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Examination of tumor molecular characteristics by liquid biopsy is likely to greatly 
influence personalized cancer patient management. Analysis of circulating tumor DNA 
(ctDNA), circulating tumor cells (CTCs), and tumor-derived exosomes, all collectively 
referred to as “liquid biopsies,” are not only a modality to monitor treatment efficacy, dis-
ease progression, and emerging therapy resistance mechanisms, but they also assess 
tumor heterogeneity and evolution in real time. We review the literature concerning the 
examination of ctDNA and CTC in a diagnostic setting, evaluating their prognostic, 
predictive, and monitoring capabilities. We discuss the advantages and limitations of 
various leading ctDNA/CTC analysis technologies. Finally, guided by the results of clinical 
trials, we discuss the readiness of cell-free DNA and CTC as routine biomarkers in the 
context of various common types of neoplastic disease. At this moment, one cannot 
conclude whether or not liquid biopsy will become a mainstay in oncology practice.
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iNTRODUCTiON

Testing of bodily fluids in medical diagnostics has a long history with Greek humorism and the 
Indian Ayurveda system as prominent examples. These antique ideas remain applicable since analy-
sis of bodily fluids can reveal diseases. “Liquid biopsies” are commonly blood and urine samples and 
the term usually refers to neoplasia diagnostics in analogy to classical biopsies. The most prominent 
example of a “liquid biopsy” is testing for prostate-specific antigen (PSA) in blood samples, which, if 
obtained lege artis, is a robust predictor of prostate cancer. However, its specificity can be hampered 
by non-neoplastic prostate damage since PSA is present in both cancer and normal cells. Many 
cells and tissues release some of their constituents to the bloodstream, including fragmented, cell-
free DNA (cfDNA) which can also arise from tumor cells, i.e., circulating tumor DNA (ctDNA). 
As opposed to PSA and other proteins, ctDNA sequences are tumor specific. Such changes have 
been associated with a variety of neoplastic, but also as hereditary disorders. The BRAF(p.V600E) 
point mutation, e.g., is found in a wide range of malignant and benign neoplastic diseases in many 
organ systems. Other mutations, such as MYD88(p.L265P), have a narrower occurrence spectrum 
restricted to hematological disorders. Lastly, some mutations, such as in the VHL gene, occur both 
in sporadic but also hereditary hemangioblastomas.

In contrast to PSA and alike, the diagnostic value of ctDNA dramatically increases with prior 
knowledge about the mutational landscape of a tumor based on a conventional biopsy. Targeted NGS 
reveals traceable mutations. With these patient-specific data at hand, liquid biopsies, designed to 
determine the exact amount of ctDNA fragments in blood, may become an invaluable personalized 
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surveillance tool. The ultimate goal of precision medicine is to 
deliver the most suitable, personalized cancer treatment at the 
most appropriate dose and time point to maximize quality of life 
and OS. Liquid biopsies might pave the road toward this aim, 
offering a way to quantify treatment response and detect emerg-
ing resistance in real time without the need of serial conventional 
biopsies.

Herein, we will discuss the use of cfDNA/ctDNA as diagnostic, 
prognostic, and predictive biomarkers and their applicability in 
clinical settings. In addition, the modalities by which circulating 
tumor cells (CTCs) can be detected in peripheral blood and to 
which extend this principle has been adopted in clinical practice 
will be reviewed. Due to the overwhelming number of studies, 
we will, for the sake of data comparability, focus on the three 
most frequently investigated diseases: breast, lung, and colorectal 
cancer.

cfDNA AND ctDNA

Biology and Origin of cfDNA/ctDNA
Cell-free DNA gained increased attention upon the discovery 
that part of it originates from tumor cells and can be isolated from 
peripheral blood (here: ctDNA), urine, and other bodily fluids 
(1). The amount of ctDNA likely depends on tumor burden. It 
was estimated in CRC that a tumor load of 100 g, corresponding 
to 3 × 1010 neoplastic cells, would release 3.3% of tumor (tissue) 
DNA into the blood daily (2). Mutations found in cfDNA are 
likely to represent a mixture of alterations in primary tumor and/
or metastatic sites (3). The discovery that blood-derived cfDNA 
contains tumor-specific genetic and epigenetic alterations has 
provided a solid ground to clinical usage of ctDNA as a biomarker. 
Most of the respective studies showed high concordance between 
individual mutations found in tDNA and cfDNA samples (4). 
There is evidence that ctDNA analysis could inform about clonal 
heterogeneity and subclonal changes in real time (5–8). In healthy 
subjects, 70–90% of the cfDNA pool originates from white blood 
cells (mostly neutrophils and lymphocytes). Neoplastic cells, 
tumor-infiltrating T-lymphocytes, and degenerating endothelial 
cells found in the vicinity of expanding carcinoma tissue, likely 
contribute to cfDNA (9). However, the exact mechanisms of how 
cfDNA is released remains elusive. Three major hypotheses of 
ctDNA origin exist: (i) from dying tumor cells; (ii) from CTCs, 
and (iii) via active release. The majority of ctDNA fragments is 
likely derived from disintegrating cells (i.e., apoptosis, oncosis, 
and necrosis). Apoptosis is suggested to generate DNA fragments 
of about 180 bp and multiples of this length, appearing as lad-
der pattern in electrophoresis. Necrosis should result in longer 
fragments (>10.000 bp). Apoptosis, however, is likely impaired 
in most neoplasms. NGS to characterize plasma cfDNA profiles 
at single base resolution revealed that most cfDNA fragments in 
hepatocellular carcinoma (HCC) patients, healthy subjects as well 
as individuals with hepatitis B virus infections with and without 
cirrhosis, had a peak size near 166 bp. This length corresponds 
to DNA wrapped around a nucleosome and, thus, may be due 
to caspase-dependent endonucleases (10), supporting the idea 
that apoptosis is indeed a major source of cfDNA release. Atomic 

force microscopy of plasma cfDNA in stage IV CRC and healthy 
controls (11) indicated that over 80% of cfDNA fragments are 
shorter than 145 bp in CRC with no cfDNA fragment being larger 
than 300 bp. Likewise, controls had 65% fragments <145 bp but 
also 10% >300  bp. Blood-borne nuclease activities are likely 
responsible for this cfDNA size range. The discrepancies strongly 
argue against the diagnostic use of fragment length patterns. 
Many studies found larger sized DNA fragments and increased 
amounts of cfDNA in the plasma during advanced cancer stages 
and cytotoxic treatment, suggesting necrosis as release mechanism 
(2, 12–15). It was found that ctDNA fraction within cfDNA are 
enriched in short fragments (100–300 bp) while the same tumor-
specific ctDNA mutations were not present in longer (1,000 bp) 
fragments (2, 15). Since most studies focused on frequent tumor 
types and were entity specific, the major contributor of ctDNA 
release remains elusive, might depend on cancer type, and could 
even also vary between patients (16). Further discrepancies 
among studies stem from different preanalytical conditions 
(serum vs. plasma, cfDNA extraction protocols), patient selec-
tion (varying tumor load and cancer stages) and the diversity of 
analytical methods. cfDNA fragments are likely protected from 
nuclease cleavage due to their association with nucleosomes 
(16). Determination of the nucleosome occupancy profile in 
cfDNA could potentially determine its tissue origin which might 
be beneficial in localizing “cancers of unknown primary” (17). 
ctDNA could originate from CTCs too. However, ctDNA levels 
are typically too high considering the low CTC counts in blood 
samples, and ctDNA is also present in absence of CTCs, making 
this hypothesis rather doubtable (4). Lastly, spontaneous, active 
release of ctDNA by tumors is the least investigated possibility. 
Such released ctDNA might have the role of an intercellular mes-
senger and could either integrate into the genome of a host cell 
leading to genetic instability or it would bind to receptors leading 
to transformation of target recipient cells at distant locations. 
This effect gave rise to the theory of “genometastasis” (18–21). 
An in vitro study on breast cancer cell lines showed that active 
cfDNA release, at least partially, occurs via exosomes which 
would further regulate proliferation of the neoplastic cells (22). 
Nevertheless, further work is needed to identify the underlying 
mechanisms and, more importantly, the biological significance of 
active cfDNA release.

While cancer patients generally have much higher cfDNA 
levels than healthy subjects, the total amount varies considerably 
even among patients with comparable cancer type and stage (23, 
24). Nevertheless, direct correlations between ctDNA level and 
tumor burden, stage, vascularity, cellular turnover, and therapy 
response were reported for various neoplasms (4, 15, 23, 25). 
Opposedly, increased cfDNA levels are not specific to cancer, as 
they are equally found in various pathologic (e.g., chronic inflam-
mation, autoimmune disease) (26) and physiologic conditions 
(e.g., extensive exercise) (27), making it difficult to use cfDNA 
levels as a cancer-specific biomarker.

Knowledge about cfDNA clearance mechanisms comes from 
prenatal diagnostics. Clearance of fetal DNA from maternal blood 
occurs in two phases: a first rapid phase with a mean half-life of 
~1  h (28) and a second slow phase of ~13  h (29). It has been 
speculated that the liver, spleen, and kidney might be responsible 
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for cfDNA elimination (30). Since ctDNA is much less defined 
than circulating free fetal DNA, further investigation is required 
to understand its removal from the blood.

Methodology in cfDNA/ctDNA Analysis
Preanalytics
Comparison of cfDNA concentrations between different malig-
nancies and estimation of the prognostic potential of cfDNA 
levels is currently impossible due to disparities among sample 
preparation techniques (plasma vs. serum, containers used for 
blood withdraw, storage conditions), cfDNA isolation (amount of 
blood, centrifugal speed, cfDNA isolation kits), and DNA concen-
tration measurement (colorimetric/fluorometric assays, real-time 
PCR, Picogreen or SYBR Green I dsDNA quantification assays, 
PCR assays targeting different genes, etc.) (31–34). Moreover, the 
lack of generally accepted units for cfDNA quantification largely 
impairs comparative retrospective, and even prospective stud-
ies. The result from the first large-scale quality control external 
quality assessment (EQA) scheme that investigated the impact of 
preanalytical conditions on cfDNA quality, quantity, and integ-
rity showed that different extraction kits produce a wide range 
of cfDNA yields ranging from 2.87 to 224 pg/µl (35). Moreover, 
results from the first EQA scheme for isolation and analysis of 
ctDNA that involved 42 laboratories from 10 European countries 
reported high variability in multiple phases of cfDNA processing 
and in choice of genotyping technologies with regard to cfDNA 
analysis and overall error rate of 6.09% (36).

Increased cfDNA concentrations have been observed more 
frequently in serum (3- to 24-fold higher) than in plasma from 
both healthy control subjects and cancer patients (37–40). These 
higher values are likely the result of in  vitro hemolysis during 
clotting (37, 39). Higher cfDNA levels have been observed in 
advanced tumor stages than in patients with non-metastatic 
disease (23, 40). However, the increase in serum, but not plasma, 
cfDNA concentration in advanced tumor stages strongly cor-
related with leukocyte counts (40).

The current preanalytical recommendations for cfDNA 
analysis are as follows: (1) blood processing within 3  h if an 
EDTA Monovette® (Sarstedt, Germany) or similar instrument is 
used. Otherwise, vacuum containers (e.g., Vacutainer®, Becton-
Dickinson, USA) with stabilizing reagents should be used; (2) 
plasma should be isolated by at least two sequential centrifuga-
tion steps; (3) plasma should be stored at −80°C and frequent 
freeze–thaw cycles should be avoided; and (4) use of dedicated 
cfDNA extraction kits (41).

