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1 Introduction

Kohn–Sham density functional theory (KS-DFT, or simply DFT in
the following)[1, 2] has evolved to be today’s most widely used

electronic structure method and has emerged as the theory of
choice for application to various problems in the chemical and

physical sciences. Due to its good cost-accuracy ratio this espe-
cially holds for large molecular systems and solids. The number

of collaborative experimental and theoretical studies has

grown tremendously in the last decade. The usage of comple-
mentary theoretical and experimental information can gener-

ate valuable new insights, and it is nowadays possible to ex-
plain and describe various phenomena in a detailed mechanis-

tic way based on routine quantum chemical calculations.
DFT is considered as the natural theory for extended sys-

tems but its current, partially semiempirical character requires

extensive benchmarking on theoretical or experimental refer-
ence values. Over the past years, such benchmark studies have

been carried out with diligence, mainly focusing on energetic
properties[3, 4, 5] and more recently also regarding structures of

small to medium-sized molecules.[4, 6, 7, 8] However, the number
of proposed density functionals is already too huge to be cov-

ered comprehensively. Consequently, the task to select an ap-
propriate and efficient level of theory for a specific problem is
highly nontrivial. Thus, it comes as no surprise that nonexperts

often choose methods purely because of their popularity, and

those are not necessarily the best options for their application.

This eventually results in a waste of computational as well as
human resources.

One prominent example is the combination of the B3LYP
functional[9, 10, 11, 12] with the 6-31G* double-z one-particle

atomic orbital (AO) basis set[13] in particular, or similar function-
als with a small double-z (DZ) basis set in general. Over the

last decade, computational power has increased immensely,

and using a well-converged basis set (BS) is feasible in many
cases. A search with SciFinder[14] for the exemplary B3LYP func-

tional reveals that the ratio of journal articles using it in combi-
nation with a DZ basis, and those using it with a triple-z (TZ)

basis, is roughly the same compared with the previous decade.
In the years 1995 to 2005, this ratio was about 3.5:1, and it
only dropped slightly to about 3:1 during the last decade

(Figure 1).
In 2005 Ahlrichs et al. published the efficient def2-SVP (DZ)

and def2-TZVP (TZ) BSs which were specifically designed for
SCF calculations. However, the 6-31G* (DZ type) and 6-311G*[15]

(TZ type) published by Pople et al. in 1972 and 1980, respec-
tively, are still widely used in DFT calculations.

Compared with the citations of DZ and TZ basis sets, the

number of articles employing B3LYP in combination with
quadruple-z (QZ) type expansions is tiny. Utilizing QZ basis

sets in HF or DFT calculations leads to results which are chemi-
cally very close to the complete basis set (CBS) limit, and this is

our general recommendation if this level is affordable. Because
of the faster BS convergence compared to correlated post-

Hartree–Fock methods, normally no further BS extrapolation

scheme is needed. However, these calculations are routinely
possible on standard workstations only for medium-sized sys-

tems with about 100 atoms or less.
If the system size increases, or one has to perform very

many calculations, and one is rather limited in the computa-
tional resources, as most mainly experimentally working

In quantum chemical computations the combination of Har-

tree–Fock or a density functional theory (DFT) approximation

with relatively small atomic orbital basis sets of double-zeta
quality is still widely used, for example, in the popular B3LYP/

6-31G* approach. In this Review, we critically analyze the two
main sources of error in such computations, that is, the basis

set superposition error on the one hand and the missing
London dispersion interactions on the other. We review various

strategies to correct those errors and present exemplary calcu-

lations on mainly noncovalently bound systems of widely vary-

ing size. Energies and geometries of small dimers, large supra-
molecular complexes, and molecular crystals are covered. We

conclude that it is not justified to rely on fortunate error com-
pensation, as the main inconsistencies can be cured by

modern correction schemes which clearly outperform the plain
mean-field methods.
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groups are, a DZ basis is sometimes the only choice. Even with

modern computational equipment, a sufficiently fast, and at
the same time, reasonably accurate and interaction-consistent

electronic structure method is mandatory for the screening of
a large conformational space, for instance in the fast growing

field of organic crystal structure prediction.[16, 17, 18] Therefore, in
this short Review article, we want to emphasize the problems

that arise from using a small DZ or related BSs, give an over-

view of methods to circumvent these problems, and discuss
some exemplary calculations to provide a survey on the accu-

racy of the selected methods. This work extends our previous
activities in the field which were focused specifically on B3LYP/

6-31G* thermochemistry.[19] For related papers concerning non-
covalent interactions see refs. [20,21,22,23,24,25,26,27].

2 Problems of Double-z Basis Sets

There are two major shortcomings of small BS Hartree–Fock
(HF) or DFT calculations. The first one is the BS error. This error

can be split further into the basis set superposition error
(BSSE) and the basis set incompleteness error (BSIE).

Almost all quantum chemical simulations rely on systematic
error compensations between the initial (reactant) and final

state (product) calculation. The BSSE is caused by the fact that

with a small BS, the monomers and the complex in a reaction
are not treated on equal footing which destroys the error com-

pensation. Typically, this is discussed in the context of nonco-
valently bound complexes, but the same phenomenon also ap-

pears for covalent-bond-forming chemical reactions, as well as
in intramolecular transformations. In a dimer complex AB, the
BS is larger than the individual ones of the monomers A and B

because the unoccupied orbitals from A can be used by B and
vice versa. This variational ‘borrowing’ of basis functions leads
to an artificial energy lowering of the complex.

The most common approach to circumvent an intermolecu-

lar BSSE is the counterpoise (CP) correction scheme proposed
by Boys and Bernardi (BB-CP).[28] The BB-CP counterpoise cor-

rection DECP for a dimer complex AB is defined as

DECP ¼ EðAÞa ¢ EðAÞab þ EðBÞb ¢ EðBÞab ð1Þ

where a and b are the BSs belonging to the monomers A and
B in their frozen AB complex geometries. This approach is also

termed molecular CP correction, as only two fragments (the
former monomers) are taken into account. Although the BB-CP

approach is not free of criticism,[29, 30, 31] it is widely used and
found to be a robust approximation for the self-consistent

field (SCF) methods HF and DFT when applied to molecular ag-

gregates.

