
Höck and Riedl ﻿J Cheminform (2019) 11:80
https://doi.org/10.1186/s13321-019-0403-2

SOFTWARE

CyBy2: a strongly typed, purely functional
framework for chemical data management
Stefan Höck and Rainer Riedl* 

Abstract 

We present the development of CyBy2, a versatile framework for chemical data management written in purely func-
tional style in Scala, a modern multi-paradigm programming language. Together with the core libraries we provide
a fully functional example implementation of a HTTP server together with a single page web client with powerful
querying and visualization capabilities, providing essential functionality for people working in the field of organic
and medicinal chemistry. The main focus of CyBy2 are the diverse needs of different research groups in the field and
therefore the flexibility required from the underlying data model. Techniques for writing type level specifications giv-
ing strong guarantees about the correctness of the implementation are described, together with the resulting gain
in confidence during refactoring. Finally we talk about the advantages of using a single code base from which the
server, the client and the software’s documentation pages are being generated. We conclude with a comparison with
existing open source solutions. All code described in this article is published under version 3 of the GNU General Pub-
lic License and available from GitHub including an example implementation of both backend and frontend together
with documentation how to download and compile the software (available at https​://githu​b.com/stefa​n-hoeck​/
cyby2​).

Keywords:  Chemical data management, Lab inventory, Medicinal chemistry, Functional programming, Type driven
development, Scala

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
As researchers in the field of drug discovery we have
very specific needs when it comes to electronically
archiving and visualizing the results produced in our
research group. For our daily synthetic work we would
like to have an easily accessible lab inventory search-
able by molecular (sub)structures with the ability to
export selected subsets of the data for the generation
of screening libraries or the exchange with external
research partners. The inventory should be editable
by all researchers, but superusers should be able to
review these edits and get comprehensive information
about what was changed in the database by whom. To

help in the process of drug design, we want to be able
to link compounds with activity data from biological
assays, and we want to be able to use a powerful but
convenient to use querying language together with vis-
ualization utilities to analyze these datasets for struc-
ture activity relations (SAR) against different targets.
The entire SAR data in the database should be acces-
sible to the participating scientists by project affilia-
tion, so that confidentiality of the data is guaranteed,
which is of great relevance from an intellectual prop-
erty rights point of view, especially in industry-related
cooperations. In addition, we want to link data objects
in our database to files and URLs containing additional
information such as spectroscopic data, synthetic pro-
cedures, or raw data from bioassays. We also expect
the software to prevent us from making common mis-
takes like entering ill-formed data or duplicate entries

Open Access

Journal of Cheminformatics

*Correspondence: rainer.riedl@zhaw.ch
ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31,
8820 Wädenswil, Switzerland

http://orcid.org/0000-0003-2534-1963
https://github.com/stefan-hoeck/cyby2
https://github.com/stefan-hoeck/cyby2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0403-2&domain=pdf

Page 2 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

into the underlying database. Eventually these require-
ments led us to implement our own data manage-
ment tool, going through several stages of refactoring
when requirements changed or new functionality was
requested [1].

Other groups, however, have different needs. They
might want to have a full-fledged electronic lab journal,
the ability to not only link spectroscopic data as files but
also to be able to query the database for spectroscopic
fingerprints or synthetic procedures using certain reac-
tants or having a yield in a certain range. If their needs
differ too strongly from what our own data management
tool offers, it no longer makes sense for them to use
the same piece of software. The authors of the Chemo-
tion ELN have already described the advantages of open
source solutions to address these diverse needs [2]. While
we agree whole-heartedly, we would like to address an
additional issue: Specifications for this kind of software
solutions are not static and user requirements change
over time. Adhering to these changed requirements poses
two major risks: Invalidating the data stored on disk as it
no longer matches the new data model and introducing
regression errors due to changes made in the code base.
Considering that many solutions in cheminformatics
consist of thousands of lines of code written in dynami-
cally typed scripting languages like Python (e.g. RDKit
[3]), Perl (e.g. Perl bindings in OpenBabel [4]), Ruby (e.g.
Chemotion ELN [2]), JavaScript (e.g. ChemDoodle [5]),
PHP (e.g. open enventory [6]), or statically but—com-
pared to the languages described below—weakly typed
languages like Java (e.g. CDK [7]) or C++ (e.g. Open-
Babel [4]), we believe these risks to be real and quite
limitating.

One predominant technique used to address the sec-
ond issue (regression errors) are unit tests: Pieces of code
that can be automatically run to verify that the software
still behaves correctly. While unit tests play an important
role in almost all modern medium to large-scale software
projects, they can typically only show the presence of
errors but not prove their absence, because in order to do
so, a piece of code would have to be tested against all pos-
sible values in its domain (the set of possible input values)
in all possible environments. While testing a function in
different environments is unnecessary if it is referentially
transparent (see below), the domains of most functions
are far too large to be tested exhaustively in reasonable
time. Also, writing thorough unit tests can be cumber-
some and time consuming, and as such is easily neglected
in favor of adding new features. While enforcing good
coding practices like test driven development [8] can help
in the writing of more reliable software, we experienced
a drastic increase in productivity when turning to writ-
ing code in pure, strongly typed functional programming

languages thus rendering a large set of unit tests obsolete
(see also [9]).

Pure functional programming
The advantages of pure, strongly typed functional pro-
gramming languages have already been described in
several articles in this journal, and we will only recap the
most important points [10, 11]. In functional program-
ming, functions are first class, meaning that functions
can be passed as arguments to other functions, can have
other functions as their result, can be assigned to vari-
ables, and can be stored in data structures. They are the
main form of abstraction and code reuse in these lan-
guages. Functions taking other functions as parameters
or returning them as their results are typically referred to
as higher order functions.

Pure functional programming languages like Haskell
[12] in addition require functions to be pure, or referen-
tially transparent. An expression is referentially transpar-
ent, if it can be replaced with its result after evaluation
without changing the behavior of the program whatso-
ever. As such, referentially transparent functions may not
access or mutate global state, make changes to the outside
world like writing to or reading from files, interact with
peripheral devices or communicate over networks, as all
these actions would change a function’s behavior depend-
ing on its environment. Pure functions may only operate
on their input parameters probably by calling other pure
functions, and all values passed to such functions must be
immutable. While this may seem very restrictive to pro-
grammers accustomized to typical imperative languages,
pure functions are trivial and safe to compose and easy
to reason about. They are per definition safe to be called
in a multithreaded setup without the risk of race condi-
tions, deadlocks or other unexpected behavior. Finally,
they allow us to come up with mathematical proofs about
their correct behavior through equational reasoning [13].
As such they make for highly reusable code components.

While referentially transparent functions can be writ-
ten in all programming languages, in pure functional pro-
gramming languages like Haskell or Idris [14] referential
transparency is enforced by the type system. Other lan-
guages like Scala [15], while being impure by default, are
equipped with type systems expressive enough to imple-
ment similar effect systems for those who like to keep
track about effectful functions at the type level. (One
such implementation is provided by the cats-effect library
[16]).