Analytics
The possibility to identify oncogenic driver mutations offers 
advantage of ctDNA testing over solid biopsies and conventional 
biomarkers (e.g. serum PSA, CA15, CEA, and so on) the latter of 
which are not causally involved in tumorigenesis and, hence, not 
specific for neoplasia. The technical challenge in ctDNA detection 
stems from its low (e.g., 0.01%) fraction of cfDNA (2), demand-
ing high sensitivity and specificity techniques, such as qPCR 
(ARMS, see below), dPCR [BEAMing; Droplet Digital™ PCR 
(ddPCR™)], and targeted parallel sequencing (next-generation 

sequencing, NGS). PCR-based methods, such as Cobas (FDA, 
CE-IVD) and Therascreen (CE-IVD) assays, based on the 
Scorpion Amplification-Refractory Mutation System (ARMS) 
reaction, are able to detect single base changes or small deletions 
by use of allele-specific primers. qPCR readout is cut-off based 
distinction of presence or absence of the mutation in question, 
detecting AFs down to 1% (42–45). Their sensitivity is only 
moderate compared to dPCR and targeted NGS with detection 
thresholds around 0.1% or lower (46, 47).

Droplet Digital™ PCR (ddPCR™, Bio-Rad or RainDrop™, 
RainDance Technologies) and BEAMing (beads, emulsion, 
amplification, magnetics; Sysmex) are two PCR-based techniques 
based on a similar principle, where DNA is diluted down to single 
DNA molecules that get physically separated into individual 
reaction compartments. Before quantification, DNA templates 
are amplified separately either on beads (BEAMing) or in water 
droplets engulfed by oil (ddPCR). Readout—analogous to flow 
cytometry—detects AFs down to 0.005% (4, 48, 49). Despite 
a sensitivity of BEAMing comparable to ddPCR™, the more 
complex protocol limits its clinical use. While the concentration 
of mutant fragments detected by qPCR is calculated relatively to 
a standard curve, ddPCR™ allows an end point analysis in a cell 
counter-like manner. The advantage of digital approaches is their 
high specificity, high sensitivity, speed, independence of qPCR 
equipment, ease of use, and combined with comparatively low 
cost. A specialized droplet/bead reader is required for ddPCR™ 
but not for BEAMing which works on flow cytometers. The major 
disadvantage of qPCR and dPCR is their restriction to predefined 
genetic alterations unlike NGS that is able to detect novel changes 
without modification of the protocol. Yet, given current clinical 
consequences, detection of previously unreported alterations is 
neither required nor helpful for therapeutic decisions. To moni-
tor the disease after determining distinctive mutations, specific 
probes can be individually designed as a personalized assay for 
peripheral blood samples, potentially beneficial in early recur-
rence detection, disease progression monitoring, and identifica-
tion of resistance mechanisms prior to conventional clinical signs 
(43, 49, 50).

NGS detects multiple somatic mutations in plasma cfDNA 
and informs about intratumoral heterogeneity, potentially use-
ful in metastatic disease. However, the sequencing error rate of 
conventional NGS approaches is too high for detection of rare 
cfDNA variants. The Illumina® platform has error rates from 0.29 
to 1% depending on read length, library preparation, base misin-
corporation, base calling algorithms, and variant type (6, 51, 52). 
Therefore, adaptations were made for ultrasensitive detection of 
low mutation AFs, in particular, an alternative library prepara-
tion, read depth, and coverage. Targeted gene panels infer high 
coverage per base at moderate cost. CAncer Personalized Profiling 
by deep Sequencing (CAPP-Seq) is a capture-based NGS ctDNA 
detection method for SNVs, indels, rearrangements, and CNVs 
(47). This method enriches for recurrently mutated genomic 
regions chosen for specific cancer types prior to sequencing by 
hybridization to a pool of antisense biotinylated oligonucleotides. 
High coverage (e.g., 10,000×) sequencing of the captured DNA 
detected ctDNA in 100% of stage II–IV and 50% of stage I non-
small cell lung cancer (NSCLC) patients, with 96% specificity for 
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mutant AFs down to 0.02% (47). Even though no patient-specific 
customization is needed, the multi-phase bioinformatics frame-
work for CAPP-Seq data analysis is rather unattractive for clinical 
use. Recently, the detection limit of CAPP-Seq was decreased 
to 0.004% AF by incorporating molecular barcoding and iDES 
(53). The alternative Safe-Sequencing System (Safe-SeqS) detects 
variants down to 9/106 by assignment of UIDs to each DNA 
molecule prior to PCR amplification. The number of molecules in 
the sample is estimated based on UIDs and precisely quantified. 
A variant is called only if contained in >95% of PCR fragments 
within the same UID family (52). Polymerase and oligonucleotide 
synthesis errors can, hence, be excluded, making it possible to 
detect a mutant AF of 0.0001%. Safe-SeqS furthermore corrects 
for the PCR amplification bias. Its disadvantages are the relatively 
long turnaround time and the possibility of false-positives due to 
imperfect amplification (52). targeted error correction sequencing 
(TEC-Seq) is an alternative approach based on targeted capture 
of multiple regions of the genome labeled with dual-index bar-
code adapters and subsequent deep sequencing (30,000×) with 
an analytical specificity of >99.9999% and sensitivity of 97.4%. 
Lower false-positive rates (< 3 × 10−7) comparable to iDES were 
reported (54). Evaluation of 200 plasma samples with TEC-Seq 
detected somatic mutations in 71, 59, 59, and 68% of patients 
with early-stage breast, colorectal, lung, and ovarian cancer (54). 
Importantly, the detection limit depends on the number of free 
DNA molecules present in a sample. A typical plasma sample 
of 1 ml contains approximately 3,000 copies of any given gene 
leading to a sensitivity limit for detection of only 1 in 15,000 
copies in 5  ml (55). Despite the low detection limits observed 
in CAPP-Seq, iDES, Safe-SaqS, and TEC-Seq they have, to our 
knowledge, only been systematically tested in research settings. 
Besides the Illumina platform, semiconductor-based targeted 
Ion Torrent™ sequencing (Thermo Fisher) has been successfully 
applied in analysis of cfDNA, too (56–58).

Only few laboratories have analyzed genome-wide copy 
number alterations, rearrangements, and mutations in cfDNA. 
Shotgun massively parallel sequencing method was applied to 
detect CNVs and point mutations in plasma of a four-patient 
case study with HCC and two patients with synchronous breast 
and ovarian cancers. Changes in ctDNA level in pre- and 
post-surgery blood samples were tracked to monitor disease 
burden during tumor evolution (59). The largest tumor had 
the highest ctDNA level and most CNVs (59). Plasma ctDNA 
WGS performed on 10 CRC and BC patients (60) demonstrated 
the feasibility of detecting chromosomal aberrations. WES 
of cfDNA in advanced cancers was able to objectify tumor 
evolution in response to therapy. Plasma cfDNA collected at 
the beginning of treatment and at relapse in 4/6 patients was 
analyzed (3). Since the mutations were present at high AFs due 
to metastatic state, the study’s clinical significance is limited. 
WES of six NSCLC stage III patients identified a median of 
17.19% of tumor variants in serum (61). Interestingly, a median 
of 1,218 additional variants were present in serum only and 
of unknown origin. The average 68.5× WES sequencing depth 
would be unable to detect commonly low ctDNA AFs. The 
key advantage of WGS and WES is their general applicability 
without personalization.

Only small amounts (200 µl–2 ml) of plasma were used for 
cfDNA extraction in the abovementioned studies, making it 
unlikely to detect low AFs (51): (i) typically low ctDNA counts 
prohibit high throughput approaches and could lead to artifacts, 
in particular false-positives. (ii) The fraction of false-negatives 
correlates with the sensitivity of the method. (iii) In order to 
achieve high sensitivity and specificity, normal reference samples 
(skin, lymphocytes, etc.) need to be analyzed concomitantly. 
However, imperfect sequencing of normal tissue would induce 
false-positives (4). Besides determination of extensive genetic 
profiles of the tumors in individual patients, WGS and WES 
remain unable to identify the origin of ctDNA and currently 
remain confined to translational research. Here, they offer the 
potential of discovering novel pathogenic variants to be tested 
in clinical trials. Their long turnaround time, need for extensive 
bioinformatic support, and lack of clinical associations for the 
majority of genomic alterations preclude their routine use.

DNA methylation signatures differ between tissues, allowing to 
determine their relative contributions to cfDNA by genome-wide 
bisulfite sequencing (8). Tissue of origin of genomic aberrations 
identified in cfDNA from 29 HCCs was elucidated by deconvolu-
tion of plasma bisulfite sequencing data into tissue contribution 
percentages. HCC patients had a higher liver contribution than 
healthy controls (8). This approach might, thus, be diagnostically 
helpful in identifying the origin of elevated cfDNA levels.

The multitude and diversity of techniques aimed at obtaining 
similar molecular information has led to discordant and even 
conflicting data. The majority of authors measured artificially 
spiked healthy donor blood samples to define sensitivity and 
specificity of their methods. Being a good starting point, it 
remains problematic that patient samples are hard to preserve in 
their native state which makes testing of multiple methods on the 
same specimen almost impossible. Furthermore, the ctDNA frac-
tion of cfDNA is low, requiring relatively large blood volumes per 
test. SNP-based results from different platforms vary markedly 
(62). Physicians started to request confidence levels for clinical 
use of cancer genetic results and only fraction of them routinely 
requests genomic tumor profiling (63). Targeted approaches, cur-
rently featuring highest sensitivity and specificity, are likely the 
first to find acceptance among oncologists for disease monitoring.

cfDNA/ctDNA in Cancer Patient 
Management
Circulating tumor DNA is present in over 75% of patients with 
advanced pancreatic, ovarian, colorectal, bladder, gastroesopha-
geal, breast, melanoma, hepatocellular, and head, and neck can-
cers while rates below 50% were found in primary brain tumors, 
in renal, prostate, and thyroid cancers as well as in patients 
with localized tumors (4). Herein, we discuss the potential use 
of ctDNA as biomarker in a (i) diagnostic, (ii) prognostic, and 
(iii) predictive setting. The regimes comprise (a) total cfDNA 
level, (b) identification of tumor-specific genetic alterations, and 
(c) quantification of mutant alleles. Depending on cancer type, 
different combinations of these strategies might prove beneficial. 
The largest and—in our opinion—most relevant studies are sum-
marized in Tables 1–3.
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early Detection of Cancer in Clinically 
Healthy Subjects
The potential of ctDNA to detect presymptomatic early-stage 
cancer or even precursor lesions would be clinically advanta-
geous but was infrequently studied in clinically healthy subjects. 
In a longitudinal study, TP53 and KRAS mutations in cfDNA 
of non-smokers and ex-smokers were correlated with occur-
rence of various neoplasms potentially caused by tobacco 
smoke and air pollution (129). Plasma cfDNA from 550 healthy 
subjects was tested for mutations in two genes (TP53/n = 550; 
KRAS/n = 1,098). Such events were detected at an average 20.8 
(TP53) and 14.3 months (KRAS) before cancer diagnosis (129). 
Mutant detection did not correlate with total cfDNA amounts. 
cfDNA mutations in healthy subjects were good predictors of 
bladder but not lung, upper-digestive tract, and blood cancers 
(129). Since tumor tissue was not tested, it remains unknown 
whether the mutations were present in the tumor cells. Adversely, 
some of the TP53/KRAS mutations were also detected in some 
healthy subjects not developing cancer during follow-up (129). A 
mutation in codon 249 of TP53 [NM_000546.5 (TP53):c.747G>T 
(p.Arg249Ser)], common after dietary exposure to the high levels 
of aflatoxin B1, was detected in plasma of 4/8 patients at least 
1 year before initial diagnosis of HCC (130). To determine the 
specificity of such ab initio approaches, blood from 134 healthy 
subjects was ultra-deep sequenced in 50 cancer-associated genes 
with an average 30,000× coverage and a detection limit for variant 
AFs of 0.001% (131). Somatic mutations in blood cells signifi-
cantly contribute to the mutational load in cfDNA, suggesting to 
rather sequence both cfDNA and blood cells in parallel for back-
ground removal (131). This finding was independently replicated 
in 2,728 patients with various tumors (132). Somatic alterations 
accumulate in solid tissues and the hematopoietic system as a 
function of age (133). The Circulating Cell-free Genome Atlas 
(CCGA, Clinical Trial NCT02889978, sponsored by Illumina®) 
is a 5-year prospective, multicenter, observational study aimed at 
developing ctDNA blood tests for early cancer detection (134). 
Ultra-broad, ultra-deep NGS combined with machine learning 
may found a database on mutations in the blood of subjects with 
and without cancer (134). This unbiased strategy might later 
provide risk assessment based on blood screening.