The BSSE depends on the number of virtual functions that
are supplied by the additional fragment in the complex and

on their respective overlap. Because the HF/DFT total energies
converge exponentially with respect to the BS size, the initial

increase of BSSE with BS size eventually decreases as the CBS

limit is approached. The electron density decays exponentially
with the distance and the corresponding exponent is deter-

mined by the ionization potential of the fragment.[32, 33] Be-
cause the inclusion of Fock exchange in a hybrid functional in-

creases the ionization potential, this leads to a more compact
density, a smaller density overlap of neighboring atoms, and

a smaller BSSE. This can be qualitatively described as

EBSSE / Nbf   exp ¢Nbfð Þ   exp ¢
ffiffiffiffiffi
2 I
p

r
� �

; ð2Þ

with the number of virtual basis functions Nbf, ionization po-
tential I, and electron-molecule distance r. We have adjusted

this function with variable prefactors to the Boys–Bernardi CP
energy of the S66[34] noncovalent dimers (see below) for func-

tionals with varying amount of Fock exchange (PBE: 0 %,
B3LYP: 20 %, PBEh-3c: 42 %, HF: 100 %) and increasing BS size

Figure 1. SciFinder[14] hits (dated May 2015) for journal articles containing
the B3LYP functional in combination with DZ (6-31G*, def2-SVP, cc-pVDZ,
aug-cc-pVDZ), TZ (6-311G*, def2-TZVP, cc-pVTZ, aug-cc-pVTZ), and QZ (def2-
QZVP, cc-pVQZ, aug-cc-pVQZ) basis sets from the periods 1995–2005 and
2005–2015.
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(MINIX, def2-SV(P), def2-TZVP, def2-QZVP). The corresponding
contour plot is shown in Figure 2.

The BSSE is most pronounced for medium-sized BSs of
double-z quality and can be more than 40 % of the binding

energy. In a minimal BS, the neighboring fragment has only
few (even zero for rare gas atoms) virtual orbitals, and the ex-

tension of the variational freedom is minor (small BSSE). In

a CBS, the virtual space is huge, but the energy gain is zero be-
cause it is already converged in the single fragment basis (no

BSSE). For medium sized BSs, the increase in the number of vir-
tual functions and the corresponding lowering of the energy

can be substantial. In general, BSSE leads to overestimated
binding energies and underestimated interatomic distances.

Similar to the formation of a complex out of monomers, one

part of a molecule, such as a functional group, can borrow
basis function from another nearby part. This leads to the con-

cept of intramolecular BSSE (IBSSE).[35, 36, 37] A uniform and clear
definition of the IBSSE is missing, but its influence on energet-

ics and structures of molecules has been recognized.
The BSIE is an inherent problem of any finite BS expansion.

It leads to insufficient descriptions of physical effects such as
Pauli repulsion, electrostatics and polarization, and thus, often
to a systematic lengthening of bonds.[38] In practice, BSSE and

BSIE are not strictly distinguishable, but we will focus on the
effects due to BSSE in the following sections.

Though one should try to minimize the BSSE (corresponding
to the ‘green areas’ in Figure 2), a small BSSE is not a sufficient

criterion for a good basis set. A minimal BS, for instance, has

a relatively small BSSE, but cannot describe certain physical ef-
fects like polarization well. Furthermore, additional basis func-

tions do not automatically lead to a more complete basis.
They need to have the proper shape, which is a nontrivial re-

quirement, and basis set optimizations have been carried out
for decades. We typically find the Ahlrichs sets optimal for mo-

lecular SCF-type calculations, and they have been only slightly
adjusted and optimized for composite methods like PBEh-3c.[39]

Similarly, the amount of HF exchange should not be increased
too much to lower the BSSE because this would eliminate the

account of important (static) electron correlation effects. The
correct electron density can be best reproduced with

a medium amount of HF exchange (about 20 % to 50 %), but
other options (GGA or plain HF) can have advantages, too.

The second major shortcoming of common HF and (semi-

local) DFT approximations is the inherent lack of a correct de-
scription of the London dispersion energy. For large interatom-

ic distances>4.5 æ, the interaction between atoms or compa-
rably nonpolar molecules is dominated by long-range correla-

tion effects, called London dispersion. This type of interaction
has a ¢C6/R6 distance dependence and is not included in any

semi-local exchange-correlation functional. Modern density

functionals exist,[40, 41] which include correlation effects in the
medium-distance regime (2.5 to 4.5 æ) to a strongly varying

degree, but they do not provide the correct asymptotic behav-
ior. The inclusion of London dispersion interactions in the

mean field HF and DFT framework can be achieved by mainly
three strategies. The first one is the construction of a nonlocal

density functional correlation kernel (DFT-NL) often referred to

as van der Waals density functional vdW-DF or its simplified
variant VV10. In vdW-DF, the dynamical charge density re-

sponse function is approximated by local dipole models which
leads to tractable integral formulations. The VV10 method has

especially been shown to yield reasonably good geometries
and reasonably accurate binding energies.[42, 43, 44] While these

special nonlocal functionals can, in principle, also be evaluated

in small basis sets, this combination is rarely applied, and in
the present Review we focus on inherently more efficient

methods. The above-mentioned local response can be parti-
tioned to atomic contributions leading to semiclassical London

dispersion corrections. In the modern variants, the computed
leading order dispersion coefficients are used to compute

higher order contributions as done in the D3[45] (see below),

exchange-dipole (XDM),[46, 47] and many-body dispersion (MBD)
models.[48] In contrast to the first two approaches, modified ef-

fective one-electron potentials do not describe the correct
physical origin of London dispersion forces. However, they can

be trained to mimic these interaction to some degree as
shown by the dispersion correcting potentials (DCP).[49, 50]

The reason why small BS DFT (or HF) calculations like B3LYP/
6-31G* can perform surprisingly well is immediately recognized
when looking at the two largest error sources and their (par-

tial) compensation. The first one is the BSSE which leads to too
strongly bound complexes, while the second flaw is the miss-

ing London dispersion energy resulting in too weak interac-
tions. The prerequisite for a favorable error compensation is

that dispersion and BSSE are of similar magnitude in a suffi-

ciently large distance regime. However, this does not hold in
general due to the fundamentally different functional depend-

ence of BSSE and dispersion with respect to the distance sepa-
ration, (exponential vs. R¢6) which is highlighted in Figure 3.

