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Fluorinated and nonfluorinated phosphonates are employed as precatalysts in lithium phosphonate catalyzed cross benzoin

couplings. Surprisingly, a decreased catalytic activity for the fluorinated precatalysts compared to the nonfluorinated systems is

observed. Furthermore, the ring size of six, seven and nine membered ring catalysts appears not to be crucial for their catalytic

activity.

Introduction

Since the discovery of the cyanide catalyzed benzoin reaction
by Liebig and Wohler in 1832 [1], acyloin-type reactions
evolved as powerful tools for couplings of acylanion equiva-
lents with carbon electrophiles. In addition to cyanide [2-5] and
nucleophilic carbene catalysts (e.g. thiazolium salts) [6-17],
lithium phosphonates were found to catalyze cross acyloin type
couplings of acylsilanes with aldehydes [18]. The catalytic
cycle proposed by Johnson et al. [18] (Scheme 1) suggests that
a potential metallophosphonate catalyst must act as a nucleo-
phile, an anion (d'-synthon) stabilization group, and as well as a
leaving group (nucleofuge). Comparative computational assess-
ments of carbanionic d!-species, which have been proposed as

crucial intermediates according to the Lapworth and Breslow

mechanisms, show comparable activities for lithium phospho-
nate and cyanide [19,20].

Recently, we introduced fenchol based phosphonates as precata-
lysts, which are similarly accessible as fencholate metal cata-
lysts [21-25], in the benzoin coupling (Scheme 2) [26]. A strong
increase of the catalytic activity was observed for a benzylic
fencholate, when the benzylic positions were occupied by CF3-
groups (92% versus 19% yield, Scheme 2) [26]. This increased
reactivity is thought to arise from a favored formation of the
carbanionic d!-synthon intermediate, due to the electron with-
drawing effect of the CF3 groups. A comparison of fluorinated

and nonfluorinated TADDOL phosphonates (which were used
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Scheme 1: Proposed catalytic cycle of the lithium phosphonate catalyzed cross benzoin coupling [18].

by Johnson's group) as precatalysts in benzoin coupling does
not show any difference in reactivity (Scheme 2). In contrast the
enantioselectivity is clearly higher with the fluorinated
TADDOL precatalyst (Scheme 2).

Here, we analyze the effect of fluoro substituents on the
catalytic activity by using different fluorinated and nonfluori-
nated phosphonates as precatalysts in the benzoin coupling.

Results and Discussion

As precursors for six, seven and nine membered ring phospho-
nates, diols 1-4, and 6—8 were synthesized (Scheme 3). The
synthesis of diol 1 was conducted by an ortho lithiation of
1,1,1,3,3,3-hexafluoro-2-phenylpropan-2-ol and subsequent
addition of the in situ generated carbanion to formaldehyde. For
comparison, a nonfluorinated diol precursor 2 was synthesized.
Diol 3 was used as the precursor to investigate the influence of

aromatic fluoro substituents. Six ring phosphonates were real-
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Scheme 2: Phosphonate as precatalysts in benzoin coupling [18,26].
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7] and the analogous nonfluorinated

Biphenyl-based fluorinated and nonfluorinated systems (6 [28-
30], 7 and 8, Scheme 3) were chosen as precursors for the syn-
thesis of nine ring phosphonates. The synthesis of these diols
was realized by a double ortho lithiation of biphenyl and subse-
quent addition to the corresponding carbonyl compound. By
this procedure, two asymmetric carbon centres and a chiral axis,
which is fixed by intramolecular hydrogen bonds (6: Intramole-
cular O1-02 distance 2.83 A, 7: Intramolecular O1-02 dis-
tance 2.81 A, Figure 1 and Figure 2, respectively), are gener-
ated. Chiral HPLC and X-ray analyses revealed one pair of
enantiomers for diol 6 and 7 (HPLC (Daicel-OD-H, 90:10
n-hexane/isopropanol; flow 0.5 mL/min): 6: g = 10.4 min; tgy
= 13.2 min (racemate); 7: tg = 22.1 min; X-ray structures shown
in Figure 1 and Figure 2, respectively) and an additional meso
product for diol 8 (HPLC: fgy = 22.4 min; fg3 = 30.6 min (race-
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Scheme 3: Synthesis of diols 1-4, 6-7; diol 5 is commercially available.

