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Abstract: Tomato spotted wilt orthotospovirus (TSWV) severely damaged agricultural production
in many places around the world. It is generally believed that TSWV transmits among plants via
their insect vector. In this study, we provide evidence on the seed-borne transmission of TSWV in
pepper (Capsicum annuum L.) plants. RT-PCR, RT-qPCR, and transmission electron microscopy data
demonstrate the seed transmission ability of TSWV in peppers. Endosperm, but not the embryo,
is the abundant virus-containing seed organ. TSWV can also be detected in the second generation
of newly germinated seedlings from virus-containing seed germination experiments. Our data are
useful for researchers, certification agencies, the seed industry, and policy makers when considering
the importance of TSWV in vegetable production all over the world.

Keywords: tomato spotted wilt orthotospovirus; seed transmission; pepper; Capsicum annuum

1. Introduction

Seeds are one of the vital inputs for crop production and food security. Their quality
is a prerequisite to increasing agricultural production. Seeds are also potentially one of
the most important sources for distributing pathogens and pests, such as viruses, bacteria,
fungi, nematodes, and insects, through the seeds trade. Virus transmission via plant seeds
is the consequence of complex interactions among the host, pathogen, and environment.
As early as 1912, Allard et al. reported the first seed transmission of tobacco mosaic virus
in tomato seeds [1]. Then, Hull et al. reported that about one seventh of the known plant
viruses are transmitted through the seed [2]. Nowadays, at least 231 viruses are known
to be transmitted through seeds of different cultivated and weed hosts [3]. Recently, new
technologies were developed to enable the detection of plant viruses, and these new virus
detection technologies assisted in the management of seed-borne viruses [4,5].

Tomato spotted wilt orthotospovirus (TSWV) is a prototype virus within the order
Bunyavirales, family Tospovirida, genus Orthotospovirus [6,7]. It is mainly transmitted by
Frankliniella occidentalis (western flower thrips, WFT) in a persistent and propagative man-
ner [8,9]. However, other methods of TSWV transmission, such as through seeds, require
further research. As early as 1944, seed transmission of TSWV in tomatoes was reported
by Jones [10], who also reported 96% transmission in Senecio cruentus. Crowley reported
1% seed transmission in tomatoes [11]. However, Antignus Y. et al. (1997) reported that
TSWV-infected plants were not able to pass the virus to progeny plants [12]. Another
tospovirus, soybean vein necrosis virus, was recently reported to be transmitted by the
seeds of soybeans [13]. In addition, another orthotospovirus, groundnut bud necrosis
orthotospovirus (GBNV), can be transmitted in the seeds of peanuts [3].
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As the second ranked plant virus in the world, TSWV seriously affects agricultural
production and causes hundreds of millions of dollars in loss to the agricultural economy
annually [14–16]. TSWV has a wide range of hosts, with over 900 plant species in 90 plant
families, including crops and ornamental plants that are important to human production
and life [17,18]. Plants infected with TSWV show leaf wilt and concentric ring-shaped
disease spots, potentially leading to necrosis of the entire plant. In addition, spots of
different sizes appear on the fruit of the infected plants, which seriously affects their
quality [19]. TSWV is an enveloped virus in plants. The diameter of a mature TSWV
virus particle is in the range of 80–120 nm [20]. The genome of TSWV consists of three
RNA fragments, denoted as large (L), medium (M), and small (S) RNAs based on their
lengths [21–24]. The RNA S encodes the viral nucleocapsid (N) protein, commonly used as a
pattern for the phylogeny and identification of different TSWV strains [25–27]. TSWV also
encodes a nonstructural protein, NSs, which can modify the feeding behavior of the thrip
vector to achieve efficient transmission [28,29].

In this study, the TSWV isolates were found to be the causal pathogens of severe
disease in pepper production in two consecutive years in Yanqing district, Beijing, China.
RT-PCR detection, RT-qPCR analysis, and transmission electrical microscopy observation
demonstrated the seed transmissibility of TSWV. The endosperm was found to be the
abundant virus-containing seed organ. Our findings provide insight into the detection and
traceability of TSWV.