We have calculated the dispersion and BSSE contribution for
the S66 Õ 8 set (66 molecular dimers at eight different center of

Figure 2. Contour plot of the relative BSSE as a function of the basis set size
(minimal, DZ, TZ, QZ) and the amount of Fock-exchange. An interpolating
function [Equation (2)] was fitted based on the S66 Boys-Bernardi counter-
poise energies calculated for the functionals PBE, B3LYP, PBEh-3c, and HF.
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mass distances) with DFT-SAPT (symmetry-adapted perturba-
tion theory)[51, 52] and the Boys–Bernardi method, respectively,

at the PBE0/SV(P) level. While the two contributions roughly

cancel each other on average (bars, right plot), the individual
values for the complexes have a significant scatter showing

that either dispersion or BSSE can dominate. It is clear that sys-
tematically accurate results cannot be obtained if both contri-

butions are not properly included.
If we assume that BSSE and London dispersion effects

cancel precisely at the equilibrium distance of the stacked ben-

zene dimer, this cannot hold for non-equilibrium distances
(compare with Figure 4). Thus, for reliable results, one needs to

correct for both dispersion and BSSE at the same time. In the
following section we will present an overview over existing

methods that were designed for that purpose and are used in
combination with HF or DFT.

These corrections directly determine the energy and the ge-

ometry of a given molecule and thus, indirectly also influence

other properties, like the charge population, the chemical shift,
the dipole moment, or the gap between the highest occupied

and the lowest unoccupied molecular orbital. However, if

a small basis set is, for example, lacking the necessary amount
of polarization and diffuse functions to correctly calculate the

dipole moment, the BSSE correction cannot repair this.

3 Methods Treating Dispersion and BSSE

One possibility to include London dispersion effects in DFT cal-
culations is to correct the long-range interaction by atom-cen-

tered potentials, so called dispersion-correcting potentials
(DCPs).[50, 53, 54] Though the correct physical terms leading to the
London dispersion interaction (zero point energy of coupled
frequency-dependent polarizabilities) cannot be described by
DCPs, their mathematical form, together with parameter ad-

justment, can empirically capture attractive dispersion-like
forces to a rather high degree. The DCPs designed by DiLabio

et al. resemble traditional effective core potentials (ECPs) and
are similar to the earlier plane-wave approach proposed for
periodic DFT by Lilienfeld et al.[49, 55] The general idea is to use

a set of reference data and fit the interaction which is not cov-
ered by the density functional into additional atom-centered

potentials. These potentials need a high degree of flexibility
and should distinguish atoms in different hybridization states.

Typical potentials Ul(r) are composed of atom-centered

Gaussian-type functions and have the following form:

UlðrÞ ¼ r¢2
XNl

i¼1

cli rnli e¢xli r2 ð3Þ

where l is the angular momentum, Nl corresponds the number
of Gaussian functions, nli is the power of r (electron-nucleus

distance), cli is the coefficient of the Gaussian function, and xli

is its exponent.

Figure 3. Distance behavior of the dispersion energy and BSSE as calculated with second-order DFT-SAPT and the Boys–Bernardi counterpoise scheme, respec-
tively, for the PBE0/SV(P) method on the S66 Õ 8 molecular dimers. The individual energies with integrated contributions in 0.5 æ bins (bars, left) and the possi-
ble error compensation if both contributions are neglected (bars, right) are shown. The crosses refer to the individual values for the 528 complex geometries.
Note that while the BSSE is a negative quantity which has the same sign as the stabilizing dispersion energy, the plotted CP correction is positive (repulsive).

Figure 4. Sketch of the error compensation between BSSE correction and
dispersion. In this example for the noncovalently bound benzene dimer, we
assume that they are balanced at the intermolecular equilibrium distance.
This is not the case for smaller or larger distances due to the different dis-
tance dependence of BSSE and dispersion. The BSSE decays exponentially
whereas dispersion decreases slower with R¢6.
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For B3LYP-DCP[53] the nli are fixed to the value of two, and
the exponents and coefficients were optimized for a set of

16 noncovalently bonded dimers. Two sets of DCPs have been
developed: one intended for use with a CP correction and one

for use without. The latter also compensate for the BSSE to
a significant extent. Thus, BSSE and dispersion are treated si-

multaneously but the correct R¢6 asymptotic behavior of the
London dispersion is not met (though this is in principle possi-
ble by a complete expansion with all orders in Nl).

The advantage of this approach is its simple implementation
and that DCPs can be used with any computational chemistry
program package that can handle ECPs. The corresponding ex-
ponents and coefficients for each element are provided in the
input files, and no modifications of the program itself are nec-
essary. Furthermore, with the use of DCPs or related ap-

proaches, dispersion effects are included on the electronic

structure level, and the electron density can adjust to these ef-
fects. A disadvantage in particular for large systems is that the

incorporation of DCPs into the self-consistent field (SCF) proce-
dure often increases the number of cycles needed for conver-

gence and, hence, the overall computational time. Another
drawback is that a DCP has to be fitted for each element in

combination with a specific density functional and a given BS.

For each element, one has to gather enough reliable reference
data, which can be difficult when aiming at an extension to

heavier elements. Currently, for small DZ basis sets, which are
the focus of this Review article, DCPs are available for the ele-

ments H, C, N, and O and the B3LYP functional.[53, 54] They are
suitable for the 6-31 + G(d,p) basis set or larger, but the use of

6-31 + G(2d,2p) is recommended. The first DCP for the carbon

atom needed to be revised due to the too large exponents
that hampered the correct description of C¢C bond breaking

or bond formation and with the revised DCP, noncovalent in-
teractions and covalent chemical reactions are described with

similar accuracy.[54] We will refer to and use these improved
DCPs throughout this article.

In the original publication, the performance of B3LYP-DCP/6-

31 + G(2d,2p) for noncovalent interactions was tested on sever-
al benchmark sets, and we will give here only some examples.
Its accuracy for the S66[34] test set of small noncovalently
bound dimers is excellent. The mean absolute deviation (MAD)

of the binding energies compared with the reference is only
0.19 kcal mol¢1. For comparison, B3LYP-D3(BJ) with the quadru-

ple-z basis set def2-QZVP yields an MAD of 0.28 kcal mol¢1.[56]

For the HSG[57] set of 21 dimers and trimers which are present
in the complex of the inhibitor indinavir and HIV-II protease,

the performance is also encouraging. The MAD compared to
the revised reference values (HSG-A[58]) is 0.16 kcal mol¢1. Fur-

thermore, B3LYP-DCP/6-31 + G(2d,2p) was applied to the
S12L[59] set of supramolecular complexes. One out of the

12 complexes contains a Cl atom, and another one involves Fe.