Algorithms written in purely functional style as well
as pure data structures can incur a certain performance
cost compared to optimized imperative solutions. For
instance, in-place mutation of a field in a complex muta-
ble data object is typically very fast compared to accessing

Page 3 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

and updating a value in a deeply nested immutable data
object. Note, however, that with immutable data the por-
tions of the data structure that are not modified can be
shared between the old and new version and therefore
need not be copied. For a detailed treatment of purely
functional data structures, see [17]. However, even in
pure languages like Haskell it is possible to make use of
efficient mutable data structures and mutable references
if raw performance is required. A function making use of
in-place mutation internally is still referentially transpar-
ent, as long as the mutable state is securely encapsulated
within the function, i.e. is not passed as an argument to
the function nor returned as part of the function’s result.
Ideally, the safe treatment and proper encapsulation of
mutable state can be verified using the language’s type
system as is for instance possible in Haskell [18].

Property based testing
An additional advantage of pure functions is their test-
ability: Being referentially transparent guarantees that
these functions always behave the same no matter the
environment in which they are called. A common tech-
nique to test this kind of function is property based test-
ing: Relations between a function’s arguments and its
results are defined and verified against a large amount of
randomly generated input [19]. This is especially useful
to make sure that type class instances adhere to certain
mathematical laws. For instance, the following functions,
written in Haskell, verify the laws of reflexivity, symme-
try, and transitivity of equivalence relations:

refl :: Eq a => a -> Bool

refl a = a == a

sym :: Eq a => a -> a -> Bool

sym a b = (a == b) == (b == a)

trans :: Eq a => a -> a -> a -> Bool

trans a b c | a == b && b == c = a == c

| otherwise = true

These properties can now be verified for each data type
with an instance of type class Eq, by running the func-
tions defined above against a large amount of randomly
generated values.

Property based testing leads to great confidence in code
correctness as a greater part of a function’s domain is ver-
ified in these tests than with manually written unit tests.
Typical frameworks like ScalaCheck [20] or QuickCheck
[21] make sure to include easily neglected corner cases
in the set of randomly generated input values, forcing

programmers to take care about typical errors like divi-
sion by zero or integer overflows, if these cannot already
be ruled out at the type level.

Type driven development
In addition to enforcing or at least encouraging a pure
programming style, languages as the ones described
above are equipped with powerful, versatile type sys-
tems. One technique for writing code in such languages
is type driven development: Programmers write type
level specifications of functions first and with the com-
piler’s help derive implementations of these functions
[22]. Dependently typed languages like Idris [14] can
give rise to such detailed type level specifications, that
the compiler can in some cases generate code from a
function’s type automatically if it can prove that there
can exist only one correct, provably terminating imple-
mentation. Consider the following trivial example,
written in Haskell:

id :: a -> a

id a = a

The first line is the function’s type declaration, the
second is its actual implementation. The type reads as
follows: Given a value of an arbitrary (choosable by the
function’s caller) type a, the function returns a value
of the same type. It can be shown that this function
can have only one terminating, referentially transpar-
ent implementation: The function must return exactly
the value it has been given as input, as it cannot make
any assumptions about the value’s type and therefore
about its associated operations [23]. While this exam-
ple might not seem to be very useful, the concept can
be extended to more useful type declarations. Con-
sider the following example, relevant to cheminformat-
ics, where molecules often have to go through the right
routines of initialization before using them in a given
algorithm makes sense. When performing a substruc-
ture search, for instance, molecules should probably
already have been aromatized and explicit hydrogen
atoms should have been added. Toolkits like the CDK
usually mention these prerequisites in a function’s
documentation, but we consider it to be much more
useful, if this information is available at the type-level.
The following code snippet (again in Haskell for brev-
ity) describes the concept of using phantom types to
tag such type-level information to a data type. A phan-
tom type is a type that is never instantiated at run time
and serves merely as a type-level marker at compile
time.

Page 4 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

data ExplicitH

data ImplicitH

data Aromatized

data Kekulized

netype TaggedMol a b = TaggedMol Molecule

explicitH :: TaggedMol a ImplicitH ->

TaggedMol a ExplicitH

explicitH = ...

implicitH :: TaggedMol a ExplicitH ->

TaggedMol a ImplicitH

implicitH = ...

aromatize :: TaggedMol Kekulized b ->

TaggedMol Aromatized b

aromatize = ...

isSubstructure :: TaggedMol Aromatized ExplicitH ->

QueryMol ->

Bool

isSubstructure = ...

TaggedMol is a wrapper for molecules holding addi-
tional type-level information in the form of phantom type
parameters a and b. These type parameters are used in
the functions described above to keep track of the exact
representation used in the molecule. They prevent pro-
grammers from aromatizing molecules twice for instance,

since aromatize can only be called with a Kekulized mol-
ecule, but they prevent us also from performing a sub-
structure search on a molecule in the wrong state. Unlike
comments in code, tagged types like the ones above are
a form of documentation that can never go out of sync
with the implementation as it is verified by the type
checker whenever the code is being compiled. We hope
that this last example shows, how powerful a tool type-
driven development is in a programmer’s toolbox.

Implementation
This section describes the example implementation
released together with CyBy2’s source code. Most com-
ponents can be exchanged depending on preferences as
described in section Results.

Figure 1 shows a simplified UML diagram of the data
types used in the example implementation. At the root
of the data tree are Compounds representing chemi-
cal entities typically with a proper chemical structure,
name and—if available—CAS number. A compound can
be linked to an arbitrary number of physical Contain-
ers stored at the Location given, usually bought from a
given Supplier. A BiodataEntry represents a result from
a bioassay represented by the Method data type. An arbi-
trary number of such entries can be linked to a container.
Compounds, containers, and biodata entries are linked
to Projects to guarantee the proper concealment of con-
fidential information. A User in CyBy2 has been granted
access to a subset of all projects and can view and prob-
ably modify only data linked to these projects.

Fig. 1  Data Model. This simplified UML diagram shows an excerpt of the data model. Here we see how compounds together with linked files and
containers actually form a heterogeneous data tree linked to objects from other “tables” like projects and assays. While it is possible to map these
kinds of data graphs to tables in a relational database, we consider tree shaped data formats like JSON or XML to be better suited for this task

Page 5 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

The data model as presented here is flexible and can
easily be extended with additional fields or restructured
by adding, removing or relinking components. The
type checker will reliably guide implementors through
this process of refactoring, while a lot of functionality
provided by type class instances will be updated auto-
matically (see also the section on Automatic Type Class
Derivation). In addition, many of the concepts described
in this article are generic and could easily be applied to
other fields of science.

With the exception of the CSS rules used in the web
frontend, CyBy2 as a whole was written in purely func-
tional style in Scala, a multiparadigm programming lan-
guage with an expressive type system and strong support
for functional programming techniques [24]. Scala was
our language of choice since it is compiled to Java byte-
code by default, comes with a plethora of useful third-
party libraries, and interacting with existing Java libraries
is trivial.

We used sbt [25] for building the application. The core
libraries are split into several modules grouped under a
single multi-module sbt project.