2. Results
2.1. The Identification and Detection of TSWV in Peppers

In the growing seasons of 2020–2021, a severe disease occurred in pepper plants in
Yanqing District, Beijing, China. The large-scale cultivation of Italian frying peppers and
bell peppers was severely damaged, causing the direct loss of millions of dollars. Typical
symptoms observed were leaf curling, plant wilting, tissue necrosis, and ring-shaped spots
of different sizes (Figure 1a–c). We also found large numbers of western flower thrips
(Frankliniella occidentalis) on the pepper flowers (inset in Figure 1a). The symptoms and
presence of the thrips suggested tomato spotted wilt orthotospovirus as the possible cause
of the disease. Therefore, samples of leaves, fruits, seeds, and thrips were RT-PCR tested
with primers for the TSWV nucleocapsid (N) gene. All tested samples produced bands of
the same size as the positive control (TSWV-YN1) [28]. These eight PCR products were
Sanger sequenced, and results suggest that a single TSWV isolate (TSWV-YQ1) could be
the causal pathogen responsible for this severe pepper disease in Yanqing Town. It is worth
noting that the TSWV accumulated in the reproductive organs, including the fruits and
seeds of the peppers. Next, to check whether the virus from pepper fruits could further
infect plants, we inoculated sixteen Nicotiana benthamiana plants with plant extracts from the
TSWV-positive fruit samples collected from the field. Figure 1f–g shows the typical TSWV
symptoms on these inoculated N. benthamiana plants at 7 days post inoculation, including
leaf curling, plant wilting, and tissue necrosis at later stages. No symptoms (Figure 1d–e)
and no PCR-positive results (Figure 1i) could be found in buffer inoculated control plants.
Peppers with identical disease symptoms were also found in other places in Yanqing
District, including Xingning Town. Typical TSWV symptoms could also be observed in
N. benthamiana plants when diseased pepper fruits were collected from Xingning Town as
virus infection resources. To understand whether it was the same causal isolate of TSWV, N
gene (incomplete N gene) sequences of isolates from different towns in Yanqing District
(TSWV-YQ1 and TSWV-YQ2) were analyzed against sequences of all known TSWV isolates,
and the results are shown in Figure 1j. The highest nucleotide sequence identity of TSWV-
YQ1 (Accession No: ON645907) was found with the TSWV-BLZ1 isolate (Accession No:
MF139144), which was identified in lettuce in Beijing earlier, and shared 99.72% identity
with TSWV-YQ1. Similarly, the highest nucleotide sequence identity of TSWV-YQ2 (Accession
No: ON594638) was found with the TSWV-YNHS isolate (Accession No: MN365037), which
was identified in Arachis hypogaea in Yunnan and shared 99.86% identity with TSWV-YQ2. The
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nucleotide sequence identity between two isolates from Yanqing was only 96.69% (Table 1).
These results suggest that at least two distinct TSWV isolates were the causal pathogens of
this severe disease of peppers in Yanqing District.
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western flower thrips on the pepper flowers. Inset: large numbers of western flower thrips (Franklin-
iella occidentalis) on pepper flowers. (b,c) Typical disease symptoms of infected fruits of peppers.
(d–g) Typical disease symptoms of N. benthamiana after inoculation with the TSWV-YQ1 isolate
(TSWV-YQ1). Buffer inoculation functions as a negative control (Mock). (h) RT-PCR detection of
the nucleocapsid (N) gene of TSWV in diseased pepper samples. Lanes 1, 2, leaves; Lanes 3, 4, fruits;
Lanes 5,6, seeds; Lanes 7,8, western flower thrips. +, positive control (TSWV-infected pepper leaves
from the TSWV-YN1 isolate which is regularly kept in our laboratory); −, negative control (healthy
uninfected pepper leaves from the laboratory). (i) RT-PCR detection of the N gene in inoculated N.
benthamiana plants. Lanes 1–3, diseased leaves; +, positive control (TSWV-YN1-infected leaves of N.
benthamiana in the laboratory); −, negative control (buffer-inoculated leaves of N. benthamiana in the
laboratory). (j) Phylogenetic tree based on fragments of the TSWV N gene of TSWV-YQ1, TSWV-YQ2,
TSWV-BLZ1 (Accession No: MF139144), TSWV-YN1 [28], TSWV-YNHS (Accession No: MN365037),
TSWV-CQ (Accession No: KX611497), TSWV-LNTL (Accession No: MZ005203), TSWV-Y8 (Accession
No: MT345024), and TSWV-T86 (Accession No: MF193426). The phylogenetic tree was constructed
using MEGA version 7.0 by the neighbor-joining method, with 1000 bootstrap replicates.