As no DCPs exist for Cl and Fe, these atoms were left uncor-
rected. The final MAD for the S12L set is 2.6 kcal mol¢1. This

result is similar to those obtained with PBE-D3 or PBE-NL in
combination with def2-QZVP (2.1 and 2.3 kcal mol¢1, respec-

tively).[60] Overall, these examples show, that B3LYP-DCP/6-31 +

G(2d,2p) as a method on the double-z level can provide results
of quadruple-z quality.

Its good performance was confirmed by Goerigk who com-
pared B3LYP-DCP, B3LYP-NL, and B3LYP-D3(BJ) in combination
with the 6-31 + G(2d,2p) basis set for noncovalent complexes,
relative energies of conformers, basic properties, and reaction

energies.[61] An overall comparison revealed B3LYP-NL as the
most robust and accurate approach, closely followed by
B3LYP-D3. However, for these two methods, the influence of

BSSE effects on the binding energies of noncovalently bound
complexes can be larger than it is the case for B3LYP-DCP. Fur-
thermore, it was verified that the revised DCP for carbon ac-
tually does improve the overall performance, though the
change for electron affinities and ionization potentials is negli-
gible.

Recently, the DCP scheme was coupled to the atom-pairwise
D3 dispersion correction (see below) for the BLYP functional
and the 6-31 + G(2d,2p) basis set.[62] In this BLYP-D3-DCP ap-

proach, the exponents of the DCP tend to be larger than those
for the ones developed previously. Thus, they mostly have an

impact on the electron density close to the nuclei and mainly
influence the covalently bonded parts. This is reflected in the

large improvement for barrier heights compared with BLYP-D3

but only small enhancements for noncovalent interaction ener-
gies. This result also indicates that typical GGA problems like

the self-interaction-error (SIE) can be corrected with DCP (see
also refs. [63,64]).

A different approach is the combination of a dispersion cor-
rection and a CP correction, which are developed independ-

ently from each other, but which are simultaneously employed

in a calculation. For the treatment of London dispersion, we
use our efficient semiclassical D3(BJ) correction[45, 65] that can

simply be added on top of a converged standard DFT or HF
calculation. For reviews and overviews of other state-of-the-art

dispersion corrections see refs. [23,24,25]. Within the D3(BJ)
scheme, the energy contribution is calculated as a sum over all

atom pairs AB

ED3
disp ¼ ¢

1
2

X
A6¼B

X
n¼6;8

sn

CAB
n

Rn
AB þ f ðRAB

0 Þn ð4Þ

where, CAB
n denotes the averaged coordination-number depen-

dent (isotropic) nth order dispersion coefficient for each atom

pair AB. The order n equals 6 and 8, introducing an R¢6
AB long-

range and an R¢8
AB medium-range term. The sn are the global

scaling factors. For common density functionals, s6 is usually
set to unity to ensure the correct asymptotic behavior, whereas

s8 is optimized for each functional. f(RAB
0 ) is the damping func-

tion as introduced by Becke and Johnson[68, 66]

f ðRAB
0 Þ ¼ a1RAB

0 þ a2 ð5Þ

with the fitting parameters a1 and a2, and the cut-off radii

RAB
0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAB

8 =CAB
6

¨ ¦q
or simplicity we will refer to D3(BJ) (which is

the current default for the method) as D3 in the following. An
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Axilrod–Teller–Muto (ATM)-type three-body (dipole-dipole-
dipole) term is also available in the D3 code including its ana-
lytical derivatives.[67, 68] The importance of many-body disper-
sion interactions has been recently analyzed by various
groups,[69, 70, 71] but is not in the focus of this Review.

The D3 dispersion correction can, in principle, be combined

with any BSSE correction, for example, with the standard BB-
CP procedure. In this scheme, however, the computational cost
quickly increases for larger complexes because full BS calcula-

tions for the fragments have to be conducted. If each atom is
considered as an individual fragment, one can define an

atomic counterpoise correction (ACP)[72] as done by Jensen.
The ACP(x) correction DEACP(x) is expressed as a sum over all

atoms A

DEACPðxÞ ¼
X

A

EðAÞa ¢ EðAÞas ð6Þ

where a denotes the regular basis set and as is a subset of

a which always includes the regular basis function on A. For
the intramolecular case, this subset further includes all basis
functions from atoms x bonds apart, and for the intermolecular
case, it contains all basis function of the other monomer.

When all basis functions of the whole system are included in
the subset, the ACP(1) correction equals the CPaa correction
published earlier by Galano and Alvarez–Idaboy.[73] These BSSE

corrections have a highly reduced computational cost and the
advantage to treat inter- and intra-molecular effects conceptu-

ally on the same level. Unfortunately, these approaches lack
the availability of nuclear gradients. Therefore, we recently de-

veloped a geometrical counterpoise correction (gCP)[74] that

solely depends on the molecular geometry. It provides a fast,
conceptually simple, but physically reasonable energy and gra-

dient correction for the BSSE in large molecules and con-
densed phase systems.

Within the gCP scheme, the difference in atomic energy

EA
miss between a large, nearly complete BS and the target basis

(here DZ) is calculated (and tabulated) for each atom at the HF

or B3LYP level and used as a measure for the BS incomplete-
ness. The EA

miss are then multiplied with a decay function de-

pending on the interatomic distance RAB and summed up over

all atom pairs AB

EgCP
BSSE ¼ s

X
A

X
A 6¼B

Emiss
A

exp ¢aðRABÞb
¨ ¦ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SABNvirt
B

p ð7Þ

where a, b, and s are functional and BS-specific fitting parame-
ters. As the density has an exponential tail, the decay function

is exponential. Due to the strong dependence of the BSSE on
the charge density overlap in SCF methods, this function is

normalized by the square-root of the Slater-overlap SAB times

the number of virtual orbitals NB
virt on atom B. The overlap in-

tegrals SAB are evaluated over single s-type orbitals centered

on each atom using optimized Slater exponents and weighted
by the last fitting parameter h. The fit was performed for HF

and B3LYP together with the target basis set on the S66 Õ 8
test set.[34] Standard BB-CP corrected interaction energies for

the respective method were employed as reference values.
The accuracy gained by a refit for different density functionals
is negligible and thus, the use of the B3LYP parameters is rec-
ommended for common GGA or hybrid functionals.