Breast Cancer
Detection of oncogenic driver mutations in early-stage presurgi-
cal breast cancer might tremendously impact on clinical manage-
ment. Oncogenic driver mutations were screened for in 29 patients 
with early-stage BC (I-III) positive for 1/3 PIK3CA mutations 
(p.H1047R, p.E545K, p.E542K) before and after surgery. Mutant 
AFs in blood before surgery were low (0.01–0.07%) with the 
exception of one case with 2.99% who relapsed 26 months later 
(50). The same cfDNA mutations were found in 22% of 110 stage 
I–III BC patients (64), indicating a prognostic value for ctDNA 
AFs: higher values correlated with shorter RFS and OS (64) which 
holds true for TNBC, too (65). ctDNA detection in stage II–III 
TNBC patients with residual disease after neoadjuvant chemo-
therapy predicts recurrence with high specificity, but moderate 
sensitivity (66), potentially due to low plasma volume (1 ml) and a 

non-optimized NGS approach. ctDNA content shows significant 
correlation with prognosis at early cancer stages, as opposed to 
conventional protein tumor markers (64). Postoperative plasma 
ctDNA abundance after neoadjuvant chemotherapy and surgery, 
but not baseline levels predicted early recurrence (67). 50% of 
relapsing patients were ctDNA-positive postsurgically which 
increased to 80% during follow-up. None of the relapse-free 
patients had a ctDNA-positive blood sample. Importantly, ctDNA 
detection had a median lead time of 7.9  months over clinical 
recurrence diagnosis (67).

Serum cfDNA was analyzed for promoter methylation of six 
genes (SFN, P16, hMLH1, HOXD13, PCDHGB7, and RASSF1a) 
by the qPCR-based MethyLight test in 749 patients with BC, 
benign breast lesions, and healthy subjects for early disease detec-
tion (68). The method is able to discriminate between cancer and 
health with 79.6% sensitivity and 72.4% specificity. Malignant 
and benign lesions were distinguished with 82.4% sensitivity 
and 78.1% specificity (68). Likewise, the methylation profiles of 
EGFR, PPM1E, and eight more CpG islands in plasma cfDNA 
were used as biomarker for early BC detection (69). Alternatively, 
genome-wide CNV screening in cfDNA could distinguish cancer 
from health during routine follow-up (70). Even though the 
aforementioned studies suggest cfDNA analysis as a screening 
tool in early-stage BC, larger prospective trials are required to 
determine its reliability.

Lung Cancer
Unfortunately, despite WHO-defined (135) LC entities, several 
recent studies on liquid biopsies use the old, outdated SCLC and 
NSCLC categorization and lack precise distinction between LAC 
and LSCC, which in terms of tumor biology and targeted treat-
ment options would be more informative. We tried to comply 
with the WHO classification (135) wherever possible.

Lung cancer commonly presents at advanced stage due to 
the lack of screening. Therefore, many studies assessed cfDNA 
testing for early LC detection and for recurrence monitoring. 
Concordance rate between tumor DNA and ctDNA mutations 
in the pretreatment plasma at early-stage (I, II) NSCLC patients 
was 78.1% (positive predictive value 94.7%), making it an 
indicator of early-stage LC (86). 89.7% of 58 early-stage (I–II) 
NSCLC patients had increased cfDNA out of whom 60.3% were 
ctDNA-positive with tumor-specific mutations (87). Others 
detected ctDNA in 100% of stage II–IV and 50% of stage I NSCLC 
patients (47). Reasons for this discordance are differences in 
detection technologies, small tumor size and molecular analysis 
of potentially non-representative tumor sections (87). 78% of 97 
advanced-stage (IIIB, IV) NSCLCs featuring an EGFR variant in 
the primary had the same mutations in ctDNA; EGFR(p.L858R) 
in either tumor tissue or cfDNA predicted shorter OS and PFS 
(88). Changes in ctDNA AFs were observed when comparing 
pre- and postoperative cfDNA: AFs drop 11.52% in stage Ia and 
14.63% in stage Ib, but only 0.57% in stage IIa, and 0.13% in stage 
IIIa. This drop already occurs 2 days postoperatively (86). cfDNA 
may have a higher positive predictive value compared to serum 
protein tumor biomarkers for early-stage LC (86, 87).

Methylation profiling in early-stage NSCLC might become 
a diagnostic and prognostic biomarker in analogy to breast 
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TABLe 1 | Breast cancer.

Stage Finding Known Mut. Method Patient number Reference

eBC Circulating tumor DNA (ctDNA) can be detected in eBC before and after surgery Yes ddPCR 29 Beaver et al. (50)

I–III ctDNA mutation level as prognostic factor for recurrence-free survival (RFS) and overall survival (OS) Yes ddPCR 110 Oshiro et al. (64)

eBC Presence of PIK3CA mutations in cell-free DNA (cfDNA) prognostic of RFS and breast cancer-specific 
survival (BCSS) in TNBC

Yes ddPCR 49 Takeshita et al. (65)

II–III Presence of ctDNA in TNBC patients with residual disease correlates with inferior disease-free survival 
(DFS)

Yes NGS 33 Chen Y-H et al. (66)

eBC Postoperative ctDNA mutation level predictive of early recurrence Yes ddPCR NGS 55 Garcia-Murillas et al. 
(67)

n.s Aberrant methylation of six genes (SFN, P16, hMLH1, HOXD13, PCDHGB7, and RASSF1a) in serum 
cfDNA of breast cancer patients in comparison to the healthy subjects and those with benign breast 
disease

No MethyLight 267 cancer  
236 benign disease  
246 healthy

Shan et al. (68)

I–II EGFR, PPM1E, and eight gene-specific CpG sites showed significantly hypermethylation in cancer 
patients plasma cfDNA and were significantly associated with BC

No bisulfite NGS 86 cancer  
67 healthy

Li et al. (69)

I–III cfDNA analysis of SNPs and CNV in plasma can distinguish between patients with breast cancer and 
healthy controls

Yes SNP 6.0 array 65 cancer  
8 healthy

Shaw et al. (70)

IV Detection of PIK3CA driver mutation in plasma of mBC Yes BEAMing 49 retrospective 50 
prospective

Higgins et al. (71)

mBC Detection of TP53 driver mutation in plasma of metastatic TNBC Yes NGS 40 Madic et al. (72)

III–IV Presence of mutations in plasma cfDNA and their AF correlated with progression-free survival (PFS) Yes NGS 100 Liang et al. (73)

mBC ctDNA level had a wider dynamic range and better correlation with changes in tumor burden than 
CA15-3 or circulating tumor cells (CTCs)

Yes TAm-Seq  
dPCR  
WGS

30 Dawson et al. (74)

I–III Detection of ctDNA precedes clinical detection of metastasis in 86% of patients with an average lead 
time of 11 months. Patients with undetectable ctDNA postoperatively had a long-term DSF. ctDNA 
quantity was predictive of poor survival

Yes WGS  
ddPCR

20 Olsson et al. (75)

mBC High-depth NGS of plasma ctDNA useful for de novo mutation identification and monitoring of somatic 
genetic alterations during targeted therapy

Yes Targeted MPS 1 De Mattos-Arruda 
et al. (7)

IV Serial analysis of ctDNA analysis for early detection of resistance mutations Yes NGS  
ddPCR

54 Guttery et al. (76)

IV ctDNA analysis for detection of ESR1 resistance mutations Yes NGS  
ddPCR

8 Chu et al. (77)

pT1–
pT4, 
pN0–
pN3, 
pM0

Presence of CTCs before and after chemotherapy associated with poorer DFS (p < 0.0001), breast-
cancer-specific survival (p < 0.008), and OS (p < 0.0002).

No CellSearch 2,026 before,1,492 
after therapy

Rack et al. (78)

mBC CTC count before treatment is an independent predictor of PFS and OS in mBC No CellSearch 177 Cristofanilli et al. (79)

(Continued )
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cancer: Aberrant methylation profiles of five genes (APC, 
CDH13, KLK10, DLEC1, RASSF1A) in cfDNA from 110 early-
stage mixed entity NSCLC cases showed a significantly higher 
tumor-specific hypermethylation frequency when compared to 
healthy controls, reaching 83.64% sensitivity and 74% specificity 
to diagnose LC (89).

Colorectal Cancer
Approximately 50% of localized CRC patients will develop 
metastases (136). Although there has been dramatic decline in 
the number of cases due to screening, CRC incidence remains 
high. Therefore, cfDNA testing might further improve screening 
efficiency. Traditional serum protein biomarkers (e.g., CEA, 
CA19-9) lack high specificity and sensitivity. There is only a lim-
ited number of studies investigating cfDNA testing for early CRC 
detection. A study on 170 subjectively healthy patients positive for 
occult fecal blood assessed the predictive power of plasma cfDNA 
levels and ctDNA KRAS mutations (110). Adenocarcinoma, but 
not intraepithelial precursor lesions, including HGIN, could be 
detected based on these values alone. Yet, the KRAS mutant AF 
was low (3%) compared to the AF in the tumor itself (45% in 
AC and HGIN), leaving the positive predictive value of the test 
questionable (110). Prospectively collected plasma cfDNA of 232 
patients subjected to colonoscopy was analyzed for KRAS muta-
tions which had previously been identified in the tumor tissues 
of 35 patients. These mutations were detectable in cfDNA in 29 
patients (81%). 39% of patients positive for a KRAS mutation in 
cfDNA had a KRAS mutant colorectal neoplasia (111), suggesting 
to add cfDNA testing for frequent CRC mutations in screening 
programmes despite restriction to well-known CRC genetic 
aberrations.

CEA is the only routine tumor marker for estimation of tumor 
burden and progression monitoring despite low sensitivity and 
specificity, being elevated in 40% of CRC cases only (137). Several 
studies found that cfDNA performed better than CEA (138). No 
correlation between plasma cfDNA and CEA level was found 
(112). 151 plasma samples from six relapsing and five non-relaps-
ing CRC patients were analyzed by NGS and ddPCR. Detection 
of ctDNA in cfDNA may provide an average of 10 months lead 
time over detection of metastatic recurrence by CEA (114). 
Combining CEA and cfDNA testing further improved diagnostic 
power (115).

cfDNA/ctDNA Level as a Prognostic 
Biomarker
Clinical use of cfDNA levels alone as cancer biomarker is cur-
rently not recommended due to its highly variable amount; a 
broad spectrum of cfDNA levels in healthy controls has been 
observed. In a large multicenter study on 776 healthy individuals, 
the mean plasma cfDNA concentration was 67  ng/ml with an 
exorbitant standard deviation of 405 ng/ml (139). Meta analysis of 
39 studies revealed cfDNA concentrations as low as 2.5 to 27 ng/
ml (24), prohibiting to make cancer diagnoses based on a cut-off 
value: Other phenomena including inflammatory processes or 
tissue decay unrelated to cancer are impossible to distinguish. 
If still considering cfDNA levels as diagnostic modality, blood 
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TABLe 2 | Lung cancer.