The backend consists of a REST server implemented
on top of Http4s [26], a minimal, purely functional HTTP
server based on functional streams (fs2 [27]). It uses cats-
effect [16] as its effects system, allowing programmers
to wrap calls to impure code in an IO data type mak-
ing effectful computations visible at the type level. For
all chemistry related calculations like substructure and
similarity searches the server makes use of the chemistry
development kit (CDK [7]). Linked files and user settings
are stored in an SQLite database [28], while all other data
entries like compounds, containers etc. are stored in a
custom JSON format tailormade to allow for the incre-
mental reassembly of the whole dataset. We used the
Typelevel Scala Compiler [29] to compile the backend to
Java bytecode, as it offers better support for some of the
programming techniques used in the implementation.

The frontend consists of a single page web application
written also in Scala and compiled to JavaScript using
the ScalaJS compiler [30]. For drawing molecules we use
ChemDoodleWeb [5]. With the exception of scalajs-dom
[31], a statically-typed DOM API, the web frontend has
no other dependencies on external JavaScript libraries.
The interactive behavior of the user interface was imple-
mented using an adaption of monadic streaming func-
tions [32] a generalized functional reactive programming
framework originally written in Haskell. The resulting
code is available as a module of CyBy2.

Finally, CyBy2 comes with detailed HTML documenta-
tion describing its functionality. Documentation is gener-
ated by a Scala program having access to the code base
of both client and server. As such, the code generating

the documentation is strongly typed and reuses the same
HTML elements as the web client. This guarantees that
examples in the documentation stay in sync with changes
made to the core application.

Results
CyBy2 offers a highly customizable framework for writ-
ing chemical data management systems. It comes with
powerful building blocks to write reactive user interfaces
where users can conveniently analyze datasets in differ-
ent views, define versatile combined queries including
(sub)structure and similarity searches, and quickly add
or modify data objects like compounds, linked files, or
containers. Selected datasets can be exported to several
formats, including .sdf, a standard chemical file format,
and .odt readable by spreadsheet applications. In the
example implementation, all data objects are linked to
a project and users cannot view pieces of information,
unless they have been granted access to the correspond-
ing project. With the exception of raw file data and user
settings, which are stored in a lightweight SQLite data-
base, changes made to the data are stored incrementally
in JSON format and the dataset is reassembled from
these changes when the server is started. Administrators
therefore have access to the complete editing history of a
piece of information, allowing them to easily monitor and
review changes made to the data.

Frontend
Users of CyBy2 interact with the server through its fron-
tend, an interactive single page web application.

Queries
CyBy2 offers powerful querying capabilities. It comes with
a convenient quick search text field useful for running
simple searches. Depending on its format, the search
string is either interpreted as a set of compound IDs, a
CAS number or a regular expression. Regular expressions
are matched against all textual fields in a compound’s
data tree, filtering compounds, containers and linked files
accordingly.

Advanced users can make use of CyBy2’s capabili-
ties to define combined queries (Fig. 2). Every row
represents a predicate tested against one field in the
heterogeneous data tree. The type of query changes
dynamically with the selected field: Numeric queries
allow users to enter a combination of numbers and com-
parators, textual fields come with a text input together
with a dropdown to define how the query should be
interpreted. Queries against links to other data objects
like suppliers, locations or projects come with a drop-
down menu containing all valid options depending on
the logged in user. Rows can be combined using logical

Page 6 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

operators and lists of rows can be grouped in parenthe-
ses, leading eventually to a tree of predicates to be sent
to and interpreted by the backend. An arbitrary amount
of structure based queries like substructure and simi-
larity searches can be included in a combined search.
Finally, often used queries can be given names and per-
sisted together with other user settings.

At the backend an interpreter for combined queries
consists of a function returning a parser for predicates
depending on the field subjected to the query. Fields
are just enumeration-like data types closely related to
the actual structure of the data types used to represent
compounds and containers. The compiler can be made
to enforce pattern matches against fields to be exhaus-
tive and thus not a single case to be missed. This concept
of defining behavior depending on a selection of fields
comes up again, for instance when exporting data or
when displaying data in tabular form with a selection of
visible rows.

Data visualization
Hitsets from queries can be displayed in several views
(Fig. 3). The default tabular view actually consists of
expandable nodes reflecting the tree structure of the
underlying data model. The selection and order of dis-
played columns is customizable and the settings persisted

together with other user settings. For a quick overview
a grid view displaying just the structures of compounds
is available. Subsets of compounds can be conveniently
selected for instance to export only parts of a hitset. For
analyzing structure activity relations another tabular
view grouping entries by batch is available. Here, addi-
tional columns with statistics of biological activities can
be displayed. For numeric columns, color gradients can
be defined to help with the visual interpretation of the
data.

Lazy loading
Since hitsets from queries can be quite large, consisting
of thousands of compounds, in order to not slow down
the UI only small packages of results are loaded at a time.
In order to view additional results, users can just scroll
down in the different views. Upon getting close to the
bottom, new data is automatically requested from the
server.

User roles and data editing
Users in CyBy2 can be assigned different roles rang-
ing from guest to administrator accounts. Most users
are allowed to make changes to the data. Editing data
is turned off by default in order to prevent users from

Fig. 2  Combined Queries in CyBy2 Each row represents a predicate against a certain piece of information stored in the database. Rows can be
grouped in parentheses and combined using logical operators. Often used queries can also be stored to and reloaded from a drop down menu

Page 7 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

Fig. 3  Data visualization. Hit sets from queries can be visualized using different views. For a quick overview and a convenient way to select a subset
of the compounds returned, the grid view can be used (a). The default view is an expandable tree closely related to the tree shape of the underlying
data (b). A tabular view is used to analyze structure activity relations (SAR). Background color gradients can be defined for numeric columns to help
with the visualization of data (c)

Page 8 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

inadvertently making changes when interacting with the
user interface. It can be enabled by clicking on a master
button in the explorer. All changes are persisted together
with a timestamp and user ID. This allows superusers and
administrators to peer review changes made to the data
and get in touch with users who submitted data of insuf-
ficient quality. Several combined query options are avail-
able to facilitate this kind of administrative task.

Exporting data
Results from the latest query can be exported to several
file formats (Fig. 4). Users can freely add to or remove
from the list of exported fields. This selection not only
determines the columns in tabular file formats but also
the number of rows. If only fields of compounds are
selected, there will be one row per compound. How-
ever, if fields of containers are included, there will be one
row per container. CyBy2 supports exploring to .sdf, .odt
(to be read by spreadsheet applications) and .csv (tab
delimited).

Backend
The server is responsible for providing the core func-
tionality of CyBy2. This includes loading, persisting,
validating, and updating of data, querying and sorting
of data, exporting of data to different formats as well as
user management, authentication and authorization. As
such, the server plays a critical role for CyBy2 to operate

correctly. Resorting to a purely functional, strongly typed
programming style allowed us to be confident in the cor-
rect behavior of the server even in the face of aggressive
code refactorings.