One advantage of the D3-gCP combination is its availability
for almost all elements in the periodic table, and the existence

of analytical nuclear gradients. Furthermore, the scaling behav-
ior with system size is low, and the computational prefactor is

small. This results in very fast computations even for thousands
of atoms. Another benefit is that the corrections can simply be
added on top of any DFT or HF calculation without need for

a specific implementation into a program package. A drawback
is the semiempirical character of both corrections and thus,

the need for a parameter fit for every functional in case of D3
and each functional/BS combination in case of gCP. However,

as mentioned before, the gCP dependence on the functional

was found to be negligible and, hence, only adjustments for
each basis set and for HF or DFT have to be made. In addition,

the corrections do not depend on the density and thus, the
electronic structure is not directly affected, though, an indirect

effect due to the altered geometry is present.
Note, that in general, the gCP scheme can be combined

with any dispersion correction. One example is a recent publi-

cation by Yoshida et al. , who used gCP for HF/6-31G(d) togeth-
er with their own dispersion correction to describe the HIV-

1 protease and its potent inhibitor KNI-10033.[75] The good per-
formance of DFT-D3-gCP/DZ and HF-D3-gCP/DZ for noncova-

lent interactions was already noted in the original gCP publica-
tion. The gCP correction is able to provide a reasonable esti-

mate for the intermolecular BSSE with an error of 10–30 %. For

the S22 benchmark set[76] for example, PW6B95-D3-gCP/def2-
SVP yields an MAD of 0.84 kcal mol¢1 for interaction energies.

In case of B3LYP/6-31G*, the MAD can be reduced from 2.67 to
0.88 kcal mol¢1 upon application of both the D3 and gCP cor-

rection. Geometry optimizations of the S22 complexes showed
that B3LYP-D3-gCP/6-31G* as well as HF-D3-gCP/SV reproduce
the reference structures well. In case of 9-helicene the non-

bonded C-C distances can be accurately computed with HF-
D3-gCP/SV within a few pm.[74] Somewhat unexpectedly, of all

various method/basis set combinations tested, HF-D3-gCP/
MINIS performs particularly well for noncovalent interactions.

In a recent publication, the shortcomings of the B3LYP/6-
31G* model chemistry, as explained in the previous section,

were analyzed and it was shown that D3-gCP can account for
the major deficiencies and that B3LYP-D3-gCP/6-31G* yields
reasonably accurate thermochemical results.[19] Benchmark cal-

culations on the general main group thermochemistry, kinetics,
and noncovalent interaction meta-database GMTKN30[5]

showed a statistical improvement when both corrections are
used. The weighted MAD decreased from 8.8 (B3LYP/6-31G*)

to 6.9 kcal mol¢1 (B3LYP-D3-gCP/6-31G*). It was statistically

confirmed that the partial error compensation of missing dis-
persion and BSSE in plain B3LYP/6-31G* is unsystematic and

depends on the chemical nature of the system at hand. The
improvement gained with the D3-gCP scheme is largest for

systems that exhibit noncovalent interactions, but reaction en-
ergies and barrier heights are also improved.
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Goerigk and Reimers used DFT-D3-gCP/DZ and HF-D3-gCP/
DZ for geometry optimizations of several test sets which aim

at describing important interactions in protein structures.[77]

Various functionals as well as HF in combination with different

DZ basis sets were employed for the P26 test set,[78] in order to
investigate their performance for conformers of five tri-pep-

tides containing aromatic side chains. For the 6-31G* basis
without any correction as an example, structural RMSDs
around 0.5 æ are observed. When only gCP is employed the

RMSDs rise, and with solely the D3 correction the RMSDs drop
significantly. When the combined D3-gCP scheme is used, the

RMSDs decrease to values of about 0.15 æ, which are slightly
higher than those with the D3 correction only. It seems that in

this specific case without gCP, a fortunate error compensation
occurs which, however, does not hold in general as discussed

above.
Martinez et al. showed that uncorrected DFT or HF with DZ

basis sets can yield good geometries for small proteins.[79] They

compiled a set of 58 proteins with up to 35 residues (up to
600 atoms) and compared their results to experimental X-ray

or nuclear magnetic resonance derived structures. The ab initio
methods HF and wPBEh are able to provide geometries of the

same quality as highly parametrized force fields and are consis-

tently better at reproducing experimental structures for pro-
teins with disordered regions, judged by standard health met-

rics.
Reimers et al. optimized a portion of an ensemble of confor-

mationally flexible lysosome structures by a divide-and-con-
quer approach and compared their results with X-ray crystal-

lography data.[80] The functionals BP86 and B3LYP, as well as

HF, were employed together with the 6-31G* basis set and in
combination with the D3-gCP scheme. Regarding the all atom

RMSD and the R-factor, the best and most consistent structures
are obtained when both the D3 and the gCP correction are

used. Compared to the uncorrected methods, employing only
D3 gives similar results and only gCP yields worse values. This

observations resemble the ones made for small peptides[77]

and again show that one cannot rely on error compensation
effects.

Extension of the gCP correction to periodic HF/DFT calcula-
tions enables the use of the D3-gCP scheme for molecular

crystals.[81] The corrections were applied to PBE and B3LYP for
the X23 molecular crystal test set[82] and decrease the MAD of

the sublimation energies significantly by more than 70 % and
80 %, respectively, to small residual MADs of about 2 kcal mol¢1

(corresponding to 13 % of the average sublimation energy).

Furthermore, variation of the interlayer distances for graphite
yielded a potential energy surface that is very close to the con-

verged basis set reference and agrees very well with experi-
mental stacking distances.

Up to now, D3 and gCP have been fitted independently of

each other, but applied at the same time in a calculation. The
effect of fitting both corrections together was briefly tested for

HF-D3-gCP and showed small improvements over the inde-
pendent fit, mainly due to removing redundancies in the po-

tentials.[74] We introduced two composite methods that also
make use of these corrections, but which were fitted or adjust-

ed in the presence of each other and thus are suggested as
one composite approach with a fixed basis set. As we noticed
the good performance of HF-D3-gCP/MINIS for noncovalent in-
teractions during the development of the gCP correction, we
proposed HF-3c, a minimal basis set Hartree–Fock method
with three atom-pairwise corrections: D3, gCP, and an addi-

tional term, which corrects for short-range basis set (SRB) in-
completeness effects.[83] The six parameters of the gCP and D3
correction terms were fitted together on the S66 test set and

were kept constant in the subsequent fitting procedure of the
third SRB term. This composite method corrects for both dis-
persion and BSSE and is suggested as an alternative to semi-
empirical methods or DFT, in particular when SIE is acute. HF-
3c yields reasonable noncovalent interaction energies and
good geometries of small organic molecules, as well as supra-

molecular complexes and small proteins.[83, 84, 77] As this Review

focuses on DZ basis sets, we will not discuss this method fur-
ther.