Stage Finding Known 
Mut.

Method Patient Number Reference

I–IV Presence of plasma circulating tumor DNA (ctDNA) has higher positive predictive value than 
six biomarkers [CA125, CA19-9, CYFRA21-1, CEA, NSE, squamous cell carcinoma antigen 
(LSCC)]. Concordance rate between tDNA and ctDNA mutations was 78.1%. Decrease in 
AF of plasma ctDNA mutations observed 2 days postoperatively

Yes NGS 41 non-small cell 
lung cancer (NSCLC) 
(33 LAC, 6 LSCC, 
1 Neuroendocrine 
carcinoma, 1 LCC)

Guo et al. 
(86)

IA–B, 
IIA

Overall concordance rate between tDNA and cfDNA was 50.4%. cell-free DNA (cfDNA) 
level correlate with tumor stage. cfDNA has higher PPV for early-stage NSCLC than CA125, 
CA19-9, CEA, NSE, and CYFRA21-1 tumor markers

Yes NGS 58 NSCLC (51 LAC, 7 
LSCC)

Chen et al. 
(87)

I–IV ctDNA detected in 100% of patients of stages II–IV, and in 50% of stage I Yes CAPP-Seq 17 NSCLC (14 LAC, 2 
LSCC, 1 LCC)

Newman 
et al. (47)

IIIB, IV 78% of 97 of patients positive for EGFR variant in primary had these mutations in ctDNA; 
EGFR:p.L858R in either tumor tissue or cfDNA predicts shorter OS and progression-free 
survival (PFS). ctDNA level correlate with total tumor volume

Yes TaqMan 
assay

97 NSCLC (91 LAC, 2 
BAC, 1 LCC, 1 LSCC, 
2 other)

Karachaliou 
et al. (88)

I–II Methylation profiles of five genes (APC, CDH13, KLK10, DLEC1, and RASSF1A) in cfDNA 
of NSCLC patients showed a significantly higher tumor-specific hypermethylation frequency

Yes Methylation-
specific PCR

78 NSCLC (30 LAC, 36 
LSCC, 12 other)  
50 healthy

Zhang et al. 
(89)

I–IV Plasma cfDNA level does not correlate with any particular histologic subtype of NSCLC, but 
with tumor stage. Significant correlation between plasma cfDNA concentration and lactate 
dehydrogenase (LDH) level. Patients with tumor progression have increase in plasma cfDNA 
concentrations but not in serum

No Real-time 
PCR

185 NSCLC (81 LAC, 
49 LSCC, 37 LCC, 18 
undifferentiated)  
46 healthy

Gautschi 
et al. (40)

I–III Plasma cfDNA level does not correlate with sex, age, histotype, and tumor stage. Increased 
cfDNA level does not correlate with recurrence-free survival and overall survival (OS). 
Plasma cfDNA level can be used as a biomarker for possible relapse during follow-up

No PCR 84 NSCLC (47 LAC, 25 
LSCC, 12 other)  
43 healthy

Sozzi et al. 
(90)

IIIB, IV Total cfDNA level does not predict chemotherapy response. Higher cfDNA level at baseline 
associated with worse disease-free survival (DFS) and OS

No Fluorometry 218 NSCLC (147 LAC, 
43 LSCC, 28 LCC)

Tissot et al. 
(91)

II–IV Therapeutically targetable driver and resistance mutations can be detected in ctDNA. 
Higher ctDNA concentrations highly associated with decreased OS

Yes NGS 102 NSCLC (83 
LAC, 4 LSCC, 12 
poorly differentiated 
carcinoma, 3 other)

Thompson 
et al. (92)

IIIB, IV Presence of ctDNA at diagnosis in 71% of patients; related to shorter OS. ctDNA clearance 
at first evaluation (6–8 week) after treatment initiation associated with objective response, 
longer PFS and OS

Yes NGS  
ddPCR

109 NSCLC (98 non-
LSCC, 11 LSCC)

Pécuchet 
et al. (93)

III, IV cfDNA levels do not correlate with hypermetabolic tumor volume No qPCR 
PET-CT

53 NSCLC (33 LAC, 19 
LSCC, 1 other)

Nygaard 
et al. (94)

I–IV Plasma cfDNA concentration correlates with LDH activity and NSE level in small cell lung 
cancer (SCLC) and NSCLC

No Labeling 
by nick 
translation

22 SCLC  
46 NSCLC (19 
LAC, 18 LSCC, 9 
undifferentiated)

Fournié et al. 
(95)

IIIA–B, 
IV

Overall concordance rate of mutations between tDNA and cfDNA was 78.21%. SNV, 
indels and gene fusions (EML4-ALK, KIF5B-RET) can be detected in cfDNA by targeted 
sequencing

Yes targeted 
sequencing

39 NSCLC (34 LAC, 5 
LSCC)

Yao et al. 
(96)

II–IV Patients with cfDNA positive for KRAS mutation have shorter PFS and OS and have lower 
response rate to the chemotherapy

Yes Amplification-
Refractory 
Mutation 
System 
(ARMS) 
qPCR  
KRAS DxS

246 NSCLC (150 LAC, 
75 LSCC, 8 LCC, 13 
other)

Nygaard 
et al. (97)

IIIB, IV No significant differences between patients with KRAS mutation or wild-type KRAS status in 
serum cfDNA with regard to baseline patient characteristics, response rates, PFS, or OS

No direct 
sequencing

67 NSCLC (29 LAC, 
19 LSCC, 9 LCC, 10 
undifferentiated)

Camps et al. 
(98)

IIB–IV EGFR activating mutations detected in plasma cfDNA of 72.7% patients and EGFR T790M 
mutation in 43.5% of patients

Yes BEAMing 44 NSCLC (43 LAC, 1 
LSCC)

Taniguchi 
et al. (99)
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Stage Finding Known 
Mut.

Method Patient Number Reference

IIIA, 
IIIB, 
IV

EGFR T790M mutation detectable in tumor biopsy (75%), cfDNA (80%) and circulating 
tumor cell (CTC, 70%) in patients progressing on EGFR-TKI therapy

Yes hbCTC-Chip  
direct 
sequencing

42 NSCLC Sundaresan 
et al. (100)

n.s ORR and median PFS are similar in patients with T790M-positive plasma or T790M-positive 
tumor. Detection of resistance mutation in plasma is unlikely if the activating mutation is not 
detected

Yes BEAMing 216 NSCLC Oxnard et al. 
(101)

IIIB, IV Qualitative and quantitative analysis of EGFR T790M mutation in plasma cfDNA can predict 
prognosis on EGFR-TKI therapy

Yes DHPLC 
ARMS  
qPCR  
Digital array 
chip

135 NSCLC (130 LAC, 
5 non-LAC)

Wang et al. 
(102)

I–III Phylogenetic profiling of ctDNA useful to track emerging subclones responsible for 
resistance and relapse.Tumor volume correlate with AF of clonal variants

Yes Multi-region 
exome 
sequencing 
Multiplex-
PCR  
NGS

100 NSCLC (58 
LAC, 31 LSCC, 2 
Carcinosarc., 1 LSC, 
3 adenosquamous 
carcinoma, 1 large 
cell neuroendocrine 
carcinoma)  
24 NSCLC (16 LAC, 8 
LSCC)

Abbosh 
et al. (103)

IIIA, 
IIIB, 
IV

CTC are detectable in stage IIIB and IV, but not stage IIIA of NSCLC No CellSearch 32 LSCC  
31 LAC  
5 poorly differentiated 
33 other

Krebs et al. 
(104)

I–IV Cytopathologic features of CTC are not different between various histologic subtypes of LC. 
CTC are detectable in 49% of NSCLC patients preoperatively

No ISET 208 NSCLC (115 LAC, 
54 LSCC, 19 LCC, 10 
sarcomatoid carcinoma, 
5 adenosquamous 
carcinoma)  
39 healthy

Hofman 
et al. (105)

n.s CTC count does not correlate with tumor volume. Activating EGFR and resistance EGFR 
T790M mutation could be detected in CTCs.CTCs count can be used for monitoring the 
tumor response to the therapy

Yes EpCAM-
functionalized 
CTC Chip

27 NSCLC (19 LAC, 8 
LAC/BAC)

Maheswaran 
et al. (106)

n.s CTC can be detected in the COPD patients and could be used as an early indicator of 
invasive LC

No ISET 168 COPD Ilie et al. 
(107)

IIIB, IV CTC could be used as a source of tumor DNA for NGS detection of EGFR mutation. 
Genetic heterogeneity in CTCs

Yes CellSearch 
NGS

37 NSCLC  
10 BC  
12 healthy

Marchetti 
et al. (108)

n.s CNA-based classifier derived from CTCs analysis can distinguish chemorefractory and 
chemosensitive disease

No CellSearch 
DEPArray 
NGS  
WGS

31 SCLC Carter et al. 
(109)

TABLe 2 | Continued
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withdraw and cfDNA concentration measurement would require 
stringent standardization (140). Therefore, most studies summa-
rized below analyzed ctDNA rather than cfDNA concentrations 
alone.

Breast Cancer
Numerous studies assessed the prognostic value of cfDNA 
levels in BC (141). A concentration range from ~60 to 550 ng/
ml plasma or serum was found, only partially overlapping with 
healthy controls in whom values ranged from 3 to 63  ng/ml 
(142, 143). Many studies agree that cfDNA levels increase in 

patients with malignant lesions and correlated with tumor size, 
lymph node metastasis, histopathological grade, and clinical 
stage (141, 144–147). Two laboratories could not confirm the 
association between baseline total cfDNA level, pathologic 
complete response to neoadjuvant chemotherapy, and OS (145, 
148). These conflicting results could be due to the variety of 
preanalytical and analytical methods as well as differences in 
patient cohorts. While the prognostic usefulness of ctDNA levels 
at baseline in a cohort of 30 metastatic luminal type BC patients 
was documented, another cohort of 36 patients with metastatic 
TNBC failed to verify this (72, 74), suggesting cancer type and 
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TABLe 3 | Colorectal cancer.

Stage Finding Known 
Mut.

