
neering and instrumentation. In our work, we suggest using
a cognitive device design framework in a CI-device to enable
human-like inference capability for use by the aged. Due to
its intelligence, the device may also cooperate with the social
privacy systems of elderly individuals.

4.1. Phase-1 (Activity-Level Analysis in the Elderly). Here, we
want to visualise exactly how patterns are generated from
data sets on the activities of the elderly. Some activity-level
analyses in the elderly are conducted by considering five
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Table 3: Comparison of various works that propose systems/devices for activity supervision in the elderly.

Name of works/authors Proposed system/device Function/assistance
Kelly et al. [14] IoT device assists elderly to regulate household appliances
Gill et al. [6] smart power-monitoring device assists elderly to regulate home electrical appliances
Gaddam et al. [16] cognitive sensor device monitors home appliances for the elderly
Malhi et al. [10] electronic monitoring device detects illness in the elderly and alerts others
Zhou et al. [13] visual sensor device observes activity in the elderly to take immediate actions
Shin et al. [11] IR motion-sensor device detects abnormal activity in the elderly
Bosse et al. [17] ambient intelligent device fall detection in the elderly

Hervás et al. [18] assistive navigation system activity monitoring in the elderly and potential situation
detection

Costa et al. [19] ambient assistive system creates an ecosystem of service and devices for the elderly
Ye et al. [20] fall-detection device detects activity acceleration to detect falls in the elderly
Andreoni et al. [21] wearable sensor device online activity monitoring and fall detection for the elderly

Jia et al. [22] chair-based apparatus connected
to a mobile apps system health monitoring in the elderly

Gokalp and Clarke [23] telemonitoring system monitors activity and health in the elderly
Krishnan and Pugazhenthi [24] assistive robotic device enables self-transfer lifts in elderly patients

Chernbumroong et al. [25] assisted living system with
multisensor devices activity monitoring in the elderly

Botia et al. [26] ambient assisted living system detects abnormal situations in the elderly

Costa et al. [27] visual E-care system (i) prescribes physical exercise for the elderly
(ii) monitors physical activity and health status in the elderly

Our work CI-device

(i) accepts brainwave patterns for activity monitoring in the
elderly
(ii) human-like inference capability
(iii) uses activity-inference algorithm with FBN-algorithm to
allow device cognition
(iv) acts as a smart assistive device for the elderly
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Figure 4: Stress-level analysis in the elderly based on age clusters.

broad activities of the elderly to incorporate all of the com-
mon activities of daily living.These broad activities are active
thought, work, ideal, sleep, and stress. Stress in the elderly
is a psychologically pensive activity, and resting stress levels
are an important measure to determine the wellness of the
elderly in an effective way. In Figure 4, we perform a stress-
level analysis based on clusters of the elderly and observe
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Figure 5: Stress-level analysis in the elderly with respect to the
number of instances.

that individuals in the age cluster of 67–87 experience more
stress, which leads to various diseases. Thus, the CI-device,
through brainwave analysis, should identify mental stress in
the elderly to reduce potential risks. In Figure 5, we perform a
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Figure 6: Complex inference patterns of activity-level analysis in
the elderly.

stress-level analysis in the elderly with respect to the number
of instances and find increased mental stress in a series
of instances. In Figure 6, the complex inference patterns of
activity-level analysis in the elderly are grouped, building
on those associated activities. The patterns are analysed in
the context of the activities of the elderly, and statistical
inference is used to identify abnormalities and outliers in
the activity patterns. In Figure 6, the tiny coloured spaces
define the activity patterns and the corresponding parameters
of the associated activities. The real-time data are collected
by employing smart sensing objects and provided to a data
miner to obtain statistical inferences, as described in Table 4.
The real-time data for the elderly can be normalised and
scaled into a fuzzy-associated data system using the standard
data range [0, 1]. To analyse the activity level in the elderly,
their mobility factor must be considered. Thus, to scale the
results to a mobility factor, we consider three quantifiers, that
is, 8: highmobility, 6: averagemobility, and 4: lowestmobility.
Deviation is a common factor due to irregular activities in the
elderly. Thus, by analysing Table 4, predictive inferences can
be made regarding the wellness of the elderly. The inference
logic indicates that no greater deviation occurs if the daily
life activities of the elderly are periodic with respect to the
number of instances, which is unrealistic for the elderly
individual because in reality, the activities combine periodic,
aperiodic, and sporadic activities.

