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Solvent effects on the structure-property
relationship of anticonvulsant hydantoin
derivatives: A solvatochromic analysis
Nemanja Trišović, Nataša Valentić* and Gordana Ušćumlić

Abstract

Considering the pharmaceutical importance of hydantoins, a set of 25 derivatives of phenytoin, nirvanol and 5-
methyl-5-phenylhydantoin, the lipophilicities of which were gradually increased by the introduction of different
alkyl, cycloalkyl and alkenyl groups in position N3, was synthesized. Their properties under consideration were
either estimated empirically, by UV/Vis spectroscopy, or calculated using established medicinal chemistry software.
The UV absorption spectra of the investigated compounds were recorded in the region from 200 to 400 nm, in
selected solvents of different polarities. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen
bonding interactions were analyzed by means of the linear solvation energy relationship (LSER) concept proposed
by Kamlet and Taft. Furthermore, the relationships between solvent-solute interactions and selected structural
features of the solutes, which are believed to markedly affect the processes of absorption, distribution, metabolism,
excretion and toxicity (ADMETox), were discussed. Satisfactory correlations were found between hydrogen bonding
properties and solute size and the in silico calculated bioactivity descriptors, in particular %Abs. (human intestinal
absorption), log BB (blood-brain barrier permeation) and log kA (protein binding affinities) parameters. In view of
the results of this study, the investigated hydantoin derivatives met the pharmacokinetic criteria for pre-selection as
drug candidates and qualified them for the pharmacodynamic phase of antiepileptic drug development.

Background
Derivatives of hydantoin (imidazolidine-2,4-dione) have
been demonstrated to exert various effects on nervous
systems, most of which are compatible with an anticon-
vulsant action. Phenytoin (5,5-diphenylhydantoin, Dilan-
tin®) is one of the oldest non-sedative antiepileptic
drugs, which is employed in cases of generalized tonic-
clonic seizures (so-called grand mal epilepsy) and focal
motor seizures [1]. Mephenytoin (3-methyl-5-ethyl-5-
phenylhydantoin, Mesantoin®) has the same spectrum
of indications as phenytoin, but its use is limited to the
cases unable to tolerate other drugs [2]. Thus, the
demethylated metabolite, nirvanol (5-ethyl-5-phenylhy-
dantoin), was the first hydantoin derivative introduced
for the treatment of chorea [3]. Due to numerous side
effects, its use was soon abandoned. Ethotoin (3-ethyl-5-
phenylhydantoin, Peganone®) has a lower anticonvulsant

potency than phenytoin and additional hypnotic effects,
which limit its clinical use [4].
The anticonvulsant action of hydantoin derivatives is

due to the selective block of high-frequency neuronal
activity [5,6]. The molecular mechanism for this is their
binding to the voltage-sensitive sodium channels
responsible for the action potential. Phenytoin is sug-
gested to form an array of molecules stacked on a b-
turn segment of the proteic part of the putative receptor
site, through the formation of hydrogen bonds with the
carbonyl group in position 2 and the NH group in posi-
tion 3 [7]. However, this site on the voltage-sensitive
sodium channel is still not completely defined. Com-
pounds with increased selectivity for it may provide sig-
nificant activity and fewer side effects. Regarding the
structural demands, Poupaert et al. [8] observed that the
anticonvulsant activity was decreased when the hydro-
gen bond formation ability of the phenytoin molecule
was reduced by altering the hydantoin ring into succini-
mide and pyrrolidinone and when these rings were N-
methylated. This study was expanded by Cortes et al.
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[9], who observed loss of activity on changing the
hydantoin ring to imidazolone or imidazolidinone, by
modifying the hydrogen bonding groups. On the other
hand, Roszak and Weaver [10] summarized that the
hydantoin ring structure can be split into two fragments,
one responsible for the anticonvulsant activity (N3-C4
(=O)-C5) and the other for mutagenic effects (-C2(=O)-
N3(H)). A proper structural modification can enable the
differentiation of efficacy from side effects. In general,
SAR studies of anticonvulsants revealed the need for the
retention of at least one hydrophobic site and hydrogen
bond donors/acceptors, in certain relative orientations,
for activity to be exhibited.
The first parameter in analyzing the biological activity

of a compound is lipophilicity. Lipophilicity governs the
transport in vivo and through membranes. It may also
influence the formation of a complex between a com-
pound and a receptor or a biomacromolecule at the site
of action. Lipophilic interactions were used for an expla-
nation of the binding of hydantoin derivatives to recep-
tors or receptor parts [11]. Lipophilicity is often
quantitatively characterized as log P (the logarithm of
the ratio of the concentrations of a solute in a saturated
n-octanol-water system). Due to the complexity of sol-
vent effects, this property reflects well intermolecular
interactions in condensed media. In this context, Abra-
ham proposed a well-accepted solvation equation (1),
which quantitatively interprets the relative importance
of various properties of solutes in n-octanol-water parti-
tioning [12-14]:

log P = 0.088 + 0.562E − 1.054S − 0.032A − 3.460B + 3.814V

(R = 0.9974, sd = 0.116, F = 23161.6, n = 613)
(1)

where E is the excess molar refraction, S is the dipo-
larity/polarizability, A is the overall hydrogen bonding
acidity, B is the overall hydrogen bonding basicity, V is
the McGowan characteristic molar volume. Evidently,
solute dipolarity/polarizability and, especially, solute
hydrogen bond basicity favor water, while solute size
favors n-octanol. This implies that water is more dipolar
and is a stronger hydrogen bond acid than n-octanol.
The minor contribution of the solute hydrogen bond

basicity to the partitioning reflects a small difference in
the hydrogen bond acidities between these two solvents.
In a recent paper [15], reversed-phase TLC and HPLC

retention data were used in correlation studies with
molecular descriptors of the pharmacokinetic properties
of anticonvulsant succinimide derivatives. The aim of
the present study was to apply the solvatochromic com-
parison method to quantify and correlate multiple sol-
vent effects on the transport properties and interactions
of various hydantoins having potential for pharmacologi-
cal application. A set of twenty five derivatives of pheny-
toin, nirvanol and 5-methyl-5-phenylhydantoin, the
lipophilicities of which were gradually increased by the
introduction of alkyl, cycloalkyl and alkenyl substituents
at the N3 position (Figure 1), was synthesized. Their UV
absorption spectra were recorded in the region 200-400
nm in fifteen solvents of different polarities. To obtain
an insight into the various modes of solvation determin-
ing the absorption energies, the effects of solvent dipo-
larity/polarizability (nonspecific solvent-solute
interactions) and hydrogen bonding (specific solvent-
solute interactions) on the absorption spectra were
interpreted by means of a linear solvation energy rela-
tionship (LSER) using the Kamlet-Taft Equation of the
form:

ν = ν0 + sπ∗ + bβ + aα (2)

where π* is an index of the solvent dipolarity/polariz-
ability; b is a measure of the solvent hydrogen bonding
acceptor (HBA) basicity; a is a measure of the solvent
hydrogen bonding donor (HBD) acidity and ν0 is the
regression value of this solvent property in cyclohexane
as reference solvent [16]. The regression coefficients s, b
and a in Eq. (2) measure the relative susceptibilities of
the absorption frequencies to the indicated solvent para-
meters. This treatment of solvation effects assumes
attractive solute-solvent interactions and enables the
ability of the investigated compounds to interact with
surrounding media to be estimated. Due to this, Eq. (2)
served for deriving data for the further QSPR studies.
In previous papers, a set of eight 3-substituted-5,5-

diphenylhydantoins [17] and a set of nine phenytoin-like

Figure 1 Structures of the investigated 3,5-disubstituted-5-phenylhydantoins.
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anticonvulsant drugs [18] were assembled to analyze the
structural determinants governing the partitioning of the
solute between n-octanol and water. It was demonstrated
that log P correlates well with the ratio of the contribu-
tions of specific solvent-solute interactions in the former
case, and with the ratio of the relative contributions of
specific and nonspecific interactions in the latter. Here,
the same methodology was applied to establish the rela-
tionships between solvent-solute interactions, determined
empirically, and the ADMETox end points of a larger
number of the hydantoin derivatives, obtained by estab-
lished computational medicinal chemistry methods.

Experimental
Synthesis of 3,5-disubstituted-5-phenylhydantoins
5,5-Diphenylhydantoin was commercially obtained
(Fluka), while 5-ethyl-5-phenylhydantoin and 5-methyl-
5-phenylhydantoin were synthesized by a modification
of the method of Bucherer and Lieb [19]. The appro-
priate ketone was heated with (NH4)2CO3 and KCN in

50% ethanol (Figure 2a). The obtained compounds
were alkylated at the N3 position using the corre-
sponding alkyl halide in K2CO3/N,N-dimethylforma-
mide to obtain compounds 1-7 and 11-25 (Figure 2b)
[20]. When the reaction with alkyl halogenide did not
occur due to a change in the reaction pathway or gave
a low yield, the derivatives (8-10) were obtained by the
Biltz reaction from benzil, respectively urea, and KOH
in ethanol (Figure 2c) [21]. The chemical structures
and the purities of the synthesized 3,5-disubstituted-5-
phenylhydantoins were confirmed by their melting
points, and FT-IR, 1H and 13C NMR spectra [Addi-
tional file 1].