Method Patient 
Number

Reference

/ Cell-free DNA (cfDNA) level cannot be used as a biomarker to distinguish subjects with premalignant from those without endoscopic 
lesions. cfDNA concentration can predict adenocarcinomas in FOBT positive patients

Yes Mutant-enriched PCR 
qRT-PCR

179 healthy, 
FOBT 
positive

Perrone et al. (110)

/ Mutations in K-ras gene detected in plasma cfDNA are associated with risk of colorectal cancer (CRC) Yes PCR 240 Kopreski et al. 
(111)

n.s No correlation between CEA and plasma cfDNA level. No association between plasma cfDNA level and age and gender of patient, 
location and size of tumor, histologic grading and Dukes’ stage. Changes in cfDNA level can be used for monitoring recurrence and 
prospectively to identify high-risk patients

No DNA Dipstick Kit 70  
20 healthy

Frattini et al. (112)

B,C,D CRC patients have higher cfDNA level than healthy subjects at the time of surgery. cfDNA level can be used to confirm the presence of 
recurrence or metastasis. Correlation of CEA and cfDNA level was observed

Yes Mutant-enriched PCR  
Fluorescent-
methylation specific 
PCR

70  
20 healthy

Frattini et al. (113)

I–IV Circulating tumor DNA (ctDNA) analysis reveals disease recurrence earlier than conventional follow-up (lead time 10 months). ctDNA 
superior over CEA in monitoring CRC

Yes NGS  
ddPCR

11 Reinert et al. (114)

A, B, 
C, D

Combined analysis of cfDNA and CEA has higher diagnostic capacity in CRC than each of markers alone No qRT-PCR 75  
75 healthy

Flamini et al. (115)

I–IV Mutations in plasma cfDNA with AF >0.1% showed clinical utility in monitoring tumor burden in CRC. Median plasma cfDNA level of 
healthy individuals, endoscopically resectable tumors and advanced CRCs are 4.2, 6.8, and 9.2 ng/ml, respectively

Yes NGS  
ddPCR

44  
9 healthy

Sato et al. (116)

II–IV Changes in ctDNA level used to follow tumor dynamics Yes BEAMing  
qRT-PCR

18 Diehl et al. (48)

I–IV No correlation between ctDNA and CEA. High preoperative ctDNA level correlate with poor prognosis, shorter progression-free survival 
(PFS) and overall survival (OS)

Yes TEC-Seq 42  
44 healthy

Phallen et al. (54)

IV Plasma cfDNA level correlate with plasma mutant KRAS level. No difference in cfDNA level between KRAS and wt-positive disease. 
Concordance rate of 78% for KRAS mutation between primary and cfDNA

Yes ARMS qPCR 108 Spindler et al. (117)

IV High concordance rate between plasma cfDNA and tumor for BRAF, KRAS, and PIK3CA Yes BEAMing  
qRT-PCR

503 Tabernero et al. 
(118)

IV Presence of KRAS mutation in plasma, but not in tumor is strong prognostic factor for PFS and OS. Positive correlation between cfDNA 
and LDH, but not with CEA

Yes TheraScreen KRAS 
mutation kit

140 Spindler et al. (119)

II Detection of ctDNA after resection of colon cancer indicates residual disease and identifies patients at high-risk for recurrence. Serial 
ctDNA level is more sensitive in predicting radiologic recurrence than CEA levels

Yes Safe-Seq 230 Tie et al. (120)

IV KRAS mutation detectable in plasma cfDNA 10 months before radiographic progression Yes iPLEX assay  
Exome sequencing 
BEAMing  
direct sequencing

18 Misale et al. (121)

(Continued )
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Stage Finding Known 
Mut.

Method Patient 
Number

Reference

IV Re-challenge with EGFR-specific antibodies causes increase and decrease in percentage of mutant KRAS clones Yes HMRA  
Sanger sequencing 
Pyrosequencing 
BEAMing  
ddPCR  
NGS  
qRT-PCR

100 Siravegna et al. 
(122)
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burden dependency. Several studies addressed the prognostic 
value of cfDNA integrity reflected by the ratio of longer to shorter 
fragments. Analysis of Alu DNA repeats by qPCR in the serum 
of 51 healthy women and 83 with stage I–IV BC before surgery 
showed that mean DNA integrity was higher in BC patients with 
stage II, III, and IV, but no significant difference between stage I 
patients and healthy controls could be observed (149). A second 
comparable study confirmed this (150) while a third showed the 
opposite with lowest cfDNA integrity in metastatic BC (151). In 
summary, cfDNA levels alone are currently unlikely to become 
a clinically useful prognostic biomarker for BC, mainly due to 
their overall inability to stratify malignancy, benign lesions, and 
health (142, 152).

Analysis of genetic alterations seems more promising in 
cfDNA research. PIK3CA mutations were screened for in cfDNA 
of mBC patients in retrospective (n = 49) and prospective (n = 60) 
cohorts and were detected in approximately 30% of subjects with 
100% concordance between ctDNA and FFPE specimens (71). A 
high mutation concordance of 81% between ctDNA and FFPE 
tumor samples was observed in TNBC too (72). An increased 
PIK3CA mutant AF predicted a short PFS in a retrospective 
cohort of 100 advanced-stage (III–IV) BC cases (73).

Lung Cancer
A broad spectrum of cfDNA concentrations, ranging, from ~3.7 
to 318  ng/ml plasma/serum in LC have been reported (142). 
cfDNA concentration in stage II NSCLC (51 LAC, 7 LSCC) 
was significantly higher than in stage I, where no association 
was found between cfDNA level and age, sex, smoking history, 
tumor histology, differentiation level, and vascular invasion 
(87). While some authors found the highest plasma cfDNA 
concentrations in stage IV and, thus, a correlation between 
cfDNA level and tumor stage (40, 95), other studies could not 
confirm this (90). cfDNA levels in LC patients are significantly 
lower during follow-up than before surgery, suggesting a way 
to objectify surgical effectiveness (23, 90). High plasma cfDNA 
concentrations at baseline were significantly associated with 
decreased OS and increased tumor progression rates (40, 91, 
92). 105 NSCLC patients (98 non-LSCC, 11 SCC) were catego-
rized according to ctDNA concentration at baseline into the 
tertiles “high” (>0.50  ng/ml), “intermediate” (0.027–0.50  ng/
ml), and “low” (<0.027  ng/ml) (93). “High” ctDNA levels 
were associated with high tumor burden, liver metastases, and 
high proliferative indices. The median OS was 13, 13.4, and 
21.5 months; the median PFS was 4.1, 5.7, and 10.4 months for 
the ‘high,” “intermediate,” and “low” groups (93). Meta analysis 
of 22 studies concerning stages III and IV treated with chemo-
therapy suggests that higher levels of cfDNA are significantly 
associated with a shorter PFS and OS (153). Other studies 
could not recapitulate this correlation in different tumor types 
(47 LAC, 25 LSCC, 12 other unspecified types) (90). It remains 
unclear whether total tumor volume correlates with ctDNA 
level (47), or not (94).

Several studies addressed the relation between cfDNA level 
and other prognostic follow-up markers. A highly significant 
correlation was observed between increased plasma cfDNA 
level, elevated LDH level, advanced tumor stage, and poor OS 

(40). The association between OS and cfDNA concentration, NSE 
levels, and LDH activity has been reported earlier for SCLCs and 
NSCLCs, respectively (95).

Taken together, studies on LC share the major conceptual 
shortcoming of mixing biologically and clinically distinct NSCLC 
entities which, combined with the diversity in preanalytical and 
analytical methods, make data rather inconsistent concerning 
cfDNA levels as a standalone prognostic marker and suggest 
rather limited benefits for clinical practice.

Many studies assessed qualitative cfDNA analysis to identify 
ctDNA. A large meta-analysis reviewing 25 studies (2,605 
NSCLCs) found a high concordance rate in EGFR mutation 
profiles between blood and tumor tissue. The authors concluded 
that EGFR mutation positivity in blood could be used to guide 
treatment decisions for EGFR TKIs in advanced NSCLC (154). 
39 advanced NSCLC patients (34 LAC, 5 LSCC, stages III–IV) 
had 78.21% overall concordance between tumor tissue and 
cfDNA (96); point mutations, indels, and gene rearrangements 
(EML4-ALK, KIF5B-RET) were considered. AFs of concordant 
point mutations and indels in EGFR, KRAS, and PIK3CA ranged 
from 0.3 to 52% in tumor tissue DNA and in plasma cfDNA from 
0.2 11.6% (96). The feasibility to detect NSCLC-related driver 
mutations in EGFR, KRAS, BRAF, and PIK3CA in cfDNA was 
demonstrated (99, 155). Mutant EGFR ctDNA levels correlate 
well with clinical response stage III and IV LACs (156). There are 
conflicting data concerning ctDNA KRAS mutations: Some stud-
ies found KRAS mutant ctDNA to be associated with recurrence 
and shorter OS (97, 157) while others did not (98). Two large 
meta-studies suggest that the presence but not type of ctDNA 
KRAS mutations (variants unspecified) was associated with 
shorter OS in NSCLC (153, 158). In summary, qualitative assess-
ment of plasma ctDNA seems more appealing for LC diagnostics 
than cfDNA levels, particularly in cases without molecular access 
to tumor tissue.

Colorectal Cancer
Colonoscopy remains the gold standard for early detection of 
CRC with sensitivity rates of >80% (159) which can be comple-
mented by testing fecal occult blood for mutations, currently 
having a higher sensitivity than plasma cfDNA analysis. cfDNA 
levels are elevated in metastatic CRC and have prognostic value 
(138, 160). Median plasma cfDNA levels of healthy individuals, 
endoscopically resectable tumors, and advanced CRC differ 
(116); a broad spectrum has been reported (142). cfDNA 
quantification may be useful for monitoring early-stage CRC 
postoperatively (112). cfDNA levels progressively decreased in 
patients who became tumor-free after surgery, while it increased 
in those developing recurrence and metastasis (112). CRC 
patients with a postoperatively detectable ctDNA relapsed within 
1 year whereas those negative for ctDNA had no recurrence (48). 
31 CRC patients across stages I–IV were preoperatively tested for 
ctDNA mutation rates. Patients with mutant AFs higher than 2% 
had significantly shorter PFS and OS compared to those <2% 
mutant AF (54). KRAS mutant ctDNA increase correlates with 
decreased OS (4). Meta-analysis of 1,076 patients with mCRC 
treated with chemotherapy confirmed that baseline total cfDNA 
levels correlate with OS (160).
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Circulating tumor DNA in CRC was qualitatively examined 
in numerous studies which found a high agreement of mutations 
between tumor tissue and ctDNA (117, 138). Data divergence 
stems not only from different methodologies used for mutation 
detection but also from different samples sizes, clinical settings, 
and intervals between tumor biopsies and blood withdraw. 
Analysis of 108 chemotherapy-refractory mCRCs demonstrated 
that cfDNA and KRAS mutant ctDNA levels at baseline show a 
clear correlation. Patients with plasma mutant KRAS levels above 
75% had a disease control rate of 0%, whereas those with lower 
levels had a rate of 42% (p = 0.048), indicating that ctDNA KRAS 
mutation AF predicts disease behavior (117). The applicability 
of cfDNA as prognostic parameter and alternative modality for 
mutation detection before treatment in mCRC was demonstrated 
in the randomized CORRECT phase III trial (118): 166 mCRC 
patients received placebo and 337 were treated with the TKI 
regorafenib. Plasma cfDNA was collected before treatment and 
tumor DNA from archival tissue. Presence of KRAS, PIK3CA, 
and BRAF mutations was tested in cfDNA and tumor tissue with 
an overall concordance rate of 76% for KRAS, 88% for PIK3CA, 
and 97% for BRAF mutations. Mean mutant AF detected in 
plasma was 11.05% for KRAS and 8.23% for PIK3CA. Despite 
high interpatient variability, high plasma cfDNA concentrations 
were associated with shorter median OS and PFS in both placebo 
and regorafenib groups (118). Shorter PFS during regorafenib 
treatment in patients with ctDNA KRAS mutations compared to 
those without was independently reported (161). The prognostic 
value of KRAS mutations in ctDNA but not tumor tissue was 
repeatedly confirmed (117, 119).

The utility of postoperative ctDNA as an indicator of MRD 
was demonstrated in a prospective cohort of 230 patients with 
resected stage II CRC (120). In subjects without adjuvant chemo-
therapy, tumor-specific mutations in cfDNA were detected 
postoperatively in 7.9% (14/178) patients of whom 79% (11/14) 
relapsed after a median follow-up of 27 months. In 164 patients 
without ctDNA, only 9.8% (16/164) experienced recurrence 
(120). Postoperative ctDNA positivity correlated with reduced 
RFS: 0% for ctDNA-positives and 90% for ctDNA-negatives 
after 3 years. Postoperative ctDNA status had a higher impact 
on RFS than any individual clinicopathological risk factor or 
any combination thereof (120). Presence of ctDNA immediately 
after chemotherapy completion was associated with a high 
risk of radiological relapse (120). ctDNA positivity precedes 
radiological recurrence up to several months, leaving more time 
to adapt the next line of treatment. In addition, detection of 
tumor-specific mutations in cfDNA has a higher specificity than 
CT scans (120). A strong association between ctDNA-positivity, 
RFS, and OS in patients with CRC irrespective of tumor stage, 
study size, tumor markers, detection methods, and sample type 
(plasma vs. serum) was revealed in a meta-analysis of 9 studies 
(1,022 CRC patients) (162).