Chemistry toolkit
The server uses the CDK for all tasks related to comput-
ing properties of compounds and performing structure-
based queries like substructure or similarity searches.
Since strictly speaking, all code in the CDK is unsafe (ref-
erentially opaque), we provide safe wrappers for the core
functionality needed by CyBy2. In order to make CDK’s
functionality available from within pure code, we do not
wrap mere calculations like—for instance—the ones for
getting the mass of a molecule or performing substruc-
ture searches in the IO monad, but in a wrapper type
guaranteeing the confinement of mutable structures to
the implementation of pure functions. This technique is
also used in Haskell for instance to use mutable arrays
when implementing performance critical, referentially
transparent functions [18]. In addition, return types
of our wrapper functions always reflect the possibil-
ity of failure for these calculations. This was necessary,
since in the CDK fields of data objects are often initial-
ized to null (probably for performance reasons) and
NullPointerExceptions occurred frequently when
working with objects which have not gone through the
necessary initialization routines. Wrapping these calls

Fig. 3  continued

Page 9 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

in the Either monad allows us to provide additional
information about the input parameters giving rise to an
exception and programmers are forced by the type sys-
tem to eventually break out of Either thereby handling
all exceptions that occurred during a calculation.

Persistence layer
The persistence layer of an application in its most basic
form reads and writes data from and to disk. Typically,
this is done using some kind of relational database such
as PostgreSQL [33]. Queries are then either run directly
against the data on disk, or all data is first loaded into
memory and managed by the server application. The lat-
ter typically is faster but works only up to medium sized
datasets fitting still in the server’s memory.

While CyBy2 can easily be linked to any persistence
framework such as doobie [34] through mere function
composition, we preferred the latter approach whenever
possible due to the increase in type safety and possibly
performance. Instead of laying out data as tables in a rela-
tional database, we stored data incrementally in JSON
format. This had several advantages:

•	 Most importantly,our in-memory model was much
more of a natural fit: In contrast to the flat tables used
in relational databases, data objects in applications such
as CyBy2 are better modelled as heterogeneous trees
(Fig. 1). While assembling heterogeneous data trees
from relational databases is of course possible, the nec-

essary SQL queries can be cumbersome to write and
slow in performance. This motivated the approach of
NoSQL systems for storing data in non-relational for-
mats. The JSON format offers a lightweight NoSQL
solution: JSON objects are (mostly) untyped heteroge-
neous trees. As such they are a natural fit for storing our
data. In addition, encoders and decoders from and to
JSON could be conveniently derived automatically for
regular algebraic data types, using the circe library [35].

•	 A custom persistence model allowed us to store
changes to the data instead of just overwriting existing
rows in databases tables. Upon starting the server, the
whole dataset is incrementally reconstructed from its
history. As such, we always had access to the complete
history of the data and could make this history available
to administrators for reviewing changes made by users.

•	 We often had to make adjustments to the data model
such as when adding new fields or supporting new
data types due to evolving requirements of end
users. With an in-memory model based on a JSON
encoding, we found it to be trivial to allow for such
changes: New fields were typically optional (wrapped
in an Option[A], a functional programmer’s type-
safe alternative of null). In case they were manda-
tory, we could provide default values probably calcu-
lated from other fields. All this could easily and safely
be handled by the server. At no point did we need to
touch or modify the data stored on disk. Fields miss-
ing from a JSON tree already stored on disk were

Fig. 4  Exporting data. CyBy2 gives users detailed control over what fields to export in what order. Fields can be selected from the drop down menus
and new columns can be added by click the ‘plus’ icon. Several different file formats are available for exporting

Page 10 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

automatically loaded as None forcing us at the type
level to provide default values if necessary.

This approach worked very well for datasets fitting into the
server’s memory as a whole. However, care had to be taken
to make sure that calls to mutate the data (both in memory
and on disk) are properly synchronized and occur strictly
in sequential order while mere queries can be parallelized
freely. The implementation uses an MVar provided by the
cats-effect library [16]. This is a thread-safe mutable vari-
able, that can either contain a value or be empty and can
act as a binary semaphore to make sure only one thread at a
time can access and modify mutable state and write to disk.

Groups with larger datasets might consider a hybrid
approach: As chemical structures together with their fin-
gerprints required in substructure and similarity searches
typically make up the bulk of a chemical database, this
information can still be stored in a relational database and
these kinds of queries run using a chemical database car-
tridge such as RDKit [3] or Sachem [36], while additional
structured data is still stored as a data tree. (A database
cartridge is a way to enhance an existing database imple-
mentation with business logic from other domains. RDKit,
for instance, provides a cartridge to enhance a PostgreSQL
database with capabilities for substructure and similarity
searches in molecular graphs stored within the database).
While such a hybrid system has not yet been implemented
in CyBy2, it should be straight forward to do so without
significant changes to the remainder of an already existing
code base, once datasets get large enough.

There is one exception to our JSON-based approach:
We stored linked files and user settings in a local SQLite
database without keeping track of their update history.
Files can occupy large amounts of space and it makes no
sense loading them into memory as a whole. User settings
on the other hand change with almost every client request.
As such it would take up too much space and we would
gain very little if we stored these changes incrementally.

Data model
The main advantage of writing both the backend and
frontend of a web application in the same strongly typed
programming language is the large amounts of code the
two parts can share. This is especially useful when it
comes to sharing the data model, since correct protocols
for encoding and decoding data come for free this way.
In this part we are going to describe some of the tech-
niques used to write detailed type level specifications and
to make use of those specifications in order to derive all
kinds of behaviors generically.

Flexible data types
The code samples below have been considerably simpli-
fied compared to the data definitions in the actual source
code and some of the classes and functions are used solely
to demonstrate how our data model evolved. These are not
part of the source code. However, where package names are
given explicitly, class names are the same as in the source
and should therefore be easy to locate for interested readers.

While sharing the data model between frontend and
backend immediately sounded reasonable, it was at first
not clear how to do this properly because when client
and server communicate with each other, they neces-
sarily have to represent some data types differently, be
it for reasons of performance, confidentiality or simply
lack of information. For instance, consider the follow-
ing stripped down example of a chemical compound:

case class Compound(

id: Long,

structure: Molecule,

casNr: CasNr,

containers: List[Container]

)

Since we used the CDK at the server (running on the Java
Virtual Machine) for handling chemical structures, it was
not possible nor desirable to use the same representation
at the client (JavaScript running in the browser). Therefore,
while the server of course had to know about molecules, the
client did not and even could not. The client only required a
vector graphics representation to display compounds most
of the time. So we actually needed two data types for mol-
ecules: One for the data stored in memory at the server, one
for the data to be sent to and displayed by the client.

case class CompoundSrv(

id: Long,

structure: Molecule,

casNr: CasNr,

containers: List[Container]

)

case class CompoundCli(

id: Long,

structure: SVG,

casNr: CasNr,

containers: List[Container]

)