Spectrometric measurements
The 1H and 13C NMR spectral measurements were per-
formed on a Bruker AC 250 spectrometer at 200 MHz
for the 1H NMR and 50 MHz for the 13C NMR spectra
or on a Bruker 300 spectrometer at 300 MHz for the 1H
NMR and 75 MHz for the 13C NMR spectra. The

Figure 2 Preparation of the investigated 3,5-disubstituted-5-phenylhydantoins.
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spectra were recorded at room temperature in DMSO-
d6. The chemical shifts are expressed in ppm values
referred to TMS (δH = 0 ppm) in the 1H NMR spectra,
and the residual solvent signal (δC = 39.5 ppm) in 13C
NMR spectra.
The FT-IR spectra were recorded on a Bomem MB

100 spectrophotometer.
The UV absorption spectra were measured with a Shi-

madzu 1700 spectrophotometer. The UV spectra were
taken in spectro quality solvents (Fluka) at a fixed con-
centration of 10-5 mol/L. All solvents were of the high-
est available grade and spectral purities and used
without further purification The reported values of νmax

are average from three measurements of the corre-
sponding lmax. As expected, no significant differences
between repeated measurements were observed and
their uncertanity was considered to be negligible When
broad bands appear (e.g., c, e and f in Figure 3), high
order polynomial curves (n = 9) were fitted to the data
by using Origin 8 and the absorption maxima were
determined on the basis of the first derivative of the
fitted curves.

Method of Calculation
The correlation analysis was realized using Microsoft
Office Excel 2003, which considers the 95% confidence
level. The goodness of fit is discussed using the

correlation coefficient (R), standard deviation (sd) and
Fisher’s criterion (F).
In the absence of the appropriate experimental data in

the literature, computer methods are used do predict
ADMETox-related properties of investigated com-
pounds. Their lipophilicities were estimated by calcula-
tion of log P values with the Advanced Chemistry
Development (ACD) Software Solaris v. 4.67. The
human intestinal absorption (%Abs.) and the percentage
plasma protein data (fb) are obtained by the ChemSilico
program (http://chemsilico.com).
The corresponding physicochemical parameters and

the activity data of the studied compounds are collected
in Table 1.

Figure 3 The UV spectra of compounds 1 (a), 13 (b) and 20 (c)
in methanol and 1 (d), 13 (e) and 20 (f) in 2-methyl propan-2-ol.

Table 1 Physicochemical properties and pharmacokinetic
data of the studied compounds