In summary, total cfDNA levels and detection of ctDNA fea-
ture a strong prognostic value in metastatic CRC and are directly 
related to disease burden. cfDNA level and presence of ctDNA are 
prognostic markers of RFS, PFS, and OS. Disease progression is 
reflected by increasing cfDNA and ctDNA levels. Rapid decline 
in cfDNA level and absence ctDNA in plasma after initiation of 
therapy reflect treatment response.

cfDNA/ctDNA for Monitoring Treatment 
Response and Resistance Mechanisms
As discussed above, studies in colorectal, breast, and lung cancer 
have shown that ctDNA, rather than cfDNA, levels correlate with 
the clinical disease course and can precede clinical progression 
detected by imaging by weeks or months. Spatial and temporal 
genomic heterogeneity in primary tumors makes it nearly impos-
sible to capture their complete genomic profile in a single biopsy. 
Analysis of tumor heterogeneity would require sequencing of 
multiple regions from the primary and metastases, which to date 
is difficult in clinical settings. ctDNA allows longitudinal evolu-
tion and heterogeneity tracking, relapse prediction, quantifying 
therapy response, and resistance identification as reviewed in the 
cancer type-specific sections below.

Breast Cancer
Matched tumor and serial plasma samples from a prospective 
cohort of 30 mBC patients receiving systemic therapy were tested 
for somatic genetic alterations in TP53 and PIK3CA; structural 
variants were identified by deep targeted amplicon sequenc-
ing and WGS (74). ctDNA levels in serial samples at intervals 
≥3 weeks during follow-up were analyzed by personalized dPCR 
and tagged amplicon deep sequencing. ctDNA was detected in ≥1 
samples in 29/30 patients while CA15-3 was positive in only 21/27 
cases. Plasma levels of ctDNA mutations and structural variants 
but not total cfDNA showed dynamic patterns correlating with 
CT-morphological treatment responses. In 10/19 patients ctDNA 
increased in average 5 months before radiographic disease pro-
gression. In some cases, multiple ctDNA mutations exhibited 
similar AF dynamics, while in others, a ctDNA TP53 mutation 
not found in the initial tumor biopsy showed elevated levels after 
paclitaxel chemotherapy despite decrease of a PIK3CA mutation 
AF during stable disease. This suggests clonally divergent treat-
ment responses. ctDNA testing achieved higher sensitivity and 
better correlation with tumor burden than CA15-3 or CTC count 
(74). Major limitations were the small sample size and that somatic 
mutations and structural genetic variants could be identified in 
only 60% of primaries. The limited clinical utility of CA15-3 was 
repeatedly reported (4, 163, 164). Chromosomal rearrangements 
were retrospectively investigated by WGS in resection specimens 
of 20 patients with surgically treated, otherwise therapy-naive 
primary BC (stages I–III) (75). These rearrangements were 
targeted by ddPCR assays for 4–6 patient-specific changes. 
Plasma samples were taken at surgery and three to six times 
during follow-up. Detection of ctDNA in ≥1 samples indicated 
relapse. Again, ctDNA positivity preceded clinical detection of 
metastatic growth in 86% (12/14) of patients with an average 
lead time of 11  months, while ctDNA remained undetectable 
after surgery in long-term disease-free patients (93% sensitiv-
ity, 100% specificity), making ctDNA a significant predictor of 
short RFS (75). Somatic alterations of archival primary tumor 
tissue and synchronous liver metastases collected at the time of 
diagnosis, as well as serial plasma samples collected during fourth 
line treatment with an AKT inhibitor (ipatasertib) were analyzed 
in a single patient with estrogen receptor (ER) positive, HER2-
negative invasive mixed ductal–lobular adenocarcinoma of the 
breast. Sequencing was targeted on the high-depth massively 
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parallel sequencing platform Integrated Mutation Profiling 
of Actionable Cancer Targets that comprises 300 cancer genes 
with actionable mutations (7). Parallel ctDNA analysis revealed 
mutations from both, primary and metastatic sites. Changes in 
ctDNA mutant AF mirrored the pharmacodynamic response to 
targeted monotherapy (7). This case study points out that ctDNA 
can deliver a holistic view of the tumoral genetic landscape. 
Genetic aberrations occurring under sequential targeted treat-
ment with tamoxifen and trastuzumab, followed by lapatinib in 
a metastatic ER-positive, HER2-positive BC patient were tracked 
during 3-years. Stem mutations that were present in all tumor 
biopsies had highest allelic plasma levels, followed by metastatic-
clade and private mutations. Serial changes in ctDNA subclonal 
private mutations correlated with individual treatment responses 
of metastatic sites (5). Similarly, primary tumor WGS identified 
somatic mutations in mBC patients undergoing two phases of 
chemotherapy (epirubicin and paclitaxel). The dynamics of 10 
selected mutations from the primary were followed in serial 
plasma samples before and after treatment. A sharp decline in 
AF under therapy and an increase at disease progression were 
reported (165). Other studies confirmed that ctDNA contains 
mutations from both primary and metastases in BC (7, 166). 
The mutation profile of primary tumor, liver metastatic site, 
and plasma ctDNA of a metastatic ER+/HER2+ BC patient was 
studied by WES (166): The primary tumor was biopsied 4 months 
after neoadjuvant chemotherapy. Plasma and liver metastasis 
were sampled after progression following a two-phase therapy 
(anastrozole and herceptin). AFs of mutations in cfDNA corre-
lated well with liver metastasis but poorly with the primary tumor. 
Moreover, the resistance mutation ESR1(p.D538G) in response 
to estrogen deprivation was detected in cfDNA and metastatic 
site only, but not in the primary, indicating a subclonal change 
under selective pressure by the aromatase inhibitor anastrozole. 
Likewise, the PIK3CA(p.H1047R) mutation was present in the 
primary only, suggesting that it emerged either after metastatic 
spread or that it was not present in subpopulation of cells respon-
sible for metastatic seeding (166). Activating mutations in the 
estrogen receptor 1 (ESR1) gene are acquired under treatment 
in approximately 20% of patients and drive resistance to anti-
hormonal therapy. Such mutations are predictive of endocrine 
resistance in mBC. Serial plasma ctDNA samples from 48 ER+ 
mBC patients receiving antiestrogenic therapy were analyzed by 
targeted NGS and ddPCR. ESR1 mutations were present in 3/48 
patients at baseline with variable AF (p.D538G: 46.3%, p.Y537S: 
2.8%, p.E380Q: 24.4%). In four patients, an ESR1 resistance 
mutation was detected in cfDNA under therapy (76). Comparable 
data were reported by others (77). However, the abovementioned 
case studies comprise small patient numbers and the identifica-
tion of breast cancer driver mutations remains challenging with 
only a few being identified (HER2, TP53, PIK3CA, and AKT1; 
amplification of ERBB2 and EGFR). Thus, WGS or WES might 
aid in identification of unknown oncogenic drivers. To date, such 
a strategy would lead to a significant cost increase in diagnostics 
and requires extensive bioinformatics support typically unavail-
able in routine labs. Despite availability of WGS/WES, discrimi-
nation between biologically relevant somatic driver mutations, 
passengers, and background alterations remains difficult. Large 

prospective clinical trials are required to evaluate if and to what 
extent early detection of metastasis by ctDNA monitoring might 
improve patient outcome. Nevertheless, case study data promote 
ctDNA testing to facilitate early therapeutic intervention while 
tumor burden is still low.

Lung Cancer
While surgery offers best curative possibilities in early-stage 
NSCLC, it is usually not an option in advanced disease. Besides 
cytostatics, targeted therapies significantly improved clinical 
outcome in LAC. A number of molecular targets was identified 
so far in these tumors (EGFR, ALK, HER2, BRAF, MET, ROS1, 
and RET) but only few in LSCC (FGFR1 and PIK3CA). Targeted 
therapy choice depends on the molecular profile of the primary. 
However, despite initial response, almost all tumors become 
resistant within short time. To date, molecular testing is routinely 
performed on tumor tissue, typically needle biopsies. 41–62% 
of LC patients receiving 1st and 2nd generation EGFR TKIs 
acquire resistance after ~12 months due to the EGFR(p.T790M) 
mutation (167). Osimertinib is a 3rd generation TKI used to 
treat metastatic NSCLC patients carrying EGFR(p.T790M). 
Unfortunately, EGFR-mutated tumors can escape EGFR block-
ade in several other ways: by amplification of the MET receptor 
tyrosine kinase or ERBB2, by mutations in PIK3CA and BRAF, as 
well as by activation of AXL and NFkB (167). KRAS mutations in 
the tumor are a negative predictor of response to EGFR-TKIs or 
anti-EGFR antibodies (168). Therefore, continuous monitoring 
of treatment effects and arising resistance during follow-up is 
of high clinical relevance. Recently, the first ctDNA screening 
test (cobas® EGFR Mutation Test v2, Roche, Switzerland) for 
molecular analysis of ctDNA in metastatic NSCLC patients in 
whom mutation screening was impossible in tumor tissue was 
approved by the FDA. This test detects a series of activating 
EGFR mutations–exon 19 deletions and p.L858R/p.T790M point 
mutations—in cfDNA, identifying patients who might benefit 
from TKI therapy in oncological diagnostic routine. cfDNA was 
analyzed for the presence of p.T790M mutation and patient-
specific EGFR activating mutations known from primaries by 
BEAMing in a cohort of 23 advanced NSCLC cases progressive 
after EGFR-TKI treatment and 21 advanced NSCLC, EGFR-
TKIs-naive patients (99). Most patients had already progressed 
to stage IV. The p.T790M mutation was detected in 43.5% of 
EGFR-TKI treated patients at an AF from 0.1 to 1%. Similar find-
ings were reported independently (49, 100). In the phase I AURA 
study assessing safety, tolerability, and efficacy of osimertinib in 
EGFR mutant NSCLC progressive under EGFR-TKIs, plasma 
p.T790M genotyping in 237 patients revealed 70% sensitivity 
and 69% specificity. ctDNA p.T790M-positive patients had 
similar outcomes as those with the same mutation detected in 
tumor tissue. By contrast, p.T790M plasma negativity and tumor 
tissue positivity correlated with a favorable outcome which, in 
conclusion, should prompt for a confirmatory tumor biopsy to 
avoid false-negatives in case p.T790M-negative plasma (101). 
Correlation between OS and dynamic changes in AFs of EGFR(p.
T790M) before and after EGFR-TKI therapy was addressed in 
a prospective cohort of 103 advanced-stage NSCLC patients 
(102). Plasma samples before and after EGFR-TKI therapy were 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


15

Hench et al. Liquid Biopsy in Precision Medicine

Frontiers in Medicine | www.frontiersin.org January 2018 | Volume 5 | Article 9

analyzed by dPCR array chip (Fluidigm, South San Francisco, 
CA, USA) and ARMS. Patients with the EGFR(p.T790M) in 
pre-TKI plasma samples had inferior PFS and OS compared to 
those without the mutation. Patients with an EGFR-sensitizing 
mutation and high AF of pre-TKI p.T790M had a shorter PFS 
(p = 0.001) under EGFR-TKI compared to those with a low AF 
(102). The resistance mutation EGFR(p.C797S) was identified 
in cfDNA by NGS of 15 EGFR-TKI ADZ9291-treated patients 
whose tumors were positive for EGFR(p.T790M) (169). Besides 
EGFR(p.T790M), a range of driver and resistance mutations/
aberrations, including ALK, ROS1, and RET rearrangements, 
HER2 insertions, and MET amplification have been identified 
in pretreatment plasma of progressive NSCLC patients by NGS 
with 100% specificity and 77% sensitivity (170). Similarly, in a 
study on 102 prospectively enrolled NSCLC patients (81% LAC, 
96% stage IV) driver and resistance mutations were identified by 
ctDNA NGS (92): Concordance between tumor tissue DNA and 
ctDNA correlates is higher with shorter intervals between tissue 
and blood sampling (p  =  0.038) (92). In sum, plasma ctDNA 
testing in LC is beneficial for therapy selection and more feasible 
than serial tissue biopsies.