Page 11 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

Note, how the two data types are not related through a
common superclass. We wanted to be precise about the
types and not mix them up in any way. We also wanted
to use the same data type to send requests from the cli-
ent to the server to create new compounds, as well as for
updating existing compounds. This introduced several
new problems. First of all, the structure’s type was again
wrong: We could not use vector graphics to describe
molecular graphs and CDK’s Molecule data type was not
available at the client. In addition, we did not want the
client to dictate the server what ID to use for new com-
pounds. Also, we wanted to separate the creation of new
compounds from the creation of new containers. Reflect-
ing this in the types, we arrived at the following additional
data type:

case class CompoundAdd(

structure: MolFile,

casNr: CasNr,

)

Given the next available compound ID and a function
to read molecules from mol files, it was now trivial to
implement a utility function mkSrv for creating com-
pounds from CompoundAdd objects.

def readMol(mf: MolFile): Molecule = ...

def mkSrv(c: CompoundAdd, nextID: Long)

: CompoundSrv = CompoundSrv(

nextID,

readMol(c.structure),

c.casNr,

Nil

)

Note how we eliminated several possibilities for erro-
neous behavior. The types guarantee, that the struc-
ture is a well formed MolFile and that the compound’s
CAS number adheres to the desired invariants. But
the types also guarantee, that the server is responsible
for creating new compound IDs and that no contain-
ers are added for instance by sending a forged HTTP
request to the server. (Note: The types in this exam-
ple have been simplified for clarity’s sake. In the actual
implementation we used a wrapper type for hiding the
mutable internals of Molecules and the result type of
readMol had to reflect the possibility of failure when
reading the molecule from a text representation.)

But this data type was not well suited for modifying
compounds, as users usually do not want to modify all
fields simultaneously. Of course we could just copy the
other fields and send them back to the server, but this
would mean that every change made for instance to the
name of a compound, would also lead to the storing of
the compound’s structure, unnecessarily increasing the
size of the database. We therefore wrote another data
type, where all fields were optional.

structure: Option[MolFile],

casNr: Option[CasNr],

)

This lead to a collection of data types around the con-
cept of a compound, each with clear properties docu-
mented at the type level. Interactions between these
data types, for instance when creating new compounds
or when sending compounds to the client, were triv-
ial to implement correctly since most mistakes would
immediately lead to type errors. While we thus had
greatly improved the type level specification of our data
model, we also had drastically increased the amount of
code, considering that we had to provide implemen-
tations of JSON encoders and decoders together with
other type class instances for each of these classes and
that the real versions could consist of dozens of fields.

Using a polymorphic data type (higher-kinded in one
type parameter) together with Scala’s ability to define
type aliases solved this issue quite nicely. The actual poly-
morphic data type was defined in the data module shared
by client and server.

package cyby.dat.example

case class Compound[F[_],ID,Mol,Cons](

id: ID

structure: F[Mol],

casNr: F[CasNr],

containers: Cons,

)

object Compound {

type Containers = List[Container]

type Cli =

Compound[Pure,Long,SVG,Containers]

}

Page 12 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

Type aliases only used at the server were defined within
a wrapper object in the server module.

package cyby.server.example

object CompoundS {

type Srv =

Compound[Pure,Long,Molecule,Containers]

type Add =

Compound[Pure,Unit,MolFile,Unit]

type Mod =

Compound[Option,Unit,MolFile,Unit]

}

Data type Compound was now polymorphic in most
fields (with the exception of casNr), leading to great
flexibility about what types of data were actually bun-
dled with a compound while keeping the name of fields
consistent. The most interesting part is the higher
kinded parameter F[_]. It describes the context in which
values appear. Typically, it was set either to Pure,
meaning that all values had to be present or to Option,
meaning that values were optional, which reflected our
needs for updating data. Fields not used by some rep-
resentations were set to Unit, a type inhabited by just a
single value. These type declarations lead to the same
behavior and guarantees as the different class declara-
tions described above but without the code duplica-
tion. We were able to define additional type aliases
for instance for compounds after user authorization
and input validation, allowing us to enforce important
invariants about our code at the type level. The tech-
nique described here was used excessively in the exam-
ple implementation.

Confidence at the type level
We want to give one other example, again slightly
simplified, how we made use of types to enforce cer-
tain invariants in our code. We wanted to prove, at the
type level, that access to data objects like compounds
had been properly verified before sending them to cli-
ents. This was critical, since we did not want to leak
information to unauthorized users. For this we defined
a simple polymorphic wrapper type with a private
constructor:

package cyby.dat.example

case class HasAccess[A] private (v: A)

object HasAccess {

def project(

u: User,

p: Project.Id

): Option[HasAccess[Project.Id]] = ...

}

(Note: In the source of the example application,
function project is available through a helper class
AuthEnv, which we have omitted here for increased
readability). We used projects to grant access to com-
pounds and we tagged project IDs with HasAccess
before sending data to clients.

case class Compound[F[_],...,P](

...

project: F[P],

)

object Compound {

type Cli =

Compound[Pure,...,HasAccess[Project.Id]]

}

object CompoundS {

type Srv =

Compound[Pure,...,Project.Id]

}

The only place from where we could get an instance
of HasAccess[Project.Id] was the correspond-
ing function in HasAccess’s companion object.
This proves, at the type level, that whenever we sent a
response of type Compound.Cli to the client, access
had been verified. Of course we still had to check via unit
tests, that the implementation of HasAccess.pro-
ject was correct but this was only a small piece of code,
easily testable using property based testing. Techniques

Page 13 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

like these allowed us to drastically reduce the surface area
of functions that actually required testing. The rest of the
application could be safely glued together with the help
of the type checker.

This last example shows the amount of confidence we
could get from a minimal amount of code and descrip-
tive, flexible types. We used similar techniques to prove
that data had been properly validated before being
stored, and delicate information like hashed passwords
were not accidentally being sent to clients.

Automatic type class derivation
Algebraic data types like the ones described above are
typically made up of two core building blocks: Sum
and product types. For these data types it is possi-
ble to automatically derive an isomorphic, canonical
representation together with conversion functions to
and from this canonical form [37]. If for a given type
class (for instance JSON encoders and decoders) we
can write implementations for the canonical building
blocks, we can also have implementations for the cor-
responding algebraic data types. This generic type class
derivation is a powerful concept and helps to drastically
reduce the amount of rather uninteresting code nec-
essary to implement type classes. Unlike Java libraries
like gson [38], this happens at compile time without the
need to resort to runtime reflection resulting in robust,
type safe code. Two Scala libraries provide the neces-
sary functionality: shapeless [39, 40] for automatically
generating generic representations of data types, and
circe [35] to derive JSON encoders and decoders for
these generic representations.

This approach was not only used when deriving JSON
encoders and decoders. We used it also in the UI to
automatically derive the generation of forms for creating
new data objects and at the server to merge updates into
the data tree and aggregating data objects with informa-
tion from weakly linked data types before sending them
to the client. Once again this enhanced the flexibility of
our data model: After adding new fields to existing data
types, or after changing the types of existing fields, rec-
ompiling the application would either result in compi-
lation errors if type classes could no longer be derived
automatically or type class instances were automati-
cally adjusted to the new data representations behaving
correctly without further ado. In case of compilation
errors it was obvious most of the time how to satisfy the
compiler by manually providing additional type class
instances for every component of an algebraic data type.