No. R1 R2 log
Pa

%
Abs.b

log
BBb

fB
b

(%)
log
kA

c
ΣEs

d Σs*e

1 C6H5 CH3 2.03 95.2 0.13 87.126 4.050 -2.55 0.60

2 C6H5 C2H5 2.56 95.7 0.07 91.983 4.280 -2.62 0.50

3 C6H5 n-C3H7 3.09 95.9 0 95.173 4.515 -2.91 0.48

4 C6H5 i-C3H7 2.91 96.0 0.04 90.15 4.182 -3.02 0.41

5 C6H5 CH2 =
CHCH2

2.55 95.8 0.05 92.255 4.296 -2.94 0.70

6 C6H5 n-C4H9 3.62 96.1 -0.07 97.067 4.740 -2.94 0.47

7 C6H5 i-C4H9 3.44 96.1 -0.03 96.16 4.619 -3.48 0.47

8 C6H5 t-C4H9 2.94 96.2 0.05 96.275 4.632 -4.09 0.30

9 C6H5 cyc-C5H9 3.52 96.1 -0.04 92.757 4.327 -3.06 0.40

10 C6H5 cyc-C6H11 4.09 96.2 -0.13 94.537 4.458 -3.34 0.45

11 C6H5 C6H5CH2 3.89 96.4 -0.14 95.395 4.536 -2.93 0.82

12 C2H5 CH3 1.40 93.4 -0.20 46.132 3.153 -0.07 -0.10

13 C2H5 C2H5 1.93 94.1 -0.21 56.89 3.340 -0.14 -0.20

14 C2H5 n-C3H7 2.46 94.9 -0.17 70.307 3.594 -0.43 -0.22

15 C2H5 i-C3H7 2.28 94.8 -0.18 59.576 3.388 -0.54 -0.29

16 C2H5 CH2 =
CHCH2

2.10 94.6 -0.19 65.146 3.492 -0.46 0.00

17 C2H5 n-C4H9 2.99 95.2 -0.12 81.654 3.868 -0.46 -0.23

18 C2H5 i-C4H9 2.81 95.2 -0.14 75.939 3.719 -1.00 -0.23

19 C2H5 C6H5CH2 3.25 95.6 -0.01 95.044 4.503 -0.45 0.12

20 CH3 CH3 0.87 92.2 -0.20 95.044 4.503 0.00 0.00

21 CH3 C2H5 1.40 93.3 -0.21 33.701 2.926 -0.07 -0.10

22 CH3 n-C3H7 1.93 94.3 -0.2 45.258 3.137 -0.36 -0.12

23 CH3 i-C3H7 1.75 94.3 -0.19 57.868 3.358 -0.47 -0.19

24 CH3 n-C4H9 2.46 94.9 -0.16 70.494 3.598 -0.39 -0.13

25 CH3 i-C4H9 2.28 94.8 -0.16 65.26 3.494 -0.93 -0.13
acalculated by ACD Solaris v. 4.67.
bhuman intestinal absorption data (%Abs.), the blood-brain permeation (log BB)
and percentage plasma protein binding (fb) were calculated by ChemSilico.
cprotein binding affinities were obtained using Eq. 6.
dsum of the values of the Taft steric parameters of R1and R2.
esum of the values of the Taft electronic parameters of R1and R2.
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Results and Discussion
The absorption spectra of all molecules were character-
ized by one band with a weak low-energy shoulder
appearing in some cases (Figure 3). This is typical for 5-
phenylhydantoin derivatives. In our previous paper [22],
the photophysical facet of the UV absorption of 5-sub-
stituted-5-phenylhydantoins was discussed on the basis
of the observed and the ab initio calculated absorption
spectra in various solvents. The fundamental study of
this chromophoric system indicated that the main
absorption can be considered to result mainly from an
intramolecular charge transfer corresponding to a
migration of electron density from the hydantoin moiety
to the phenyl ring. The absorbance frequencies of the
investigated compounds in fifteen solvents are collected
in Table 2. As was expected, the absorbance maxima
shifted in solvents of different polarities.
Solvent dipolarity/polarizability and hydrogen bonding

are the principal factors in controlling pathways of
energy dissipation following the electronic excitation.
Their individual contributions are quantified by means
of the LSER concept using Eq. (2). The solvent para-
meters are shown in the Table 3[16,23]. The correlation
of the spectroscopic data was carried out in terms of
multiple linear regressions. On the basis of high values
of the multiple correlation coefficients and the Fisher
criterion, the correlation results of the absorption fre-
quencies of studied molecules in the selected solvent set
with the π*, b and a parameters can be considered as
satisfactory. The regression values νo, s, b and a fit at
the 95% confidence level are presented together with
the corresponding standard errors in Table 4. The gen-
eral effectiveness of the quantification and interpretation
of solvent effects on the shifts of the absorption maxima
of the investigated molecules is presented in Figure 4 by
means of a plot of νexp versus νcalc (R = 0.989). It can be
seen that the Kamlet-Taft equation describes better the
experimental data for HBA solvents than for HBD sol-
vents. The largest, but still acceptable discrepancies
were obtained for aliphatic alcohols with bulky alkyl
groups (butan-1-ol, butan-2-ol, 2-methyl propan-2-ol).
This might be ascribed to steric interactions which the
Kamlet-Taft equation does not take into account. The
similar situations were reported in the literature [24,25].
However, this was afterwards overcome by inclusion of
the Taft steric parameter in the analysis of structural
effects on ADMETox properties of the molecules inves-
tigated in this work.
The red shift of the absorption bands with increasing

solvent dipolarity/polarizability (s < 0) indicates a higher
dipol moment of the excited state compared with the
ground state. This behaviour is in fact typical for intra-
molecular charge transfer processes. The hydantoin
moiety plays the determining role in the specific

solvent-solute interactions. The absorption maxima
underwent a hypsochromic shift with increasing solvent
HBD capacity (a > 0). This results from hydrogen bond
formation of protic solvents with the oxygene lone pairs
of the hydantoin carbonyl groups, making their excita-
tion more difficult. Thus, this implies the stabilization of
the ground state relative to the excited state. In contrast,
the HBA properties of the solvents, represented by the b
coefficient, have a smaller effect. Hydantoins are weak
acids dissociating at the imidic NH group in position 3,
because this allows a more efficient delocalization of the
negative charge than ionization at N1. The evidence for
the very weak acidic character of the latter position
comes from the fact that 3-substituted hydantoins
demonstrate no appreciable ionization [26], but the
introduction of an electron-withdrawing group at posi-
tion C5 increases the acidity of the N1 hydrogen, mak-
ing it measurable [27]. Hence, the electron release due
to hydrogen bonding of the NH group with HBA sol-
vents lower the energy of the excited state causing the
absorption maxima to shift to the red (b < 0). Therefore,
the stabilization of the excited state relative to the
ground state occurs.
Since the π*, a and b parameters are roughly normal-

ized to cover a range from 0 to 1 [16], it is accepted
that the a/b, a/s and b/s ratios provide a convenient
measures of the relative contributions of the indicated
types of solvent-solute interactions to the absorption
maxima shift [28]. As can be seen from Table 5 (the
corresponding propagated errors are included), the sol-
vatochromic properties of the investigated compounds
result mostly from specific solute-solvent interactions
rather than from nonspecific ones. These results are in
accordance with their preferred existence as the imido
tautomer in solution.
Based on the estimated abilities of the compounds to

interact with their environment, the relationship
between specific interactions and the selected structural
properties, which are related to ADMETox parameters,
were investigated. Regioselective protection of the
hydantoin ring is important for the optimal sodium
channel binding. Smithies suggested that the strong
hydrophobic shield produced by the phenyl groups of
the phenytoin molecule protects the hydrogen bonds,
formed by the imidic part of the hydantoin ring and a
b-bend protein segment from water extrusion [7]. Due
to this, further parameters concerned with the solute
size are additionally required for an adequate descrip-
tion of the structural features of molecules in such
homologous series.
The lipophilicities of the investigated hydantoins were

estimated by calculation of log P values with Advanced
Chemistry Development (ACD) Software Solaris v. 4.67
(Table 1). The log P value is a solvational characteristic,
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Table 2 UV absorption frequencies of the investigated compounds in fifteen solvents