The aim of the large prospective TRACER× trial (TRAcking 
non-small lung Cancer Evolution through therapy R[x]) on 842 
NSCLC patients (stages I–IIIA) is to monitor clonal evolution 
from initial diagnosis to death by analysis of multiple genomic 
regions in tumor tissue, cfDNA, and CTCs (171, 172). Analysis of 
the first 100 patients detected ctDNA in 48% (46/96) during early 
stages. Predictors of ctDNA-positivity were non-LAC histology, 
increased proliferative indices, and lymphovascular invasion 
(103). Clonal mutations in tumor tissue were identified in 100% 
and subclonal ones in 68% of ctDNA-positive patients. Tumor 
volume and clonal variant mean AF correlated directly (103). 
Hence, prior knowledge of clonal variants for ctDNA screen-
ing is more sensitive than tracking subclonal variants. Pre- and 
postsurgical ctDNA profiling with patient-specific gene panels 
during follow-up confirmed SNVs in 93% (13/14) of patients with 
morphological or clinical relapse. The median interval between 
ctDNA occurrence and later CT-morphological relapse was 
70 days (103). High amounts of different mutations in ctDNA of 
LC patients is associated with poor OS (173).

Colorectal Cancer
Significant proportions of CRCs harbor mutations in KRAS, 
BRAF, or NRAS that are negative predictors for an EGFR-blockade 
therapy, making these hotspots an appealing diagnostic cfDNA 
target (117, 138). Direct correlation between KRAS ctDNA AF 
and OS was found (4). Metastatic lesion-specific radiographic 
responses to targeted therapies in CRC can be driven by distinct 
resistance mechanisms affecting MAPK pathway genes which 
can arise asynchronously in separate lesions in a single patient 
(174). Following initial therapy for stage IIIa CRC, a patient 
experienced relapse and new liver metastases. Upon progres-
sion, the patient received an EGFR blockade with cetuximab and 
panitumumab. While the TP53(p.E171*) mutation was identified 
in the primary, the resistance mutation MAP2K1(p.K57T) upon 
EGFR-blockade arose in only one liver metastasis. Response 
to EGFR-blockade was objectified by a decrease in size of the 

primary and one liver metastasis. Shortly after, the neighboring 
liver metastasis increased and ctDNA analysis now identified 
KRAS(p.Q61H) which was not present in either primary tumor 
now or in the responding liver metastasis, suggesting that it 
was present even before EGFR-blockade (174), illustrating that 
single tumor biopsies may not sufficiently represent tumor het-
erogeneity. Overall outcome depends on lesion-specific therapy 
responses. Patients with RAS wild-type CRC primaries and 
ctDNA positive for KRAS and BRAF mutations were resistant 
to the EGFR-blockade (4, 121, 122, 163). Such mutations can 
be detected in the blood of cetuximab or panitumumab treated 
patients as early as 10 months before clinical disease progression 
(121, 163). Interestingly, KRAS resistance clones, which emerge 
in blood during EGFR blockade, can even decline upon with-
drawal of anti-EGFR antibodies, allowing for rechallenge that 
can again lead to response (122).

A multicenter prospective study on 53 metastatic chemother-
apy-naive CRC patients analyzed ctDNA level as early therapy 
response marker. Plasma before, 3 days after surgery, and before 
the 2nd chemotherapy cycle revealed no significant difference 
before and 3  days after surgery. Reduction from presurgical to 
pre-chemotherapy level predicted radiographic response better 
than absolute levels with no significant correlation between 
ctDNA fold change and OS (123). ctDNA for MRD detection was 
prospectively tracked in 18 resected CRC patients. Plasma was 
serially sampled over 12  weeks postoperatively. Tumor-specific 
mutations were identified from archival FFPE tissue and indi-
vidually selected mutations were tracked by BEAMing in plasma. 
No recurrence was observed if ctDNA was undetectable 2 weeks 
after surgery. By contrast, ctDNA positivity in postoperative 
plasma was predictive of relapse. A sharp drop in ctDNA 2 to 
10 days after surgery was observed after complete as opposed to 
incomplete resection (48).

CiRCULATiNG TUMOR CeLLS

Biological Significance and Origin of CTCs
Circulating tumor cells are cancer cells, detached from tumor tis-
sue, floating in the bloodstream, bearing the potential to seed the 
disease to other sites, as demonstrated half a century ago (175). 
Metastatic progression comprises of four steps: local invasion, 
intravasation, extravasation, and colonization (176, 177). CTC 
precursors can remodel the surrounding stroma by activation of 
extracellular proteases allowing them to overcome the basement 
membrane and extracellular matrix to which they normally 
adhere (178). A subpopulation of precursor carcinomatous CTCs 
can undergo partial or complete EMT, e.g., by repressing expres-
sion of E-cadherin and cytokeratin as well as inducing vimentin 
and N-cadherin. Thereby, they detach from epithelial sheets to 
become invasive and motile. Once they invade blood vessels 
within the tumor microenvironment they can become CTCs 
(179). Most CTCs will not survive because of anoikis (apoptosis 
due to vanished cell–matrix interactions), shearing forces of 
blood flow, and immune cell attack (180). Once lodged in blood 
vessels of distant organs, CTCs can extravasate and infiltrate the 
surroundings (178). During colonization, CTCs resume growth 
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in a distant organ to form a metastasis, undergo cell death or enter 
dormancy (181). CTC have been isolated from blood as either 
single cells, or clusters. In breast and prostate cancer, CTC clusters 
were shown to consist of oligoclonal cells from the primary and 
are associated with higher metastatic potential than single CTCs 
(182). CTC clusters contain either just a group of neoplastic cells 
or are associated with fibroblasts, leukocytes, endothelial cells, 
and platelets (183). In the next section, we will review the tech-
nologies for CTC detection and enrichment, followed by a critical 
appraisal of the significance of CTC enumeration in breast, lung, 
and colorectal cancer.

CTC Detection and enrichment 
Technologies
The key challenges in CTC isolation are their rarity in blood 
(1–10 CTCs per 10  ml) and lack of cancer-specific surface 
markers. Hence, a multitude of enrichment technologies have 
been developed. CTCs can be positively or negatively enriched 
based on their biological or physical properties. Methods based 
on biological properties use antibodies that bind surface markers 
on CTCs. For detection of epithelial CTCs, antibodies against 
EpCAM and cytokeratins (CK8, CK18, CK19) are frequently 
used, while mesenchymal CTCs can be selected by antibodies 
against N-cadherin and vimentin. Cell Search is so far the only 
platform approved by the FDA for clinical use. Epithelial CTC 
enrichment is based on positive selection via EpCAM antibody-
coated ferromagnetic beads with subsequent staining with 
DAPI, anti-CD45, and anti-cytokeratin to identify and enumer-
ate CTCs. CTCs can be negatively enriched by antibodies against 
CD45 to deplete leukocytes from a blood sample. Alternative 
enrichment strategies are based on physical properties, namely 
size, deformability, density, and electric charge. Detailed descrip-
tions of these technologies have already been summarized (184). 
Epithelial antigen-based positive or negative selection is limited 
due to their inability to detect carcinoma CTCs after EMT. 
Hence, these approaches can produce false-negative results as 
opposed to biophysical methods. However, in the latter, blood 
cells can have properties similar to CTCs, resulting in high false-
positive rates. To date, no single method is able to capture the 
entire spectrum of CTCs. Due to numerous different isolation 
approaches and lack of multicenter validation, their robust-
ness, reproducibility, sensitivity, and specificity remain elusive. 
Currently, the method of choice depends on tumor type and 
intended downstream analyses: genetic studies require high 
purity, FISH and immunofluorescence high capture efficiency, 
and drug testing even viable CTCs. Hence, similar to cfDNA, 
development of standardized protocols for sample handling, 
sample storage, enrichment, enumeration, and evaluation are 
important.

CTC in Cancer Patient Management
The prognostic value of CTC enumeration was demonstrated in 
BC, LC, CRC, and mCRPC (177). While in patients with BC (78, 
185), mCRPC (186), and NSCLC (104) a cut-off value of ≥5 CTC 
per 7.5 ml of blood indicates worse prognosis, in CRC a cut-off 
of ≥3 CTC per 7.5 ml of blood is predictive of shorter OS (124). 

Higher CTC counts in pulmonary vein and mesenteric blood 
than in peripheral blood of LC and CRC patients, respectively, 
have been reported (187, 188). In the next section, we will discuss 
prognostic value of CTC number and use of CTC in monitoring 
the effect of anticancer therapy.

Breast Cancer
A prospective study on early-stage BC investigated the prognostic 
value of CTC number for OS in 2,026 patients before and 1,492 
after adjuvant chemotherapy using CellSearch. The patients were 
followed over a median of 35 months. CTCs before chemotherapy 
were detected in 21.5% and post-therapeutically in 22.5% of 
patients. Their presence before and after chemotherapy was 
associated with shorter RFS (p  <  0.0001), BC-specific survival 
(p  <  0.008) and OS (p  <  0.0002). In metastatic BC, ≥5 CTCs 
per 7.5  ml of blood before therapy start and at first follow-up 
was predictive of shorter PFS/OS and correlated with lymph node 
metastasis (78). The predictive value was independent of time to 
and site of metastasis, as well as hormone receptor status (79). 
Other studies confirmed the prognostic value of CTC counts con-
cerning PFS and OS in early-stage and metastatic BC (189, 190). 
The SWOG S050 randomized clinical trial investigated the value 
of CTC enumeration in monitoring chemotherapy response in 
mBC, in particular, if an early switch in first-line regimen would 
improve OS in those subjects with increasing CTCs under the 
primary drug (80). Randomization was between continuation of 
the initial treatment and therapy change. No difference in median 
OS was observed in the high-risk group despite the change of 
chemotherapy. Based on this finding, the American Oncology 
Society clinical practice guidelines for CTCs considered not to 
use CTC count in mBC management (191). However, median 
OS for low, moderate, and high-risk groups were 35, 23, and 
13 months, respectively. This study confirmed the prognostic but 
not predictive value of CTC counts in mBC patients receiving 
first-line chemotherapy (80). The prognostic value of CTCs in 44 
HER2-positive mBC patients with cerebral metastases not previ-
ously treated with whole brain radiotherapy under HER2-targeted 
treatment (lapatinib, capecitabine) was investigated as a part of 
the LANDSCAPE clinical trial. CTC number was analyzed at 
baseline and at day 21 before the second therapy cycle. Objective 
CNS response was significantly higher in patients who did not 
have any CTC detected at day 21 (85). However, others showed 
the inability of CTCs to predict the risk for cancer dissemina-
tion and that the prognostic value of CTC detection depends on 
the test method (81, 192). Single CTCs and pooled CTCs were 
analyzed for PIK3CA mutations in 18 mBC patients. Analysis of 
single CTCs in two patients revealed different PIK3CA mutations 
in single CTCs (82). If CTCs would reflect biologically relevant 
clones with regard to treatment, then the heterogeneity between 
single CTCs in an individual patient limits the usefulness of their 
genetic analysis in diagnostic settings. CTCs have been frequently 
detected in HER2+ primary tumors of mBC patients (193). 
HER2+ CTCs have high metastatic potential (83) and were found 
in 89% of patients with HER2-negative primaries (84). Residual 
CTC clusters at days 15 and 29 of therapy (nab-paclitaxel with 
or without tigatuzumab), but not at baseline, predicted shorter 
PFS (194).
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Lung Cancer
Prognostically relevant cut-off value for CTC counts by CellSearch 
in NSCLC was defined as ≥5 CTCs/7.5 ml blood, and in SCLC as 
≥50 CTCs/7.5 ml (104, 195). In a study on 208 NSCLC patients 
(stages I–IV), 50% of cases had CTCs detected preoperatively by 
ISET filtration enrichment. Here, a cut-off of ≥50 CTCs/7.5 ml 
blood significantly correlated with decreased DFS and OS in 
early and advanced-stage NSCLC. CTC counts did not correlate 
with tumor stage, age, gender, tobacco exposure, tumor size, 
and malignant pleural effusion (105). Serial CTC enumeration 
showed correlation of a low count with radiographic tumor 
response, while increased numbers reflected tumor progression. 
Therefore, CTC number might be used as pharmacodynamic 
marker where change in CTC count during therapy would inform 
about response (106).