A related composite approach is our recently developed
PBEh-3c method, a global hybrid functional with a DZ basis

set, that is meant to fill the gap between existing semiempiri-
cal methods or HF-3c and large basis set DFT with respect to

the cost-accuracy ratio.[39] The term ‘3c’ indicates its relation to

HF-3c, and the corrections are a slightly modified gCP, D3, and
minor modifications to the def2-SV(P) BS (dubbed def2-mSVP)

for boron to neon in order to ensure consistent bond lengths
for all elements. PBEh-3c yields accurate geometries which

were verified for small molecules as well as medium sized mol-
ecules, noncovalently bound complexes, and molecular crys-

tals. The overall deviations from reference structures are tiny

and practically of MP2/def2-TZVPP quality, while the geome-
tries are obtained at a much lower computational cost (speed-

up of a factor of 50–100). All other DFT/small BS methods
tested yielded larger deviations. For the S22 set of noncovalent

complexes PBEh-3c agrees well with the MP2 reference geo-
metries, the mean deviation (MD) for intermolecular center-of-

mass distances is only 3 pm. For molecular crystals, the PBEh-

3c accuracy for geometries in the X23 and ICE10[85] sets ap-
proaches TPSS-D3/’large BS’ results. The mean absolute devia-
tions in the computed unit cell volume are 2.7 % and 5.0 %, re-
spectively, for X23 and ICE10. Although PBEh-3c was mainly

designed for the computation of structures, it yields reasona-
ble results for thermochemistry, barrier heights, and general

noncovalent interactions. Clearly, due to the small BS, the accu-
racy of dispersion-corrected hybrid DFT in a QZ basis set
cannot be reached.

4 Comparison of Methods for Noncovalently
Bound Systems

In the following section, we will compare the performance of
the various discussed methods for some exemplary noncova-

lently bound systems. We chose HF, HF-D3-gCP, B3LYP, B3LYP-
D3-gCP, B3LYP-DCP, M06-2X, and PBEh-3c. The def2-SV(P) basis

set will be applied in all cases (modified for PBEh-3c), except
for B3LYP-DCP where the 6-31 + G(2d,2p) basis will be used. An
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overview of the capability of these method to treat dispersion

and BSSE is provided in Table 1.

4.1 Noncovalent interaction energies

The accuracy for noncovalent interaction energies of the afore-
mentioned methods was tested on several benchmark sets.

We chose three sets for the interaction of small to medium
sized systems (WATER27,[86, 87] S22,[76, 58] S66[34]), two sets for

large and supramolecular systems (L7,[88] S30L[84]), and two test

sets for molecular crystals (ICE10,[85] X23[89, 82]). For each test set
one exemplary system is depicted in Figure 5.

The WATER27 test set contains 27 neutral and charged water

clusters with up to 20 water molecules. The S22 set consists of
22 noncovalently bound model complexes that show hydro-

gen bonding, dispersion interactions, and mixed electrostatic-

dispersion binding motifs. The S66 Õ 8 test set is similar to S22
but with less emphasis on nucleobases. Furthermore, reference

geometries and energies are provided at eight different distan-
ces of the monomers, which allows the extraction of the mini-

mum of the intermolecular potential energy surface (PES) of
a given method via an interpolation procedure. The reference

energies for these three sets refer to the estimated CCSD(T)/
CBS level of theory. For the S22 we use the revised values by

Sherill et al.[58] For the (H2O)20 complex contained in the
WATER27 set we use the reference values computed on the in-

cremental CCSD(T)(F12*) jMP2-F12 + DMP2 level by Friedrich.[87]

The L7 test set comprises seven larger, mostly dispersion-stabi-
lized complexes of organic molecules. We use the revised ref-
erence values on the estimated DLPNO-CCSD(T)/CBS* level of
theory.[90] The S30L set is an extension of the S12L set,[59, 60]

which was the first test set for large host–guest complexes. It
contains 30 realistic host–guest complexes with charges from
¢1 to + 4 and up to 200 atoms, featuring various typical non-
covalent binding motifs like hydrogen and halogen bonding,

p–p stacking, nonpolar dispersion, CH–p, and cation-dipolar in-
teractions. The reference association energies are back-correct-

ed values from experimentally measured association free ener-

gies. ICE10 includes ten ice polymorphs and X23 compiles mo-
lecular crystals that show mainly van der Waals or hydrogen

bonding or a mixture of these two interaction motifs. For
these two sets the reference lattice energies were derived

from experimental values which are further corrected for zero-
point vibrational and thermal effects.

As the absolute interaction energies differ by almost three

orders in magnitude, we give mean absolute relative devia-
tions (MARDs in %) from the reference energies for all test sets

and methods in Figure 6. Because of SCF convergence prob-

lems for some molecular crystals, the HF results for the period-

ic benchmarks were omitted. The values are color-coded as
suggested by Martin[91] in order to provide an easy overview
and the best two methods for each test set are highlighted.

As expected, the plain B3LYP functional or HF without any
corrections cannot properly describe noncovalent interactions.

Already for small systems contained in the WATER27, S22, or
S66 Õ 8 sets huge MARDs of 50 to 80 % are obtained. In many

Table 1. Overview of the applied methods and their capability to treat
BSSE and dispersion.[a]

Method BSSE correction Dispersion correction

HF no no
HF-D3-gCP yes yes
B3LYP no no
B3LYP-D3-gCP yes yes
B3LYP-DCP yes (yes)[b]

M06-2X no (yes)[c]

PBEh-3c yes yes

[a] B3LYP-DCP is used with the 6-31 + G(2d,2p) basis set, all other meth-
ods with the def2-SV(P) basis set (modified in case of PBEh-3c). [b] BSSE
and dispersion are treated together in one ECP leading to the wrong
asymptotic behavior for the dispersion interaction. [c] The dispersion in-
teraction has the wrong asymptotic behavior.