Solvent νmax × 10-3 (cm-1)

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Methanol 48.26 47.79 47.35 48.12 47.53 46.95 47.21 47.43 47.76 47.46 47.3 48.06 47.66 47.89 47.76 47.48 48.03 48.08 47.55 47.3 47.09 46.73 46.32 46.04 46.32

Ethanol 48.54 48.03 47.34 48.36 47.64 46.9 47.25 47.44 47.94 47.48 47.13 48.23 47.76 47.94 47.81 47.61 48.03 48.17 47.62 48.31 48.21 48.08 47.89 47.76 47.94

Propan-1-ol 48.36 47.57 46.94 48.17 47.39 46.38 46.82 47.35 47.39 47.3 46.91 47.85 47.37 47.76 47.52 47.17 47.8 47,89 47.26 48.08 48.03 48.01 47.94 47.89 47.94

Propan-2-ol 48.36 47.88 47.57 48.15 47.78 47.24 47.47 47.63 47.76 47.67 47.39 48.12 47.83 47.97 47.91 47.76 48.05 48.08 47.8 48.17 48.08 48.03 47.92 47.88 47.94

Butan-1-ol 46.82 46.55 46.2 46.82 46.24 45.7 45.96 46.3 46.43 46.28 46.01 47.57 47.25 47.44 47.35 47.07 47.52 47.53 47.08 47.85 47.8 47.76 47.62 47.55 47.62

Butan-2-ol 47.49 47.3 47.09 47.43 47.17 46.92 47.04 47.14 46.98 47.23 47.17 47.63 47.52 47.54 47.52 47.44 47.58 47.6 47.44 47.95 47.93 47.9 47.85 47.81 47.85

2-Methyl propan-
2-ol

44.96 45.72 46.37 45.14 46 47.06 46.64 46.02 45.71 46.16 46.3 45.72 46.71 45.87 46.28 46.9 45.8 45.64 46.74 46.36 46.51 46.62 46.79 46.88 46.78

Ethane-1,2-diol 49.21 48.88 48.52 49.21 48.69 48.16 48.37 47.36 47.1 47.49 48.44 48.41 48.19 48.37 48.26 48.12 48.4 48.43 48.17 47.81 47.8 47.66 47.44 47.32 47.5

2-Propan-2-
yloxypropane

43.99 43.96 43.88 43.99 43.9 43.86 43.88 43.9 43.93 43.92 43.88 44.4 44.21 44.36 44.29 44.09 44.38 44.43 44.13 43.79 43.75 43.74 43.71 43.67 43.71

Oxolane 41.41 41.23 41.04 41.34 41.13 40.92 41.01 41.06 41.03 41.16 41.09 41.88 41.49 41.81 41.65 41.35 41.85 41.92 41.45 41.22 41.17 41.14 41.06 41 41.08

Dimethyl sulfoxide 38.33 38.05 37.83 38.22 38.02 37.59 37.79 37.93 38.03 37.92 37.89 38.7 38.55 38.7 38.61 38.4 38.68 38.76 38.44 38.64 38.55 38.48 38.28 38.17 38.37

Methyl acetate 42.12 41.85 41.57 42.05 41.7 41.36 41.51 41.47 41.58 41.5 41.58 42.45 41.91 42.35 42.13 41.73 42.41 42.51 41.86 41.67 41.62 41.56 41.42 41.34 41.45

Ethyl acetate 42.2 41.98 41.73 42.14 41.84 41.56 41.68 41.68 41.79 41.71 41.74 42.59 42.1 42.5 42.3 41.94 42.56 42.65 42.06 41.86 41.81 41.77 41.66 41.58 41.68

N,N-Dimethyl-
formamide

37.62 37.57 37.55 37.59 37.56 37.54 37.55 37.55 37.57 37.55 37.53 39.73 38.8 39.58 39.2 38.63 39.68 39.81 38.94 37.82 37.79 37.77 37.72 37.71 37.74

N,N-Dimethyl-
acetamide

38.52 38.11 37.75 38.31 37.88 37.49 37.7 37.77 38.04 37.91 37.57 37.59 37.52 37.58 37.55 37.51 37.58 37.6 37.53 37.72 37.69 37.69 37.62 37.59 37.62
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since it is directly related to the change in the Gibbs
energy of solvation of a solute between n-octanol and
water. The calculated values of log P were plotted
against the regression coefficient a from Eq. (2), as a

measure of the importance of a solute to accept a
hydrogen bond, revealing two linear relationships (Fig-
ure 5), mainly due to the different structural characteris-
tics of the substituent R1.