Exchanging parts of CyBy2
We think we made some reasonable choices when
implementing our example application, but users of our

library might want to exchange some parts, for instance
to use an existing relational database. This is of course
possible. The beautiful thing about strongly typed func-
tional programming is that the main building blocks
are just pure, well typed functions. Functions can eas-
ily be exchanged for other functions of the same type
using the help of the type checker to glue components
together. For instance, below is the type of an HTTP
request to run a query against the data stored in the
server’s memory:

type Prog[A] = ProgT[Pure,Env,Log,QSt,DataErr,A]

While this may look intimidating, it is actually a
quite accurate specification of what we can expect from
a value of this type. It is just an alias for a function of
the following type, wrapped up for better composabil-
ity (since types in Scala and other strongly typed func-
tional languages can get quite verbose, type aliases are
often used to make code more readable):

def prog[A](e: Env, st: QSt, List[Log])

: Pure[Either[

(Nel[DataErr],List[Log]),

(A,QSt,List[Log])

]] = ...

So, prog takes an immutable environment of type Env
(a purely functional form of dependency injection), an
immutable state of type QSt, and a list of logs, and either
returns a non-empty list of DataErrs plus as list of logs
or a result of type A together with an updated QSt and
a list of logs. The wrapper type Pure describes the side
effects this program can have when finally being exe-
cuted. In this case this means no side effects whatsoever.
To be a bit more precise: Env holds all information about
the HTTP request together with the data tree currently
stored in memory and information about the already
authenticated user who made the request. We need this
to filter results according to the projects the user has
access to. QSt is data that can change after a query has
been processed. It could for instance be used to cache
the results of queries in order to reduce response times.
DataErr is an algebraic data type representing all the
ways, in which a request at the server can fail. If such an
error occurs, it is both written to the log and sent back to
the client, which translates it into human readable form
and displays a message in the user interface.

We want to emphasize once again that all values passed
to prog are immutable. As such it is impossible for
function prog to change the global state of the server
application. Even in the case of QSt the state returned
by prog is a copy of the state object passed to prog as

Page 14 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

an argument probably with some fields updated. It is the
responsibility of the caller of prog what to do with the
updated state. This gives us a clear separation of concerns
visible at the type level. However, function types like the
one of prog can be cumbersome to compose. That’s why
they are usually hidden behind polymorphic wrapper
types called monad transformer stacks, for which one can
write instances of type class Monad, thus greatly increas-
ing their composability without compromising type
safety [41].

If we wanted to change the way queries were han-
dled, for instance by switching to a relational data base,
we would first adjust prog’s type accordingly: We
would probably still be using the same mechanisms for
caching (if any), but Env would no longer hold an in
memory copy of the data. On the other hand it would
contain information about the database connection to
be used. The effect type Pure would have to change in
order to reflect that we now need to access an exter-
nal database. The type checker would then guide us to
make sure that all types match up again once we glued
this new component together with the rest of the appli-
cation. This is the essence of type driven development:
Specify types first and let the type checker guide you
towards a correct implementation.

CyBy2 in the context of cheminformatics
Having described above in detail the advantages we
experienced from the design choices made in CyBy2,
this section will talk about some of the requirements
necessary to get started with using CyBy2 as a frame-
work to write custom data management applications.

As a framework written in purely functional style in
Scala, CyBy2 will require certain efforts from scientists
and programmers used to write code in imperative,
object oriented languages. Scala has the advantage of
having access to a plethora of Java libraries such as the
CDK already existing in the fields of cheminformat-
ics and science in general, and calling Java code from
within Scala is trivial. In addition, native code from
libraries written in C or C++ can be called from with
Scala as well as Java through the Java Native Interface.
As such, adopters can go ahead and freely use a large
amount of libraries available in Java and other lan-
guages together with CyBy2’s Scala code base. However,
typical design patterns used in object oriented lan-
guages such as those proclaimed by the famous Gang
of Four [42] have little to no meaning in the realm of
pure functional programming, while abstractions from
category theory like functor, monoid or monad being
used in many places in CyBy2’s source code are for-
eign to programmers new to strongly typed functional
programming. Adopters of CyBy2 will therefore be

required to get a firm grasp on these algebraic concepts
and we would like to give some recommendations in
terms of literature we deem to be easily accessible for
people interested and new to this topic. Functional Pro-
gramming in Scala [24] gives a thorough introduction
to writing pure, precisely typed functions and how to
make good use of the abstractions mentioned above.
Being written in Scala is an additional advantage for
people wanting to get started with using CyBy2 as the
foundation of their own data management tool. Many
more resources about pure functional programming
exist for the Haskell programming language (see for
instance [43, 44]), and indeed we think Haskell—being
pure by default—to be a very good choice for learning
functional programming from the very beginning.

Conclusion
CyBy2, a flexible open source framework for writ-
ing pure, strongly typed chemical and biological data
management applications was described. CyBy2 comes
with a fully operational example implementation of an
HTTP server and a single page web client, capable of
running complex combined queries including substruc-
ture and similarity search, lazy loading of large datasets,
different views for visualizing and analyzing data, and
support for exporting selected pieces of information to
several common file formats. Considering its capabili-
ties, CyBy2’s code base is very lean, consisting of only
about 10’000 lines of Scala code.

To the best of our knowledge, CyBy2 is the first exam-
ple of a chemical and biological data management tool
written in purely functional style. As such it can also be
seen as a resource of coding practices in functional pro-
gramming in a real world application. It was designed
with the diverse and evolving needs of research groups,
governmental organizations and industry in mind,
requirements we have evaluated both in-house as well
as together with collaboration partners from academia
and industry. These needs include the ability to link
diverse information to chemical structures allowing
users to easily access this information through an intui-
tive to use, well documented web interface and provid-
ing powerful and flexible capabilities for querying and
exporting the data. At the same time the underlying
data model should be flexible enough to allow for the
smooth evolution of the data handled by the applica-
tion, as requirements regarding the information avail-
able change regularly. Since adjustments to the data
model pose several risks as has been outlined in the
introduction of this article, we found the reliability
provided by a strongly typed data model to be highly
valuable with regards to the constant refactorings
required for evolving the software. During refactoring,

Page 15 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

the power of a modern expressive type system helped
us when verifying that components interacted correctly
and important invariants were being upheld, but also
with the automatic derivation of type class instances to
provide overloaded functionality. We use CyBy2 inten-
sively as the central data processing tool in our research
group. In recent years, it has proven its value for the
design, synthesis and analysis of our drug molecules in
complex medicinal chemistry projects [45–50].

Since server, client, and documentation were compiled
from the same code base, we could reuse a considerable
amount of code between these three parts of the applica-
tion, thus reducing the possibility of bugs when defining
the protocol for exchanging data and making sure that
the different parts of the application stayed in sync even
in the face of serious refactorings.