Figure 6. Mean absolute relative deviations (MARDs, in %) for different
methods compared with the reference values for several test sets. MARDs
below 15 % are color-coded in green, those below 30 % in yellow, and those
higher than 30 % in red. For each set, the two best performing methods are
highlighted. PBEh-3c includes the ATM three-body dispersion term by de-
fault ; for B3LYP-D3-gCP and HF-D3-gCP it was included for the large systems
(L7 and S30L test sets). In case of B3LYP-DCP, two systems of the S30L were
omitted due to missing functions of the 6-31 + G(2d,2p) basis set for iodine,
and for X23, eight systems had to be disregard due to SCF convergence
problems.

Figure 5. Example systems for each test set. Hydrogen bonds are indicated
by dotted lines.
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cases, these methods yield unbound complex states. The same
is observed for the supramolecular test sets and the MARDs

for L7 and S30L are even larger (80 to 160 %). The performance
of B3LYP for the ice polymorphs is similar to the molecular

WATER27 set. For both the MARD is about 60 %. Surprisingly,
the MARD for the X23 set of molecular crystals is with 34 %

much smaller than the corresponding values for the S22 and
S66 Õ 8 sets (about 60 %), and the performance is actually simi-

lar to M06-2X and B3LYP-DCP. For the mixed hydrogen-bonded

crystals, the error compensation between missing dispersion
and neglected BSSE in plain B3LYP is rather good around the

corresponding equilibrium geometry. While this explains the
slightly smaller error compared to the other test sets, this com-

pensation does not hold for stronger hydrogen bonding (sig-
nificant overbinding of the various ICE10 polymorphs due to
dominant BSSE) nor for purely London-dispersion-bonded X23

systems (significant underbinding due to missing dispersion in-
teraction).

When the D3 and gCP corrections are added, the plain HF
and B3LYP results can be improved tremendously. In case of
HF, no improvement is observed for the WATER27 set, but for
all others the MARD for HF-D3-gCP drops to 15 to 25 % which

is very reasonable for such a simple method. For B3LYP-D3-

gCP the enhancement for WATER27 and ICE10 is much smaller
than for the other sets, but still, the MARD is reduced from

60 % to about 35 %. Very good results are obtained for the
S22, S66 Õ 8, L7, S30L, and X23 test sets which have MARDs of

10 to 14 %. Compared with B3LYP-D3 with the large def2-QZVP
basis set, the MARD for B3LYP-D3-gCP/DZ on the S22 set is

doubled (6.2 %[5] vs. 13 %). If a TZ basis like def2-TZVP is em-

ployed, the MARD for the S22 is 11 % which indicates remain-
ing BSSE. Adding the gCP correction for the TZ basis set de-

creases the MARD to 7 % which is similar to the value obtained
with the QZ basis set. For the large supramolecular complexes,

B3LYP-D3-gCP/DZ yields equally good values or even better re-
sults than B3LYP-D3/QZ. The MARD for the S30L set is 13.8 %

for B3LYP-D3-gCP/DZ and very similar for B3LYP-D3/QZ

(13.2 %[84]). For the L7 set, B3LYP-D3-gCP/DZ yields an MARD of
13.6 %, which is less than half of the value for B3LYP-D3/QZ
(32.5 %[88, 90]).

If DCPs are used for B3LYP instead of the D3-gCP correction,

the behavior is very different. First we note the extraordinary
good performance for the water-containing systems. The

MARD of B3LYP-DCP is 9.4 % for WATER27 and 1.1 % for ICE10.
Even with large basis set dispersion-corrected DFT calculations,
it is difficult to reach this accuracy. This can partially be attrib-

uted to the basis set (6-31 + G(2d,2p)) which contains two sets
of additional polarization functions, as well as a diffuse set of

sp-functions on nonhydrogen atoms, which is known to be im-
portant for these systems.[5, 86, 87] Therefore, the number of basis

functions per atom is more comparable to a TZ basis and

much larger than in def2-SV(P). The B3LYP-DCP results for S22
and S66 Õ 8 are also very good and the MARDs of 7.7 and

0.5 %, respectively, are the lowest ones reported here. The
MARD for S22 is very close to the already mentioned B3LYP-

D3/QZ result (6.2 %[5]). For large systems, however, the per-
formance of B3LYP-DCP deteriorates significantly. The MARDs

for the S30L and L7 sets are 39.2 and 27.9 %, respectively. Al-
though these values are about three times smaller than those
for plain B3LYP, they are still about three times larger than for
B3LYP-D3-gCP. For the X23 set there is no improvement com-
pared to plain B3LYP. Both MARDs are about 35 %, which is
again three times as large compared to B3LYP-D3-gCP.

Finally, we discuss the recently published composite method
PBEh-3c.[39] Its overall performance for all test sets is very good,
and consistent accuracy for small as well as large complexes is

evident. The MARDs for the S22, S66 Õ 8, L7, S30L, and X23 sets
are found to be in the range of 8 to 13 %. The performance for
WATER27 and ICE10 is worse; the MARDs are about 20 %. This
indicates that the applied corrections cannot repair the higher
basis set requirements in condensed hydrogen-bonded sys-
tems compared with only medium polar dimers. But neverthe-

less, the similar MARDs for WATER27 and ICE10 as well as S22/

S66 Õ 8, L7/S30L, and X23 show that PBEh-3c treats the nonco-
valent interactions in small, large and periodic systems with

the same accuracy. PBEh-3c is always one of the two best per-
forming methods on any test set. The others are either B3LYP-

DCP (WATER27, S22, S66 Õ 8, ICE10) or B3LYP-D3-gCP (L7, S30L,
X23).

As this article mainly focuses on large systems, a closer look

to the supramolecular complexes of the S30L set is appropri-
ate. The association energies DE range from ¢17.4 kcal mol¢1

for the halogen-bonded complex 15 up to ¢135.5 kcal mol¢1

for the doubly positive charged complex 24. Figure 7 shows

a comparison of the DE values for PBEh-3c, M06-2X, B3LYP-D3-
gCP, and B3LYP-DCP with the reference values.