Table 1. Nucleotide sequence identity of TSWV N genes in 2020 and 2021.

Sequence TSWV-YQ1 TSWV-YQ2

TSWV-YQ1 — 96.69%
TSWV-YQ2 96.69% —
TSWV-BLZ1 99.72% 96.71%
TSWV-YNHS 96.84% 99.86%

2.2. TSWV Is Seed-Transmissible

Considering the fact that TSWV isolates in different fields are distinct, we next queried
the transmission routes of these isolates in pepper plants. We further analyzed the relative
viral RNA level of the TSWV N gene in each tissue of Italian frying pepper and bell
pepper plants by RT-qPCR, and we found that TSWV-YQ2 was mostly accumulated in
the fruits among the tested tissues. We mixed nearly 600 seeds collected from five TSWV-
YQ2-infected Italian frying peppers and bell peppers, respectively, to detect the virus (10
seeds were randomly selected as one group and three group replicates were set up), and
the RT-qPCR results show that TSWV could be detected in these two varieties of pepper
seeds (Figure 2a). To investigate whether TSWV could transmit to the next generation, we
germinated the Italian frying pepper seeds collected from symptomatic fruits. There were
no typical TSWV symptoms on the seedlings germinated from the seeds carrying TSWV,
similar to the seedlings germinated from the virus-free seeds (Figure 2b,c). Importantly,
TSWV could be detected in the 2-week geminated cotyledons, as indicated by the RT-PCR
positive and further sequenced results, suggesting TSWV is seed-transmissible in peppers.
Fourteen of the fifteen pepper samples were found to have TSWV (Figure 2e). However, no
TSWV was detected in the true leaves of these PCR-positive pepper plants.
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leaves. (b,c) Seedlings germinated from healthy seed (CK) and seed collected from 
TSWV-YQ2-infected Italian frying peppers (TSWV-YQ2). (d) Relative viral RNA level of the N 
gene in the embryo and endosperm of TSWV-YQ2-infected Italian frying pepper seeds. CK, nega-
tive control (healthy uninfected pepper seeds). Values are the means ± SE, n = 4. Means with dif-
ferent letters (a, b) are significantly different (p < 0.05, one-way ANOVA along with Duncan’s 
multiple range test). Each value was normalized to the embryo. (e) RT-PCR detection of the N 
gene of TSWV in 15 seedlings germinated from TSWV-YQ2-infected Italian frying pepper seeds. +, 
positive control (TSWV-YN1-infected pepper leaves from the laboratory, preserved); −, negative 