Figure 1: X-ray crystal structure of 6. (M)-(S,S) and (P)-(R,R) pair of enantiomers; intermolecular 01-02 distance 2.81 A; intramolecular 01-02 dis-
tance 2.83 A. Ellipsoids correspond to 50% probability levels. Hydrogen atoms are omitted for clarity.
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Figure 2: X-ray crystal structure of 7. (M)-(S,S) and (P)-(R,R) pair of enantiomers; intermolecular 01-02 distance 2.80 A; intramolecular 01-02 dis-
tance 2.81 A. Ellipsoids correspond to 50% probability levels. Hydrogen atoms are omitted for clarity.

mate); frg1 = 9.1 min). A dimer associated by a hydrogen bond is
apparent for the enantiomeric pair (6: intermolecular O1-02
distance 2.81 A, 7: intermolecular O1-02 distance 2.80 A,
Figure 1 and Figure 2, respectively). The favored formed enan-
tiomeric pair has the same configuration (R,R or S,S) for both
benzylic carbon centres, which defines the conformation of the
biphenyl axis (M(inus) for S,S and P(lus) for R,R).

Table 1: Optimized structures of diols 6 and 7.

diol 6

diastereomer (M)-(S,S); (P)-(R.R)

E;el [kcal/mol]? 0 +3.6

diol 7

diastereomer (M)-(S,S); (P)H(RR)

E;el [kcal/mol]P 0
aDjrection of hydrogen bond; PB3LYP 6-31G*.

+4.3

(P)-(S,S); (M-(R.R)

(P)-(S,S); IM-(R.R)

The conformational stability of the biphenyl axis can be demon-
strated by the energy difference of the optimized structures
(B3LYP 6-31G*) (Table 1) (between (M)-(S,S), (P)-(R,R) and
(P)-(S,S); (M)-(R,R) for 6 E.e) = 3.6 kcal/mol; for 7 Ei] = 4.3
kcal/mol). The alternative diastereomers, with different configu-
rations at the benzylic carbon (M)-(R,S); (P)-(R,S), are energeti-
cally disfavored (Table 1). For these diastereomers two possible

(M)-(R,S); (M)-(R,S);
(P-(R,S) (P)-(R,S)
R—8&? S—R2
+1.8 +1.4
(M)-(R,S); M)-(R,S);
(P)-(R,S) (P)-(R,S)
R—S?2 S—R2
+4.4 +4.7
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directions of the hydrogen bond were considered, that is (M)-
(R,S), (P)-(R,S) with the hydrogen bond from S—R giving Ey¢
= 1.4 kcal/mol and (M)-(R,S); (P)-(R,S) with the hydrogen bond
from R—S giving E,.; = 1.8 kcal/mol for 6; equivalently Ey¢ =
4.7 kcal/mol and E¢| = 4.4 kcal/mol in the respective cases for
7. Similar biphenyl conformation stabilities were found for 1,1'-
biphenyl-2,2'-bisterpenols (terpenol moiety: (—)-Fenchol, (—)-
menthol, (—)-verbenol und (—)-carvol) [31,32]. The energy
differences of the terpene-based conformers are between 5.1
and 5.8 kcal/mol [32,33] (B3LYP/6-31++G**:AM1).

The conversion of diols 1-5, 7, and 8 to the desired phospho-
nates can be achieved by twofold addition to phosphorus
trichloride and subsequent hydrolysis. Diol 6 could not be
converted under the employed conditions (Scheme 4).

The strong inductive effect of the fluoro substituents is clearly
visible from the 'J(P—H) coupling constants, which are signifi-
cantly increased compared to the nonfluoro-substituted phos-

Table 2: 1J(P—H) coupling constants for phosphonates 9—15.

seven membered ring

(oNe]
A4
/-U\\

I O

phosphonate
9
J(P-H) [Hz] 705.3
six membered ring
o. P
P~y
phosphonate 6
12
1J(P-H) [Hz] 723.0
phosphonate
1J(P-H) [Hz]
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diols1-5,7, 8 phosphonates 9-15

Scheme 4: Synthesis of phosphonates 9-15.

phonates (Table 2). In general, 'J(P-H) coupling constants
increase with the electronegativity of the substituents [33]. The
influence of electronegativity results from the change in s-char-
acter, given that the Fermi-contact is the dominant coupling
mechanism [33]. According to Bent’s rule [34] electron with-
drawing substituents require more p-character in the bonding
orbitals, which leads to an increased s-character in the bonding
P—H orbital. The smallest influence on the coupling constant is
apparent for phosphonate 11, in which the fluoro substituents
are not in close proximity to the phosphorous atom (five bonds