4.2. Phase-2 (CI-Device Study Analysis)

4.3. Statistical Study Analysis. Based on the activity inference
algorithm in the elderly (Algorithm 1), we consider five
elderly functional activities (𝐴

1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, and 𝐴

5
) for

study: 𝐴
1
← judgement (active mental activity), 𝐴

2
← work

(active physical activity), 𝐴
3
← undisturbed (active ideal),

𝐴
4
← stress (active pensive), and𝐴

5
← sound asleep (passive

ideal). In addition, to measure the performance of the CI-
device, four performance measurement parameters (𝑃

1
, 𝑃
2
,

𝑃
3
, and 𝑃

4
) are considered as follows: 𝑃

1
← activity precision,

𝑃
2
← activity fitness, 𝑃

3
← inference accuracy, and 𝑃

4
←

functional efficiency. Based on the functional activities and
performance measurement parameters, a real-time empirical
study is conducted in the elderly, considering the device’s
functions to obtain statistically correlated data sets. The final
statistical report is described in Table 5. Here, we consider
the elderly individual’s natural cognitive discrimination level
(CDL) (good: 8, average: 6, and poor: 4) to compute the
definite statistical assessment instances. Based on statistical
analyses of Table 6, we can ensure approximately 89.880%
functional efficiency for our proposed CI-device; however,
this value can be improved by improving the other param-
eters. Here, we compute the device efficiency for each activity
by taking the accuracy average of 𝑃

1
, 𝑃
2
, and 𝑃

3
, and the final

average accuracy for all of the activities can be computed to
estimate the approximate efficiency of the CI-device.

The average functional efficiency of the CI-device is
directly proportional to the CDL value (see Table 6). Thus,
based on the CDL, the physical ability level, and the mobility
level of the elderly individual, the CI-device may be intro-
duced either as a smartphone/watch-like portable device or
as a smart cognitive robotic device to regulate the elderly
individual’s activities and provide the necessary assistance
without any human interventions.

4.4. Computational Study Analysis. This phase discusses the
computational analysis of the CI-device by mapping the
possible device functions onto the neural network platform
to minimise the device’s prediction error. Once the CI-
device is embedded in the smart inference framework, an
appropriate device learning process should be initiated to
test the accuracy level. We apply a type-1 FBN-algorithm, in
which the type-1 fuzzy weight matrix (𝑊) can be estimated
using a standard formula; that is, 𝑊 = ∑(𝑃

𝑖
𝑊
𝑖
)/∑(𝑃

𝑖
),

where 𝑖 = 1, 2, . . . [36, 37]. The FBN-algorithm is a type
of supervised learning algorithm that inherits the charac-
teristics of an artificial neural system. We map the activity
data sets in the elderly onto the FBN-algorithm to obtain
the device prediction error result usingMATLAB neurofuzzy
system environment. The fuzzy system environment has
much more real-time control to regulate numerous sensitive
applications [38]. So, we use a neurofuzzy environment to
simulate the different neural network configurations through
the fuzzified data sets relating to the elderly activities of
daily living. In Table 7, we do not consider the link errors
but instead focus on computing the prediction errors based
on the computed and expected outputs correlating with the
functional efficiency of the CI-device. In the statistical study
analysis, a particular data set in the elderly is normalised for
this problem, and we use this FBN-algorithm to compute the
input, hidden and output neuron computations along with
the prediction error for each step. To implement the FBN-
algorithm, three neural network models are used, that is,
NN0: a neural networkwith zero hidden layers, NN1: a neural
network with one hidden layer, and NN2: a neural network
with two hidden layers, as shown in Figure 7. A type-1 fuzzy
weight matrix is used based on the inference algorithm for
the inputs of each neuron. The inference algorithm can be
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Table 4: Statistical inferences of activity level in the elderly.

Instance-ID Polynomial Least I999(1) Most I001(1) Values I001(1), I002(1), . . . , [1017 more]
Parameter (data type) Min Max Average Deviation
Age (real) 61.850 82.850 66.023 8.377
Time interval (real) 2.650 14.040 6.435 3.172
Active thought (real) 0.001 0.208 0.093 0.042
Work (real) 0.292 0.564 0.428 0.063
Ideal (real) 0.152 0.166 0.160 0.005
Sleep (real) 0.131 0.345 0.236 0.059
Stress (real) 0.010 0.312 0.199 0.074

Table 5: Activity-level assessment results.

𝑃
1

𝑃
2

𝑃
3

𝑃
4

𝐴
1

0.811 0.890 0.920 0.874
𝐴
2

0.842 0.902 0.896 0.880
𝐴
3

0.891 0.913 0.939 0.915
𝐴
4

0.862 0.924 0.958 0.9146
𝐴
5

0.852 0.912 0.967 0.9104

Table 6: CDL assessment outcomes in the elderly.