The prognostic value of CTCs in early NSCLC was assessed in 
a cohort of 168 chronic obstructive pulmonary disease patients. 
Five CTC-positive patients (5/168) developed lung nodules 
1–4  years after CTC detection, 4/5 were diagnosed with LAC, 
and 1/5 with LSCC. However, three more formally CTC-positive 
subjects did not develop any neoplasm during follow-up (107), 
highlighting a relatively high false-positive rate that limits clinical 
applicability.

High concordance rates in EGFR mutations in NSCLC patients 
(84%, 31/37) between primaries and CTCs were observed (108). 
92% concordance was found in another study (106). A classifier 
based on CNVs in single and pooled CTCs from 31 pretreatment 
SCLCs distinguished chemosensitive from chemorefractory 
cases (cisplatin and etoposide) with 83.3% accuracy. This study 
concluded that chemoresistance occurring under therapy differs 
from de novo resistance since five patients that initially responded 
and then relapsed had the same CNV profiles before and after 
relapse (109). CTCs were present in 85% of 97 LSCC patients 
(range 0–44,896/7.5 ml blood) at baseline before chemotherapy. 
CTC clusters and CTCs with apoptotic morphology were detected 
in 32 and 57% of patients, respectively. Baseline CTC count and 
change in number after one cycle of chemotherapy were inde-
pendent prognostic factors in SCLC. The numbers of CTCs and 
CTC clusters correlated with stage, serum LDH, presence of liver 
metastases, and number of metastatic sites (195).

Colorectal Cancer
A prospective, multicenter study on 430 mCRC patients evaluated 
the prognostic and predictive value of CTC counts by CellSearch 
at baseline and after three lines of therapy.  ≥  3 CTCs/7.5  ml 
blood at baseline or during follow-up were an independent 
prognostic factor of poor PFS and OS (124). Screening for EMT 
in CTCs in 1,203 CRC patients by CanPatrol™ enrichment with 
analysis of epithelial (EpCAM, cytokeratins), and mesenchymal 
(VIM, TWIST, AKT2, SNAI1) markers revealed three distinct 
phenotypes: epithelial, mesenchymal, and biphenotypic. CTCs 
were detectable in 86.9% of patients. Total CTC counts cor-
related with clinical stage, lymph node, and distant metastases. 
Biphenotypic and mesenchymal phenotype counts correlated 
with tumor stage, suggesting that CTCs with EMT have a higher 
metastatic potential and are more aggressive (125). Preoperative 
CTC detection (≥1 CTC/7.5ml blood) is an independent 

prognostic factor for disease progression and OS in patients with 
non-metastatic CRC (126).

KRAS analysis in primaries is mandatory before starting 
EGFR-targeted therapy in mCRC. Concordance rate in KRAS 
state between CTCs and primaries was 77% (128) while only 50% 
were found in another study (196). This discordance between 
CTCs and primaries might be due to intratumoral heterogene-
ity and multiple metastatic clones that disseminate during early 
disease stages that might remain dormant for years (127).

The usefulness of KRAS testing in CTCs before curative 
surgery was addressed in 35 mCRC cases at various tumor 
stages. CTCs were captured based on their size and analyzed for 
KRAS mutations by ddPCR. 90% of patients harbored at least 
one CTC/3ml blood; in 7% of cases, CTC clusters were detected. 
CTC counts correlated with disease stage, but not with serum 
concentrations of tumor markers, CEA and CA19.9. CTCs of 57% 
patients were positive for one of the relevant KRAS mutations in 
codon 12 or 13 (128). Heterogeneity in EGFR expression, muta-
tions in PIK3CA and KRAS between CTCs of the same mCRC 
patient was observed (127).

COMMeNTS AND FUTURe 
PeRSPeCTiveS

cfDNA quantification appears unsuited for cancer-specific 
questions, as both sensitivity and specificity are low. Numerous 
studies suggest a clinical usefulness of ctDNA testing as a 
prognostic, predictive and diagnostic biomarker in various 
neoplasms. Concordance, though not 100%, in frequencies of 
mutations found in tumor tissue and cfDNA, with significantly 
lower allele frequencies in cfDNA, have been described in many 
studies. Therefore, there is a need for development of highly 
sensitive analytic methods able to detect genetic alterations at 
low allelic frequencies in plasma. However, this implies a certain 
unspecific detection rate, partially impairing diagnostic routine 
use. As shown in several studies, combination of single or several 
tumor-associated genetic alterations found in cfDNA with other 
biomarkers and imaging can increase diagnostic specificity and 
sensitivity. In clinics, ctDNA analysis will most likely be used 
complementarily to imaging for monitoring disease burden as it 
can not deliver precise information about tumor location. Thus, 
we foresee that a combination of genetic analysis of tumor tissue 
and ctDNA together with medical imaging may deliver increased 
accuracy in determination of metastatic growth. Ultimately, 
tumor surveillance via blood samples, periodically drawn by 
physicians also in remote locations and sent to the treating center, 
could be of significant benefit for the patients. Importantly, ana-
lytic and clinical validity of ctDNA remains to be demonstrated. 
The mechanisms of cfDNA release into the bloodstream still 
remain elusive. Whether all metastatic sites contribute similarly 
to the ctDNA pool remains unknown. Overall tumor burden 
appears to be better represented when restricting ctDNA tests to 
previously known tumor-specific mutant alleles, typically those 
derived from molecular workup of tumor biopsies with emphasis 
on driver mutations that are less likely to change during tumor 
evolution. Qualitative cfDNA analysis may inform of tumor het-
erogeneity and detect emerging secondary resistance mutations. 
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Detection and quantification of EGFR(p.T790M) mutation in 
ctDNA might be used as a predictive biomarker under EGFR-
TKI treatment of NSCLC patients that could influence treatment 
changes. However, such clinical evidence has not been demon-
strated for other mutations. As with genetic data from tumor tis-
sue, it remains debatable how to deal with aberrations for which 
no targeted therapies are available. Unfortunately, knowledge 
about likely progressive disease before deterioration of clinical 
symptoms may not even be beneficial for quality of life and would 
not necessarily prolong OS. Most importantly, there is an urgent 
need to elucidate origin, function, and biological significance of 
cfDNA before implementing it in routine diagnostics.

The lack of detection at diagnosis or at time of progression in 
some patients is a key limitation to the use of ctDNA as prognostic 
marker. Therefore, at this time, we believe that analysis of ctDNA 
genetic alterations will and should not replace tumor biopsy or 
radiological evaluation. It can, however, significantly improve 
clinical follow-up by monitoring treatment efficacy more spe-
cifically than imaging. While ctDNA levels might correlate with 
tumor volume, total cfDNA reflects tumor burden, mirroring 
overall disease biology. We envision that clinical laboratories 
will need to provide deep sequencing analysis to define clonal 
mutation prevalence, focusing on actionable genes and mutations 
as well as those considered hallmarks of cancer, e.g., KRAS muta-
tions to stratify patients with CRC for anti-EGFR therapy, driver 
mutations to be tested in plasma for tumor monitoring, and 
therapy response as well as EGFR mutations to predict benefit 
from erlotinib, gefitinib, and osimertinib.

Despite technological advance in CTC isolation and analytic 
methods, the biological fate and significance of these cells 
remains elusive. It may be expected that they represent a highly 
heterogeneous population. In fact, antibody-based detection 
of single tumor cells—not in blood but lymph nodes—has led 
to substantial effort in routine diagnostics due to the introduc-
tion of respective TNM category pN0[i+] (197). However, this 
category was recently removed (198). Lymph nodes with immu-
nohistochemically detected isolated tumor cells are now only 
tabulated in the report but do no longer contribute to overall N 
classification (199). While ctDNA represents a potpourri of many, 
if not all tumor sites in a patient, CTC-derived nucleic acids are 
much lower in copies and, hence, may not improve diagnostics 
over conventional biopsies while ctDNA tests are very likely to 
proliferate in clinical practice. As for cfDNA, there are several 
drawbacks in CTC research that limit usefulness of CTC count-
ing in clinics: (i) different methods have been employed for CTC 
enumeration limiting the comparison of the data across studies. 
(ii) Reproducibility and sensitivity of these methods has not been 
thoroughly determined. (iii) All currently available methods are 
tumor type-specific, i.e., mostly epithelial cancer cells, but not 
those after EMT are selected while the latter may be of high 
biological relevance (4). It is still impossible to determine aggres-
siveness of single CTCs and CTC clusters (5). No universal signa-
tures of CTCs have been identified—should they even exist—that 
would cover any stage and type of cancer.

In conclusion, we believe that liquid biopsies are likely to 
become an additional standard for monitoring progressive 
genomic alterations over tumor evolution during exposure to 

targeted therapies. They also might prove effective in cases where 
obtaining tumor tissue would have a high risk of clinical dete-
rioration. For the majority of cases, however, we envision liquid 
biopsy as second-line diagnostic tool, building on the findings 
of morphological, genetic, and epigenetic changes derived from 
classical tissue biopsies, eliminating their shortcoming in holistic, 
as well as spatio-temporal understanding of each neoplasm in a 
personalized, patient-oriented manner.

NOMeNCLATURe

AC adenocarcinoma
AF allelic frequency
cfDNA cell-free DNA
ctDNA circulating tumor DNA
CNS central nervous system
CNV copy number variation
CRC colorectal cancer
CTC circulating tumor cell
BAC bronchoalveolar carcinoma
BC breast cancer
BCSS breast cancer-specific survival
DFS disease-free survival
DNA desoxyribonucleic acid
eBC early-stage breast cancer
EMT epithelial–mesenchymal transition
FDA U.S. Food and Drug Administration
dPCR digital polymerase chain reaction
ddPCR droplet digital PCR
iDES integrated digital error suppression
HCC hepatocellular carcinoma patients
HGIN high-grade intraepithelial lesions
LAC lung adenocarcinoma
LC lung cancer
LCC large cell carcinoma
LDH lactate dehydrogenase
LOH loss of heterozygosity
LSCC lung squamous cell cancer
mBC metastatic breast cancer
mCRC metastatic colorectal cancer
mCRPC metastatic castration-resistant prostate cancer
MRD minimal residual disease
NGS next-generation sequencing, massively parallel sequencing
NSCLC non-small cell lung cancer
NSE neuron-specific enolase
OS overall survival
PCR polymerase chain reaction
PFS progression-free survival
PSA prostate-specific antigen
PPV positive predictive value
qPCR quantitative polymerase chain reaction, also termed real-time PCR
RFS recurrence-free survival
SCLC small cell lung cancer
SNV single-nucleotide variant
tDNA tumor DNA (isolated from tumor tissue directly)
TKI tyrosine kinase inhibitor
TNBC triple-negative (estrogen and progesterone receptor, and Her-2)
UID unique identifiers
WES whole-genome sequencing
WGS whole-exome sequencing
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