A satisfactory correlation of log P with a is achieved
through the additional inclusion of the sum of the Taft
Es values of the substituents R1 and R2 [29], which is
presented by Eq. (3).

log P = 9.12 (±1.65) − 0.82 (±0.18) a/1000 − 0.48 (±0.06) �Es

(R = 0.903, sd = 0.38, F = 42.2, n = 22)
(3)

Compounds 8, 19 and 24 are outliers from Eq. (3) for
statistical reasons, but they have no significant effect on
the modeling made for the investigated set of com-
pounds. The obtained correlation corresponds well to
the Abraham characterization of the n-octanol-water
partitioning system [12]. As was stated, water is a stron-
ger hydrogen bond acid than n-octanol and hydrogen
bond basic solutes interact weakly with the latter sol-
vent. Solute size leads to an increase in log P, as
expected, due to the larger energy required to create a
bigger cavity in water and the greater dispersion force
interactions with solutes in n-octanol.

Table 3 Solvent parameters

Solvent π* b a

Methanol 0.60 0.62 0.93

Ethanol 0.54 0.77 0.83

Propan-1-ol 0.52 0.83 0.78

Propan-2-ol 0.48 0.95 0.76

Butan-1-ol 0.47 0.88 0.79

Butan-2-ol 0.40 0.80 0.69

2-Methyl propan-2-ol 0.41 1.01 0.68

Ethane-1,2-diol 0.92 0.52 0.90

2-Propan-2-yloxypropane 0.27 0.49 0

Oxolane 0.58 0.55 0

Dimethyl sulfoxide 1.00 0.76 0

Methyl acetate 0.60 0.42 0

Ethyl acetate 0.55 0.45 0

N,N-Dimethyl- -formamide 0.88 0.69 0

N,N-Dimethyl- -acetamide 0.88 0.76 0

Table 4 Regression fits to the solvatochromic parameters

No. R1 R2 ν0×10
-3 (cm-1) s×10-3 (cm-1) b×10-3 (cm-1) a×10-3 (cm-1) Ra Fb sdc

1 C6H5 CH3 48.07 (±0.94) -5.49 (±1.13) -6.34 (±0.96) 9.68 (±0.62) 0.980 107.4 0.89

2 C6H5 C2H5 47.82 (±1.18) -5.92 (±1.09) -5.74 (±1.42) 9.33 (±0.64) 0.983 103.3 0.85

3 C6H5 n-C3H7 47.44 (±1.21) -6.26 (±1.12) -5.04 (±1.45) 8.95 (±0.66) 0.981 94.5 0.87

4 C6H5 i-C3H7 48.08 (±1.28) -5.60 (±1.18) -6.34 (±1.53) 9.66 (±0.70) 0.980 90.7 0.92

5 C6H5 CH2CH=CH 47.57 (±1.22) -6.04 (±1.13) -5.34 (±1.49) 9.12 (±0.67) 0.981 93.7 0.88

6 C6H5 n-C4H9 47.20 (±1.36) -6.63 (±1.26) -4.44 (±1.64) 8.57 (±0.75) 0.975 71.7 0.98

7 C6H5 i-C4H9 47.34 (±1.26) -6.38 (±1.16) -4.77 (±1.51) 8.80 (±0.69) 0.979 86.3 0.90

8 C6H5 t-C4H9 47.34 (±0.99) -6.87 (±0.92) -4.18 (±1.19) 8.54 (±0.54) 0.987 138.7 0.71

9 C6H5 cyc-C5H9 47.50 (±0.93) -6.89 (±0.86) -4.25 (±1.12) 8.54 (±0.51) 0.989 156.7 0.69

10 C6H5 cyc-C6H11 47.34 (±1.00) -6.81 (±0.93) -4.18 (±1.20) 8.55 (±0.55) 0.987 135.2 0.72

11 C6H5 C6H5CH2 47.52 (±1.22) -6.25 (±1.13) -5.21 (±1.47) 8.87 (±0.67) 0.980 90.4 0.88

12 C2H5 CH3 48.33 (±1.08) -6.09 (±1.00) -5.31 (±1.29) 8.67 (±0.59) 0.984 110.9 0.77

13 C2H5 C2H5 47.56 (±1.02) -6.47 (±0.95) -4.21 (±1.23) 8.59 (±0.56) 0.986 127.8 0.73

14 C2H5 n-C3H7 48.16 (±1.06) -6.09 (±0.98) -5.12 (±1.27) 8.57 (±0.58) 0.984 113.1 0.76

15 C2H5 i-C3H7 47.85 (±1.02) -6.29 (±0.94) -4.65 (±1.22) 8.55 (±0.56) 0.986 124.6 0.73

16 C2H5 CH2CH=CH 47.29 (±1.05) -6.51 (±0.98) -3.93 (±1.27) 8.55 (±0.58) 0.985 120.7 0.76

17 C2H5 n-C4H9 48.27 (±1.05) -6.08 (±0.97) -5.26 (±1.27) 8.63 (±0.58) 0.984 114.5 0.76

18 C2H5 i-C4H9 48.40 (±1.09) -6.01 (±1.01) -5.44 (±1.31) 8.63 (±0.59) 0.983 107.0 0.78

19 C2H5 C6H5CH2 47.42 (±1.04) -6.38 (±0.96) -4.13 (±1.25) 8.51 (±0.57) 0.985 121.6 0.75

20 CH3 CH3 47.52 (±0.75) -6.55 (±0.70) -4.54 (±0.91) 9.69 (±0.41) 0.993 288.3 0.51

21 CH3 C2H5 47.45 (±0.71) -6.60 (±0.66) -4.45 (±0.86) 9.68 (±0.39) 0.994 322.0 0.51

22 CH3 n-C3H7 47.35 (±0.69) -6.72 (±0.64) -4.21 (±0.83) 9.57 (±0.38) 0.995 339.4 0.50

23 CH3 i-C3H7 47.23 (±0.66) -6.95 (±0.61) -3.89 (±0.79) 9.43 (±0.36) 0.995 377.0 0.47

24 CH3 n-C4H9 47.12 (±0.64) -7.05 (±0.59) -3.69 (±0.77) 9.36 (±0.35) 0.995 395.4 0.46

25 CH3 i-C4H9 47.23 (±0.63) -6.86 (±0.63) -3.95 (±0.81) 9.46 (±0.37) 0.995 354.1 0.49
a Correlation coefficient
b Standard deviation
c Fisher test
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Different relationships have been established between
log P and absorption or permeability in intestinal mod-
els [30,31], blood-brain barrier models [32] and cell-cul-
ture models [33,34], to name just a few. Here, the a
coefficient from Eq. (2) was used to model the human