Figure 2. Characterization of seed transmission of TSWV in peppers. (a) Relative viral RNA level
of the nucleocapsid (N) gene in the leaves, fruits, and seeds of TSWV-YQ2-infected Italian frying
peppers and in the fruits and seeds of TSWV-YQ2-infected bell peppers. Leaf CK/fruit CK/seed
CK, leaf/fruit/seed negative control (healthy uninfected Italian frying pepper leaves/fruits/seeds).
Seed CK/fruit CK, seed/fruit negative control (healthy uninfected bell pepper seeds/leaves). Values
are means ± SE, n = 4. Means with different letters (a, b, c, d) are significantly different (p < 0.05,
one-way ANOVA along with Duncan’s multiple range test). Each value was normalized to the leaves.
(b,c) Seedlings germinated from healthy seed (CK) and seed collected from TSWV-YQ2-infected Italian
frying peppers (TSWV-YQ2). (d) Relative viral RNA level of the N gene in the embryo and endosperm
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of TSWV-YQ2-infected Italian frying pepper seeds. CK, negative control (healthy uninfected pepper
seeds). Values are the means ± SE, n = 4. Means with different letters (a, b) are significantly different
(p < 0.05, one-way ANOVA along with Duncan’s multiple range test). Each value was normalized to
the embryo. (e) RT-PCR detection of the N gene of TSWV in 15 seedlings germinated from TSWV-
YQ2-infected Italian frying pepper seeds. +, positive control (TSWV-YN1-infected pepper leaves
from the laboratory, preserved); −, negative control (healthy uninfected pepper leaves from the
laboratory, preserved). (f–i) Transmission electron microscopy of the embryo cells of healthy Italian
frying pepper seeds. (j–m) Transmission electron microscopy of the endosperm cells of healthy Italian
frying pepper seeds. (n–q) Transmission electron microscopy of the embryo cells of TSWV-YQ2-
infected Italian frying pepper seeds. (r–y) Transmission electron microscopy of the endosperm cells
of TSWV-YQ2-infected Italian frying pepper seeds. (s) An amplified view of the virus in the box of (r).
A TSWV virus particle presents in the middle of oil bodies. (u) TSWV virus particles exist around the
membrane structure in endosperm cells. OB, oil body; CW, cell wall; Ve, vesicle; and ER, endoplasmic
reticulum. The red arrows point to the TSWV virus particles.

In order to directly verify that TSWV is seed-transmissible, we removed the testae of
Italian frying pepper seeds and dissected each part of pepper seed for detailed analysis.
Unexpectedly, as indicated by RT-qPCR results, there was a high level of virus in the
endosperm but not the embryo in the pepper seeds (Figure 2d). Thus, we performed trans-
mission electron microscopy observation in the endosperm and embryo cells of healthy and
TSWV-YQ2-infected pepper seeds (Figure 2f–y). No TSWV-like virions were observed in
either the embryo (Figure 2f–i) or endosperm (Figure 2j–m) of these healthy pepper seeds
(previous tests showed no TSWV infection in Figure 2a). Consistent with RT-qPCR results,
we found several TSWV-like virions in the pepper endosperm (Figure 2r–y) but not in
the embryo cells (Figure 2n–q) of TSWV-YQ2-infected pepper seeds. These particles were
among the oil bodies, and also around the membrane structure in the endosperm cells (Fig-
ure 2t,u). Figure 2u shows the TSWV-like particles may be wrapped in membranes around
the endoplasmic reticulum. Regrettably, we failed to identify viroplasm structures, though
elaborate attempts were made. The data above indicated TSWV could be transmitted via
seeds.

3. Discussion

Seed transmission is one of the major transmission routes for plant viruses [30]. About
18–20% of plant viruses can be transmitted by seeds [31,32]. The viruses can spread via
seeds into new localities, and from there, spread rapidly in the presence of suitable hosts.
TSWV transmission by seeds is still unknown in tomatoes. Here, we provided evidence
that TSWV is seed-transmissible. First, TSWV was detected in seeds by PCR and RT-qPCR
(Figures 1e and 2a). Second, high levels of TSWV were detected in the endosperm, but not
the embryo, of the pepper seeds by RT-qPCR (Figure 2d). Third, TSWV-like particles were
observed in the endosperm cells of TSWV-YQ2-infected seeds by transmission electron
microscopy (Figure 2r–y).