FsC_ CF; E

o)
0. L O:P:/
O/P\H F O H

10 F

755.0

CF3

O\ 7

O/P\H
O CFs

15
754.7
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distance). The largest J(P—H) coupling constant was detected
for phosphonate 13. Thereby an additional electron with-
drawing effect of the phenoxy group causes the further increase
in the 'J(P-H) coupling constant. All synthesized phosphonates
were identified by 3P NMR, especially characteristic are the
phosphorus—hydrogen and phosphorus—fluoro couplings.

For phosphonates 14 and 15 (Figure 3) a doublet splitting
caused by the LJ(P-H) coupling ~700 Hz was observed in the
31p NMR spectra. The protons in the benzylic position (phos-
phonate 14) effect a 3J(P—H) coupling (12.5 Hz) and the CF5
groups in this position (phosphonate 15) a “J(P—F) coupling
(14.3 Hz) (Figure 3).

A crystal structure was obtained for phosphonate 15, which
shows the (M)-(R,S) diastereomers (Figure 4).

Beilstein J. Org. Chem. 2011, 7, 1189-1197.

The lithium phosphonate catalyzed benzoin reaction (Scheme 5)
with phosphonates 9—15 as precatalysts led to the benzoin prod-
uct in low to moderate yields (5-44%) (Figure 5). The supposed
increase in catalytic activity, which was observed for fenchol-
based phosphonate (Scheme 2) [21] with fluoro-substituted
phosphonates as precatalysts, could not be confirmed. The
highest yield was achieved with phosphonate 14 as precatalyst
(44%). Contrary to expectations this yield is twice as high as the
yield achieved with phosphonate 15. The reduction of the
nucleophilic character of the phosphorus nucleophile in the first
step of the catalytic cycle, and of the d!-synthon in the third
step of the catalytic cycle (Scheme 1), could explain these
results. The increased 'J(P-H) coupling constants for the CF3
substituted phosphonates (10, 13, 15, Table 2) suggest an
increase in s-character at the phosphorus atom, which confirms
a reduction in nucleophilic character. In contrast to the fenchol-

a) 8.18 ppm

1J=7132 Hz

— T T T T T T T T
PPM 112 108 104 100 96 92 88 84

b)

@
J €

| L

T T T T T '
PPM -14 -18 22 -26 -30 -34 -38 -42

Figure 3: 3'P NMR of phosphonate 14 (a) and 15 (b).

— .
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—
-18 82 -86 -9.0

1194



Beilstein J. Org. Chem. 2011, 7, 1189-1197.

Figure 4: X-ray crystal structure of 15. (M)-(R,S) diastereomer; ellipsoids correspond to 50% probability levels. Hydrogen atoms are omitted for

clarity.

10 mol %
O O phosphonate 9-15
40 mol % n-BuLi
SlEt3 + H X

| 0°C, 1 h; 30 min, rt

Scheme 5: Lithium phosphonate catalysts in cross benzoin coupling.

based phosphonates [26] the best result was achieved by a nine
membered ring phosphonate instead of a seven membered ring
phosphonate. It can be concluded that the ring size is not of
basic importance to the catalytic activity.

Conclusion

Three types of cyclic fluorinated and nonfluorinated phospho-
nates were synthesized and used as precatalysts in cross benzoin
couplings with yields ranging from 5 to 44%. The inductive
effect of CF3 substituents in benzylic position of phosphonates
10, 13 and 15 gives rise to increased LJ(P-H) couplings in P-H
precatalysts and hence points to increased s-character at the

: 0

HCI/MeOH
OSiEts O OH

C

phosphorus lone pair in the active anionic catalysts [33]. A rise
of catalytic activity due to the inductive effect of CFj3
substituents, as was observed before for a fenchol-based phos-
phonate (Scheme 2) [26], was not realized with the phospho-
nates employed herein. Instead a reduction of catalytic activity
was apparent with fluorinated phosphonates compared to the
nonfluorinated phosphonates. This can be explained by a
weaker nucleophilic character of the phosphorus nucleophile, as
a consequence of the increased s-character. Comparisons of
phosphonates with different ring sizes show that the nine ring
phosphonates result in higher yields than do the six and seven
ring phosphonates.
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