intestinal absorption (HIA) data of the investigated
hydantoin derivatives, obtained with ChemSilico. The
HIA values (%Abs.) are expressed as the percentage of a
compound absorbed by the intestine (Table 1). 3,5-Dis-
ubstituted-5-phenylhydantoins, with an HIA greater
than 90%, can be classified as well absorbed. A satisfac-
tory correlation of the %Abs. data with a and ΣEs (Eq.
(4)), obtained for 23 compounds, reveals that the hydro-
gen bond basicity and solute size are important for
absorption. A possible reason for the outliers 12 and 20
is that some additional factors might contribute to the
absorption of the hydantoin derivatives bearing small
hydrophobic substituents. In general, this is in agree-
ment with work of Abraham, who suggested that hydro-
gen bond properties are dominant in governing the HIA
[35,36]. However, it should be borne in mind that the
absorption of the investigated compounds may not only
be controlled by the passive diffusion rate, but also by
the in vivo dissolution rate in the small intestinal fluid.

%Abs. = 98.96 (±1.59) − 0.51 (±0.18) a/1000 − 0.50 (±0.06) �Es

(R = 0.904, sd = 0.37, F = 45.0, n = 23)
(4)

In the search for drugs targeted at CNS diseases, the
ideal candidates must be able to effectively penetrate the
blood-brain barrier (BBB). For anticonvulsant assays, the
optimal lipophilicity for the penetration through the
BBB appears to exist at about log P = 2 [37,38]. The
relative affinities for the blood or brain tissue can be
expressed in terms of the blood-brain partition

coefficient, log BB = log (Cbrain/Cblood), where Cbrain and
Cblood are the equilibrium concentrations of a drug in
the brain and blood, respectively. Based on data from
the ChemSilico program, all compounds have a high
chance of entering the brain because their log BB values
are greater than -0.3 (Table 1). Modeling of the BBB
penetration has been the subject of many studies
[39-41]. Here, the relationship between the brain-blood
concentration ratio with a and ΣEs implies that the
properties concerned with molecular size and hydrogen
bond formation are important contributors to log BB.
The outliers removed to obtain Eq. (5) are compounds
10, 11 and 19 bearing a large hydrophobic substituent
at position 3. It might be expected that compounds with
such a structural feature would fill the hydrophobic
region of the receptor and thereafter their activities
would decrease due to steric hindrance during the steric
interaction of the ligand and receptor.

log BB = −0.64 (±0.21) + 0.05 (±0.02) a/1000 − 0.07 (±0.01) �Es

(R = 0.911, sd = 0.05, F = 46.2, n = 22)
(5)

As mentioned previously, the therapeutical usefulness
of hydantoin-based anticonvulsants is limited owning to
their inherent toxicity. Additional evidence for solvation
effects on the structure-activity relationship of the inves-
tigated compounds was obtained by the correlation of
the calculated protein binding affinities (kA) values with
the a coefficient. It was shown that the toxic effects of
phenytoin correlate best with the level of the free drug
in plasma [42]. Protein binding values (fb, fraction
bound) are given as the percentage of the total plasma
concentration of a drug that is bound to all plasma pro-
teins (Table 1). Human serum albumin (HSA), the most
abundant protein in blood plasma (concentration 0.53-

Figure 4 A comparison between the experimental (νexp) and the calculated absorption frequencies (νcalc). The open points present data
for the following alcohols: butan-1-ol, butan-2-ol and 2-methyl propan-2-ol.
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0.75 mM), has multiple hydrophobic binding sites and
binds a diverse set of drugs [43]. The percentage data
were converted into an equivalent binding affinity kA
with the following formula (Eq. (6)) derived from the
law of mass action. kA is the binding affinity to HSA

under the assumption that binding occurs exclusively to
HSA, a binary complex is formed and an excess of albu-
min (concentration 0.6 mmol/L, [HSA]) is present com-
pared to the concentration of the drug [44].