Seed transmission may not be a common route in other pepper cultivars for TSWV
spread in the world, since seed transmissibility is determined by interactions among the
host genetic background, pathogenic genetics, and the environment conditions. It could
not exclude the possibility of TSWV seed transmission in specific virus strains on specific
germplasm, such as TSWV-YQ2-infected Italian frying pepper seeds. Additionally, it should
be mentioned that it is generally believed that seed transmission of plant viruses is mainly
through the embryo [31,33]. Plant viruses invade the embryo of seeds by two infection
methods: direct infection and indirect infection. Viruses may enter the embryo of a seed by
direct infection through the pollen and/or egg mother cell [34]. The virus can also pass
through the maternal pathway, such as the seed coat and endosperm, few to the embryo in
an indirect way, causing the offspring to carry the virus. In our study, TSWV was mainly
found in the endosperm, and very few in the embryo. The exact mechanism of the maternal
route of this distinct seed transmission in pepper still needs to be further explored in future.
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To our knowledge, these are the first TSWV-like virion TEM images in plant seeds
(Figure 2). We noticed the observed very few TSWV-like virion in endosperm cells shown
in Figure 2 are different from the agglomerated TSWV particles observed in leaves and fruit
tissues [35]. Unlike other tissues of plants, the replication and proliferation of TSWV are
strongly restricted due to the special structure of seeds, such as there is no plasmodesmata
to facilitate the virus movement [11,36,37]. So, it is possible that a few virons might enter
into endosperm and cotyledon in the embryo from the highest virus-accumulated tissue
fruits both of Italian Frying peppers and bell peppers.

The characteristics of plant innate immunity in early seedling development may be
the adaptation of plants to the needs of rapid growth at this stage and the result of resource
and energy balance between immunity and development [38]. In the seedling stage, the
plant innate immunity of plants is weak, and therefore TSWV could be detectable. The
immune response increased overtime when the seedlings experience growth, and virus is
wiped out. However it happened to be acquired by the insect vector, for example, western
flower thrips, before TSWV is eliminated in the cotyledons and subsequently spread over a
wide range of fields.

Pepper seeds infected with TSWV often evade detection due to the lack of symptoms
of the disease upon germination [34,39]. TSWV is now shown to be present in pepper
seeds and can be transmitted to the next generation in an asymptomatic model, which
escapes human visual detection. Due to the low amount of TSWV in seeds, traditional
rapid detection methods, such as immunological test strips, can fail to detect it effectively.
The early TSWV association with pepper endosperms and cotyledons may explain why
previous analysis overlooked this short period and failed to prove virus transmission to
naturally infected vegetables and ornamentals. However, these TSWV-positive cotyledons
could be the original virus resource of the disease outbreak and epidemic. Therefore,
highly sensitive detection methods for TSWV are necessary for the development of easy
and high-throughput detection assays. In this study, RT-PCR and RT-qPCR effectively
detected the presence of TSWV, which also provides good examples for plant quarantine.
At the same time, according to the characteristics of viruses in seeds, in the process of plant
pathogen quarantine, other efficient, sensitive, and rapid detection methods are also worth
exploring.

4. Materials and Methods
4.1. Plant Materials

Two inbred pepper cultivars of Italian frying pepper (C. annuum L. cultivar Sanmu
NDF-11-28) and bell pepper plants (C. annuum L. cultivar Nala) were used in this research.
The materials used in the experiment included pepper leaves, pepper fruits, and western
flower thrips (WFT, Frankliniella occidentalis Pergande) (Thysanoptera: Thripidae) on pep-
pers collected from the Yanqing district, Beijing, China, in November 2020 and August
2021, respectively. A total of 1500 thrips were collected from the outbreak fields, and
30 thrips were used as one group to be RNA extracted. The pepper seeds used in the
experiment were isolated from the collected pepper fruits from the growing season of 2021.
The harvested seeds were naturally dried when they were examined and saved. The seeds
were kept in a dry environment for two weeks before germination. All new germinated
Nicotiana benthamiana and pepper plants were grown in insect-free growth chambers.