We plan to add additional functionality to the pro-
ject found in other lab notbook and inventory applica-
tions such as Chemotion ELN [2] or open enventory [6],
giving these features a proper description at the type
level to facilitate their safe incorporation into custom
instances of CyBy2. Most importantly, we plan to include
functionality to query major suppliers’ webpages by CAS
number to retrieve chemical structures and safety data.
Also missing are ways to view, analyze and query spec-
troscopic data uploaded as raw data files. We are also
working on a layer of more accurately typed wrappers
for functionality provided by the CDK in order to facili-
tate writing code that works correctly without throwing
exceptions once it compiles, as we are used to as func-
tional programmers.

An alternative to static type systems for proving code
correctness is the formal verification of software using
satisfiability modulo theories (SMT) solvers. The stainless
library allows programmers to define pre- and postrequi-
sites of functions for a subset of the Scala language, which
are then formally verified by an external SMT solver [51,
52]. Since we made use of parts of the language not yet
covered by stainless (for instance higher-kinded types),
these techniques have not yet found their way into our
code base, but we will observe with interest the progress
being made in this regard.

Acknowledgements
SH and RR are grateful to the Zurich University of Applied Sciences (ZHAW) for
financial support.

Authors’ contributions
SH designed and programmed CyBy2 and wrote the manuscript. RR did the
conception and supervised the project. Both authors read and approved the
final manuscript.

Funding
No funding besides financial support from ZHAW was received.

Data availability
Availability and requirements: Project name: CyBy2. Project home page: https​
://githu​b.com/stefa​n-hoeck​/cyby2​. Git tag of version used in this article: v0.3.
Operating system: Platform independent. Programming language: Scala.
Other requirements: HTTP server like Apache HTTP Server 2.4. License: GNU
GPL. Any restrictions to use by non-academics: None (see GNU GPL).

Competing interests
The authors declare that they have no competing interests.

Received: 20 August 2019 Accepted: 9 December 2019

References
	1.	 Höck S, Riedl R (2012) CyBy2: a structure-based data management tool

for chemical and biological data. CHIMIA Int J Chem 66(3):132–134. https​
://doi.org/10.2533/chimi​a.2012.132a

	2.	 Tremouilhac P, Nguyen A, Huang Y-C, Kotov S, Lütjohann DS, Hübsch
F, Jung N, Bräse S (2017) Chemotion ELN: an open source electronic
lab notebook for chemists in academia. J Cheminform. https​://doi.
org/10.1186/s1332​1-017-0240-0

	3.	 RDKit: Open-source Cheminformatics
	4.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison

GR (2011) Open babel: an open chemical toolbox. J Cheminform 3(1):33.
https​://doi.org/10.1186/1758-2946-3-33

	5.	 iChemLabs: ChemDoodle Web Components. https​://web.chemd​oodle​
.com

	6.	 Rudolphi F, Goossen LJ (2011) Electronic laboratory notebook: the
academic point of view. J Chem Inform Model 52(2):293–301. https​://doi.
org/10.1021/ci200​3895

	7.	 Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003)
The chemistry development kit (CDK): an open-source java library for
chemo- and bioinformatics. J Chem Inform Comput Sci 43(2):493–500.
https​://doi.org/10.1021/ci025​584y

	8.	 Beck A (2002) Test driven development: by example. Addison-Wesley
Longman Publishing Co., Inc., Boston

	9.	 Hughes J (1984) Why functional programming matters. Comput J
32:98–107

	10.	 Höck S, Riedl R (2012) chemf: a purely functional chemistry toolkit. J
Cheminform. https​://doi.org/10.1186/1758-2946-4-38

	11.	 Berenger F, Zhang KYJ, Yamanishi Y (2019) Chemoinformatics and struc-
tural bioinformatics in OCaml. J Cheminform. https​://doi.org/10.1186/
s1332​1-019-0332-0

	12.	 Peyton Jones S (ed) (2003) Haskell 98 Language and Libraries—the
Revised Report. Cambridge University Press, Cambridge

	13.	 Gibbons J, Hinze R (2011) Just do it: Simple monadic equational reason-
ing. In: ICFP. https​://doi.org/10.1145/20347​73.20347​77. http://www.comla​
b.ox.ac.uk/jerem​y.gibbo​ns/publi​catio​ns/mr.pdf

	14.	 Brady E (2013) Idris, a general-purpose dependently typed programming
language: design and implementation. J Funct Program 23:552–593.
https​://doi.org/10.1017/S0956​79681​30001​8X

	15.	 Odersky M, Spoon L, Venners B (2016) Programming in Scala: Updated for
Scala 2.12, 3rd edn. Artima Incorporation, USA

	16.	 Typelevel.scala: Cats-effect: The IO Monad for Scala. https​://githu​b.com/
typel​evel/cats-effec​t

	17.	 Okasaki C (1998) Purely functional data structures. Cambridge University
Press, Cambridge

	18.	 Launchbury J, Jones SLP (1994) Lazy functional state threads. ACM SIG-
PLAN Notices 29(6):24–35. https​://doi.org/10.1145/77347​3.17824​6

	19.	 Claessen K, Hughes J (2000) Quickcheck: a lightweight tool for random
testing of haskell programs., https​://doi.org/10.1145/19880​42.19880​46

	20.	 Nilsson R ScalaCheck: Property-based Testing for Scala. https​://www.scala​
check​.org/

	21.	 Claessen K QuickCheck: Automatic Testing of Haskell Programs. https​://
hacka​ge.haske​ll.org/packa​ge/Quick​Check​

	22.	 Brady E (2017) Type-driven development with Idris. Manning Publica-
tions, Shelter Island

	23.	 Wadler P (1989) Theorems for free!. Functional programming languages
and computer architecture. ACM Press, New York, pp 347–359

https://github.com/stefan-hoeck/cyby2
https://github.com/stefan-hoeck/cyby2
https://doi.org/10.2533/chimia.2012.132a
https://doi.org/10.2533/chimia.2012.132a
https://doi.org/10.1186/s13321-017-0240-0
https://doi.org/10.1186/s13321-017-0240-0
https://doi.org/10.1186/1758-2946-3-33
https://web.chemdoodle.com
https://web.chemdoodle.com
https://doi.org/10.1021/ci2003895
https://doi.org/10.1021/ci2003895
https://doi.org/10.1021/ci025584y
https://doi.org/10.1186/1758-2946-4-38
https://doi.org/10.1186/s13321-019-0332-0
https://doi.org/10.1186/s13321-019-0332-0
https://doi.org/10.1145/2034773.2034777
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/mr.pdf
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/mr.pdf
https://doi.org/10.1017/S095679681300018X
https://github.com/typelevel/cats-effect
https://github.com/typelevel/cats-effect
https://doi.org/10.1145/773473.178246
https://doi.org/10.1145/1988042.1988046
https://www.scalacheck.org/
https://www.scalacheck.org/
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck

Page 16 of 16Höck and Riedl ﻿J Cheminform (2019) 11:80

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	24.	 Chiusano P, Bjarnason R (2014) Functional Programming in Scala, 1st edn.
Manning Publications Co., Greenwich