log kA = log

[
fb

]

1 − [
fb

] − log [HSA] (6)

Based on the data from Table 1, the binding of drugs
to serum albumin can generally be explained by hydro-
phobic interactions within such homologous series.
However, the correlation between the log kA values and
a, enhanced through the use of Σs* and ΣEs as addi-
tional parameters [29] (Eq. (7)), implies that the binding
of all the investigated compounds to albumin depends
on specific molecular recognition, such as directed
hydrogen bonds, charge interactions and space filling of
binding pockets.

log kA = 6.88 (±1.05) − 0.38 (±0.11) a/1000 − 0.21 (±0.07) �Es + 0.59 (±0.29) �σ∗
(R = 0.920, sd = 0.24, F = 38.4, n = 25)

(7)

Evidentially, bulky electron-withdrawing substituents
attached to the hydantoin ring are needed to achieve a
relatively high level of protein binding. As a result of
this, derivatives of phenytoin are expected to be the
least toxic hydantoin-based anticonvulsants.

Conclusions
As a preliminary investigation of the interactions of
potential anticonvulsant drugs, a set of 25 derivatives of
phenytoin, nirvanol and 5-methyl-5-phenylhydantoin,
the lipophilicities of which were gradually increased by
the introduction of different substituents in position N3,
was synthesized. The satisfactory correlation of their UV
absorption frequencies with the Kamlet-Taft solvato-
chromic equation indicated that the selected model
interpreted correctly the linear solvation energy relation-
ship for the complex hydantoin system in the employed
solvents. The LSER method enabled the overall solvent
effects to be quantitatively estimated and separated into
specific and nonspecific contributions.
The solvatochromic behavior of the investigated com-

pounds was related to their pharmacologically relevant
properties. Accompanying calculations of log P and var-
ious pharmacokinetic data (human intestinal absorption,
blood-brain barrier permeation and protein binding affi-
nities) were performed and correlated with the spectro-
scopically-derived hydrogen bond accepting abilities.
The obtained models additionally represented how the
electronic and steric effects of substituents attached to
the hydantoin ring determine biological partitioning and
interactions of the compounds with target sites. More-
over, their good agreement with the regression models
of Abraham was demonstrated for the contributions of

Table 5 Relative contribution of the solvatochromic
effects

No a/|b| a/|s| b/s

1 1.53
(±0.25)

1.76
(±0.38)

1.15
(±0.30)

2 1.63
(±0.42)

1.58
(±0.31)

0.97
(±0.30)

3 1.78
(±0.53)

1.43
(±0.28)

0.81
(±0.27)

4 1.52
(±0.38)

1.73
(±0.38)

1.13
(±0.36)

5 1.71
(±0.49)

1.51
(±0.30)

0.88
(±0.30)

6 1.93
(±0.73)

1.29
(±0.27)

0.67
(±0.28)

7 1.84
(±0.60)

1.38
(±0.27)

0.75
(±0.27)

8 2.04
(±0.60)

1.24
(±0.18)

0.61
(±0.19)

9 2.01
(±0.54)

1.24
(±0.17)

0.62
(±0.18)

10 2.05
(±0.60)

1.26
(±0.19)

0.61
(±0.20)

11 1.70
(±0.50)

1.42
(±0.28)

0.83
(±0.28)

12 1.63
(±0.41)

1.42
(±0.25)

0.87
(±0.26)

13 2.04
(±0.61)

1.33
(±0.21)

0.65
(±0.21)

14 1.67
(±0.43)

1.41
(±0.25)

0.84
(±0.25)

15 1.84
(±0.50)

1.36
(±0.22)

0.74
(±0.22)

16 2.18
(±0.72)

1.31
(±0.22)

0.60
(±0.22)

17 1.64
(±0.41)

1.42
(±0.25)

0.87
(±0.25)

18 1.59
(±0.40)

1.44
(±0.26)

0.91
(±0.27)

19 2.06
(±0.64)

1.33
(±0.22)

0.65
(±0.22)

20 2.13
(±0.44)

1.48
(±0.17)

0.69
(±0.16)

21 2.18
(±0.43)

1.47
(±0.16)

0.67
(±0.15)

22 2.27
(±0.46)

1.42
(±0.15)

0.63
(±0.14)

23 2.42
(±0.50)

1.36
(±0.13)

0.56
(±0.12)

24 2.54
(±0.54)

1.33
(±0.12)

0.52
(±0.12)

25 2.39
(±0.50)

1.38
(±0.14)

0.58
(±0.13)
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hydrogen bond basicity and molecular size. The
approach proposed in this work could be applied to
optimize ADMETox properties of compounds with
potential for pharmacological application.

Additional material

Additional file 1: Experimental details and data of the investigated
compounds. Additional file 1 includes the experimental procedures and
physico-chemical characterization of the investigated compounds.
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