4.2. Inoculation of Plants

Diseased pepper samples were mechanically inoculated onto 6-week-old N. benthami-
ana plants, as described by Mandal et al. [40]. The collected pepper leaf samples were
ground into a very fine powder with liquid nitrogen in a mortar. The leaf powder was
resuspended in 0.05 M phosphate buffer (pH 7.0), and the sap was applied to the host plant
by using a soft finger rubbing technique. Control peppers were inoculated with inoculation
buffer only.
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4.3. Dissection of Pepper Seeds

Before separating each part of the seed, the seeds were soaked in sterilized deionized
water for 24 h in order to peel off the seed coat. The seeds were first sterilized with 75%
ethanol. The separation process started with the separation of the seed coat, followed by
the separation of the endosperm and embryo. Between each step, sterilized deionized
water was used to wash the surface of the tissue. All utensils were soaked in 95% ethanol.
In order to prevent contamination, the equipment used for separation was burned with a
flame between each step, to avoid cross-infection of the virus in different tissues.

4.4. RT-PCR and RT-qPCR

Total RNA of the plant’s samples was extracted using plant TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA). RNA was reverse transcribed using TransScript One-Step gDNA
Removal and cDNA Synthesis SuperMix (TransGen Biotech, Beijing, China).

PCR was performed using 2X M5 HiPer plus Taq HiFi PCR mix (with blue dye) (Mei5
Biotechnology, Beijing, China) on the Bio-Rad C1000 Touch Thermal Cycler (Bio-Rad, Her-
cules, CA, USA). The TSWV N gene PCR primers were forward, 5′-ATGTCTAAGGTTAAG
CTCAC-3′, and reverse, 5′-TCAAGCAAGTTCTGCGAGTT-3′. The TSWV NSs PCR primers
were forward, 5′-ATGTCTTCAAGTGTTTATGAG-3′, and reverse, 5′-TTATTTTGATCCTGA
AGCAT-3′.

RT-qPCR was performed using Thunderbird SYBR qPCR mix (TOYOBO, Shanghai,
China) on the CFX 96 system (Bio-Rad, Hercules, CA, USA). Pepper Ca-ACT1 was used as
the internal control. The TSWV N gene qPCR primers were forward, 5′-AGGCTTGTTGAG
GAAACTGG-3′, and reverse, 5′-AGCTTCCCTGGTGTCATACT-3′. The internal control
gene Ca-ACT1 qPCR primer set was forward, 5′-GACGTGACCTAACTGATAACCTGAT-3′,
and reverse, 5′-CTCTCAGCACCAATGGTAATAACTT-3′.

4.5. Transmission Electron Microscopy

The endosperms and embryos of pepper seeds were cut into 1 × 2 nm pieces so that
the reagent could be fully immersed. The tissues were fixed in 1% paraformaldehyde and
2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) at room temperature for 1 h, and
then overnight at 4 ◦C The fixed tissues were next washed with 0.1 M phosphate buffer
five times, then post-fixed with 1% osmium tetroxide in 0.1 M phosphate buffer at 4 ◦C for
1.5 h. The color of the samples gradually turned black until the samples were no longer
black, then they were rinsed with 0.1 M phosphate buffer three times, followed by one
wash for 7 min. Next, the samples were dehydrated with increasing concentrations of
acetone (30%, 50%, 70%, 85%, and 95% acetone once for 10 min and 100% acetone three
times for 10 min). Different gradients of acetone–Spurr’s resin (3:1 for 45 min, 1:1 for 1 h,
and 1:3 for 1.5 h) were used for the infiltration of tissue samples. The final pepper seed
tissues were embedded in Spurr’s resin (SPI supplies). Then, the Leica Microsystem UC7
ultramicrotome was employed to cut the resin blocks into 70 nm sections. Finally, ultrathin
sections were examined with a transmission electron microscope (JEM-1400; JEOL) at an
accelerating voltage of 80 kV after incubation with 1% (w/v) lead citrate and uranyl acetate.

5. Conclusions

In this study, we provided evidence of seed-borne transmission of TSWV in pepper
(Capsicum annuum L.) plants. We also fulfilled Koch’s rule and confirmed that TSWV was
the causal pathogen responsible for this severe pepper disease in 2020–2021 in Yanqing,
Beijing. In addition, we found the presence of TSWV in the endosperm and in young
seedlings of the second generation of the peppers. Our discovery reveals a possible new
mode of seed transmission of TSWV in peppers.
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