𝑃
1

𝑃
2

𝑃
3

𝑃
4

CDL = 4 0.520 0.532 0.541 0.531
CDL = 6 0.720 0.731 0.742 0.731
CDL = 8 0.981 0.925 0.920 0.942

Table 7: Device error prediction results.

Model Structure Eta Epoch Training error Testing error

NN0 3-1 0.1 100 — —
0.5 100 — —

NN1 3-5-1 0.1 100 0.33635 0.34335
0.5 100 0.29615 0.27612

NN2 3-5-5-1 0.1 100 0.03345 0.03526
0.5 100 0.02215 0.02341

used as a knowledge base to provide facts from the neurons
in the form of linguistic control rules [39]. Let 𝑊

𝑖ℎ
be the

type-1 weight matrix from the input layer to the hidden layer
and𝑊

ℎ𝑜
be the type-1 weight matrix from the hidden to the

output layer. We consider the 𝑃
4
parameter values of Table 5

as the threshold for the expected output (Eo), and the Co is
the computed output from the neural network.

To determine the functions of the hidden layer, the five
activity functions in the elderly are mapped to this layer. We
use a sigmoid function as the transfer function to the network
model, that is, sigmoid function (Φ(𝐼)) = (1/(1 + 𝑒−𝜆𝐼)),
because the sigmoid function is a very common function
compatible with the type-1 fuzzy-based neural network sys-
tems. Eta(𝜂) is the learning rate, in which two values are
considered, that is, 0.1 and 0.5, the momentum co-efficient
(𝛼) = 0, and the sigmoid gain (𝜆) = 1 for this problem.
Because of difficulties in implementing a type-2 fuzzy data

set associated with activity in the elderly, we implement a
type-1 fuzzy data set associated with activity in the elderly
to compute the fuzzy weight matrix. In this analysis, the
different configurations of artificial neural networks (NN0,
NN1, and NN2) are mainly designed and traced to the
elderly activity supervision application to find out the relative
performance through error prediction during functional
training and testing of CI-device [40].

A neural network without a hidden layer (NN0) may
not be suitable for complex problem computations. Based
on the analysis of the results, the success of neural network
architecture depends heavily on the availability of an effective
learning algorithm. The speculative strength of the FBN-
algorithm can be used in other applications to compute error-
prediction results.Theuse of a single data setmakes it difficult
for themodel to recognise trends and patterns that exist in the
data.The implementation of the NN2model in the CI-device
yields the lowest average prediction error, that is, lowest
AP-error = 0.02278, compared with the other models, and
increasing the learning ratemay improve the device accuracy.
In addition, the analysis indicates that the AP-error can be
minimised by increasing the number of functions in hidden
layers. The type-2 fuzzy weight updating mechanism may
minimise the prediction error of the CI-device by dealing
with more uncertainties to increase the desired functional
efficiency.

5. Conclusions

In this paper, we propose an intelligent device design frame-
work that can be implemented in a CI-device to manage
activities in the elderly in an effective and efficient way. We
also design an inference algorithm that can be embedded into
the CI-device to build its intelligence. Due to intelligence and
self-learning capabilities, the device can cooperate with its
social environment without hampering social security and
privacy. Furthermore, the device may be a good companion
for the elderly to help them lead a self-regulated life. In our
work, we have added an absolutely new case in point for
the aging activity level analysis, in which the activity data
sets are normalized and transformed into standard fuzzified
data sets havingmore than one thousand activity instances in
the range of [0, 1]. The self-directed functioning of CI-device
based on the aging behaviours is an important cognitive
measure to actually identify the in-time aging requirements
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Figure 7: An NN2 (3-5-5-1) architectural model.

for ambient device assistance. Here we mimic the details of
cognitive functional measures of CI-device that acts as mid-
dleware oriented cognitive interface in between the natural
intelligence and device intelligence. As the FBN-algorithm
inherits the topographies of computational intelligence, sowe
train and test the functional measures of CI-device through
this algorithm with an aim to reduce the AP-error so as to
achieve the desired efficiency. In future work, we will study
firmware-updatingmechanisms for the CI-device to improve
its functionalities, power efficiency, and reliability as well as
safetymeasures for activity supervision in the elderly.We also
aim to implement a type-2 fuzzy weight updatingmechanism
to improve the functional efficiency of the CI-device through
effectively minimising the device prediction error.
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