	25.	 scala-sbt: Sbt: The Interactive Build Tool. https​://www.scala​-sbt.org/
	26.	 Baker R.A Http4s: Typeful, Functional, Streaming HTTP for Scala. https​://

http4​s.org/
	27.	 Coady G, Thomas F.S, Pilquist M FS2: Functional Streams for Scala. https​://

githu​b.com/funct​ional​-strea​ms-for-scala​/fs2
	28.	 Consortium S SQLite. https​://sqlit​e.org/index​.html
	29.	 Typelevel.scala: Typelevel Scala, a Fork of Scala. https​://githu​b.com/typel​

evel/scala​
	30.	 Doeraene S Scala.js, the Scala to JavaScript Compiler. http://www.scala​-js.

org/
	31.	 Doeraene S Statically Typed DOM API for Scala.js. https​://githu​b.com/

scala​-js/scala​-js-dom
	32.	 Perez I, Bärenz M, Nilsson H (2016) Functional reactive programming,

refactored. In: Proceedings of the 9th international symposium on Haskell
(Haskell ’16). http://eprin​ts.notti​ngham​.ac.uk/36159​/. pp 33–44

	33.	 PostgreSQL: The world’s most advanced open source relational database.
https​://www.postg​resql​.org/

	34.	 Norris R Doobie: Functional JDBC Layer for Scala. https​://githu​b.com/
tpole​cat/doobi​e

	35.	 Brown T Circe: Yet Another JSON Library for Scala. https​://githu​b.com/
circe​/circe​

	36.	 Kratochvíl M, Vondrášek J, Galgonek J (2018) Sachem: a chemical car-
tridge for high-performance substructure search. J Cheminform. https​://
doi.org/10.1186/s1332​1-018-0282-y

	37.	 Lämmel R, Peyton Jones S (2005) Scrap your boilerplate with class. ACM
SIGPLAN Notices 40:204. https​://doi.org/10.1145/10901​89.10863​91

	38.	 Gson: A Java Serialization/deserialization Library to Convert Java Objects
Into JSON and Back. https​://githu​b.com/googl​e/gson

	39.	 Sabin M Shapeless: Generic Programming for Scala. https​://githu​b.com/
miles​sabin​/shape​less

	40.	 Gurnell D (2017) The type Astronaut’s guide to shapeless. Underscore
Consulting LLP, Brighton

	41.	 Wadler P (1995) Monads for functional programming. In: Advanced
functional programming, first international spring school on advanced
functional programming techniques-tutorial text, Springer: London.
http://dl.acm.org/citat​ion.cfm?id=64769​8.73414​6. pp 24–52

	42.	 Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patters: elements
of reusable object-oriented software. Addison-Wesley, Boston

	43.	 Lipovaca M (2011) Learn you a haskell for great good. No Starch Press Inc,
San Francisco

	44.	 Allen C, Moronuki J Haskell Programming from First Principles. https​://
haske​llboo​k.com

	45.	 Gall FM, Hohl D, Frasson D, Wermelinger T, Mittl PRE, Sievers M, Riedl R
(2019) Drug design inspired by nature: crystallographic detection of an
auto-tailored protease inhibitor template. Angewandte Chemie Interna-
tional Edition 58(12):4051–4055. https​://doi.org/10.1002/anie.20181​2348

	46.	 Gall FM, Hohl D, Frasson D, Wermelinger T, Mittl PRE, Sievers M, Riedl R
(2019) Von der Natur inspiriertes Wirkstoffdesign: kristallographische
Detektion eines selbstgenerierten Inhibitor-Grundgerüsts. Angewandte
Chemie 131(12):4091–4096. https​://doi.org/10.1002/ange.20181​2348

	47.	 Senn N, Ott M, Lanz J, Riedl R (2017) Targeted polypharmacology: discov-
ery of a highly potent non-hydroxamate dual matrix metalloproteinase
(MMP)-10/-13 inhibitor. J Med Chem 60(23):9585–9598. https​://doi.
org/10.1021/acs.jmedc​hem.7b010​01

	48.	 Fischer T, Riedl R (2017) Targeted fluoro positioning for the discovery of a
potent and highly selective matrix metalloproteinase inhibitor. Chemis-
tryOpen 6(2):167–167. https​://doi.org/10.1002/open.20170​0042

	49.	 Fischer T, Riedl R (2016) Molecular recognition of the catalytic zinc(II) ion
in MMP-13: structure-based evolution of an allosteric inhibitor to dual
binding mode inhibitors with improved lipophilic ligand efficiencies. Int J
Mol Sci 17(3):314. https​://doi.org/10.3390/ijms1​70303​14

	50.	 Lanz J, Riedl R (2014) Merging allosteric and active site binding motifs:
de novo generation of target selectivity and potency via natural-
product-derived fragments. ChemMedChem 10(3):451–454. https​://doi.
org/10.1002/cmdc.20140​2478

	51.	 Blanc R.W (2012) Verification of imperative programs in scala
	52.	 LARA-Lab for automated reasoning and analysis, EPFL, Switzerland: stain-

less: formal verification for Scala. https​://stain​less.epfl.ch

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.scala-sbt.org/
https://http4s.org/
https://http4s.org/
https://github.com/functional-streams-for-scala/fs2
https://github.com/functional-streams-for-scala/fs2
https://sqlite.org/index.html
https://github.com/typelevel/scala
https://github.com/typelevel/scala
http://www.scala-js.org/
http://www.scala-js.org/
https://github.com/scala-js/scala-js-dom
https://github.com/scala-js/scala-js-dom
http://eprints.nottingham.ac.uk/36159/
https://www.postgresql.org/
https://github.com/tpolecat/doobie
https://github.com/tpolecat/doobie
https://github.com/circe/circe
https://github.com/circe/circe
https://doi.org/10.1186/s13321-018-0282-y
https://doi.org/10.1186/s13321-018-0282-y
https://doi.org/10.1145/1090189.1086391
https://github.com/google/gson
https://github.com/milessabin/shapeless
https://github.com/milessabin/shapeless
http://dl.acm.org/citation.cfm?id=647698.734146
https://haskellbook.com
https://haskellbook.com
https://doi.org/10.1002/anie.201812348
https://doi.org/10.1002/ange.201812348
https://doi.org/10.1021/acs.jmedchem.7b01001
https://doi.org/10.1021/acs.jmedchem.7b01001
https://doi.org/10.1002/open.201700042
https://doi.org/10.3390/ijms17030314
https://doi.org/10.1002/cmdc.201402478
https://doi.org/10.1002/cmdc.201402478
https://stainless.epfl.ch

	CyBy2: a strongly typed, purely functional framework for chemical data management
	Abstract
	Introduction
	Pure functional programming
	Property based testing
	Type driven development

	Implementation
	Results
	Frontend
	Queries
	Data visualization
	Lazy loading
	User roles and data editing
	Exporting data

	Backend
	Chemistry toolkit
	Persistence layer
	Data model
	Flexible data types
	Confidence at the type level
	Automatic type class derivation
	Exchanging parts of CyBy2

	CyBy2 in the context of cheminformatics

	Conclusion
	Acknowledgements
	References