As one can easily see, B3LYP-DCP and M06-2X exhibit large

systematic overbinding as indicated by MDs of ¢9.6 and
¢6.4 kcal mol¢1, respectively. The largest errors for B3LYP-DCP

are observed for the charged systems 23 to 30 and range from
¢11 to ¢27 kcal mol¢1. Somewhat surprisingly, the errors are

also large (>¢10 kcal mol¢1) for most of the hydrogen-bonded
systems (17, 19 to 21). As seen before, B3LYP-DCP performs
exceptionally well for the WATER27 and ICE10 sets, the hydro-

gen-bonded dimers in S22/S66 Õ 8, but seems to fail for hydro-
gen bonds in these supramolecular complexes. Furthermore,
the errors are large (¢8 to ¢14 kcal mol¢1) for some of the p–
p-stacked systems (5, 7 to 10). The complexes 25 and 26
which also exhibit p–p-stacking as major interaction show
a similar error. Apparently, for the small systems (on which the

DCPs are fitted), the description of dispersion and the compen-
sation for BSSE are reasonable, and accurate results can be ob-
tained. For these large supramolecular complexes, the balanc-

ing of dispersion effects and BSSE is different, which is difficult
to describe by a correction potential lacking the correct phys-

ics. As explained above, missing dispersion results in too
weakly and BSSE in too strongly bound complexes. B3LYP-DCP

overestimates the binding energy for all host–guest complexes
and thus, the remaining BSSE seems to be the major error
source. Whether the diffuse functions in the 6-31 + G(2d,2p)

basis play an additional negative role in the larger systems due
to a more long-ranged BSSE is currently not clear.

The largest errors for plain M06-2X (¢10 to ¢19 kcal mol¢1)
are obtained for the complexes 5, 9, 11, 12, 17, 29, and 30.
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Thus, M06-2X seems to have less trouble to accurately describe
hydrogen-bonded complexes than to reproduce the reference

values for the p–p-stacked systems. As the MARD for S30L is

similar to that of S22 and even better than for S66 Õ 8
(Figure 6), the incorrect asymptotic treatment of the London

dispersion seems not to be a major error source. Much more
problematic is the unaccounted BSSE, and therefore, binding

energies are overestimated. When a TZ basis is used, the MAD
drops to 2.5 kcal mol¢1 and the MD is just 1.4 kcal mol¢1, indi-

cating underbinding due to the missing long-range dispersion

contribution.[84]

When dispersion and BSSE are both separately accounted

for, as it is in B3LYP-D3-gCP and PBEh-3c with two different po-
tentials, the errors decrease substantially. For B3LYP-D3-gCP

the largest errors of ¢12 to ¢21 kcal mol¢1 are observed for
complexes 9 to 12. For PBEh-3c the complexes 11 to 13, 22,
and 24 show the largest errors of 6 to 9 kcal mol¢1. B3LYP-D3-

gCP and PBEh-3c reach MDs of ¢1.6 to ¢0.1 kcal mol¢1, respec-
tively, indicating small to almost no systematic overbinding.
Compared with M06-2X and B3LYP-DCP, the MAD values for
B3LYP-D3-gCP and PBEh-3c are with 4.7 and 3.4 kcal mol¢1, re-

spectively, much lower. For comparison, the previous best re-
sults for S30L were obtained with PW6B95-D3/def2-QZVP,

which yields an MAD of 2.4 and an MD of ¢0.1 kcal mol¢1.[84]

B3LYP-D3/def2-QZVP is one of the worst performers at the
large BS level and has an MAD of 4.1 and an MD ¢2.7 kcal

mol¢1.[84] Thus, B3LYP-D3-gCP is able to provide close to QZ
quality results but at a small fraction of computational cost,

and PBEh-3c almost approaches the accuracy of PW6B95-D3/
QZ. These examples show clearly how important it is to prop-

erly and consistently treat both dispersion and BSSE in large

systems.
In Figure 8, we summarize the different contributions to the

binding energy of the S66 dimers (minimum extracted from
S66 Õ 8 potentials) for the HF and B3LYP methods evaluated in

a def2-SV(P) basis set with and without correction schemes.
We show the statistics of the deviations to CCSD(T) references

as normal error distributions. The behavior of HF and B3LYP

mean-field methods is very similar, which is typical for purely
noncovalent interactions. Without any correction, the error

spread is large (broad distribution) with a slight systematic un-
derbinding. When only the gCP correction is applied, the error

Figure 7. Comparison of the PBEh3c, M06-2X, B3LYP-D3-gCP, and B3LYP-DCP binding energies with reference values for the S30L test set. The complexes are
sorted according to the most prominent type of interaction. In case of B3LYP-DCP, the complexes 15 and 16 were omitted due to missing functions of the
6-31 + G(2d,2p) basis set for iodine. The MADs and MDs in parentheses are provided for each method in kcal mol¢1.

Figure 8. Error statistics of S66 equilibrium binding energies for corrected and uncorrected HF and B3LYP in a SV(P) basis set converted into normal error dis-
tributions.
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spread decreases, but the underbinding is increased. The sole
application of the D3 correction leads similarly to a smaller

error spread and a systematic overbinding. Only the combina-
tion of both schemes leads to an excellent agreement with the

reference data with MAD of 0.8 kcal mol¢1 and 0.6 kcal mol¢1

for HF-D3-gCP and B3LYP-D3-gCP, respectively.

4.2 Structures of noncovalently bound systems

In the following, the accuracy of the methods for optimized

structures of noncovalent complexes is evaluated. As examples

for small systems we chose the S22 and S66 Õ 8 sets that were
already employed for the interaction energies as well as the

P26[78] set, which contains different conformers of four pep-
tides. For S22 and P26, the reference geometries were calculat-

ed on the MP2/TZ level of theory, and the root mean square
deviation (RMSD) of the heavy atom positions, as well as the

deviation of the intramolecular center-of-mass distance of the

monomers, are used as performance measures. For the S66 Õ 8,
the PES is used to determine the optimal intramolecular

center-of-mass distance of the monomers, and therefore, the
CCSD(T)/CBS level of theory is the reference as conducted simi-

larly before.[39, 92] For the supramolecular systems, we face the
problem that there are no reference geometries available. The

L7 and S30L systems were optimized on the TPSS-D3/TZ level

of theory, which is certainly a good choice but not accurate
enough to serve as a reference. In order to show exemplary

the influence of London dispersion and BSSE in large supra-
molecular complexes, system 5 from S30 L and the phe com-

plex from L7 were reoptimized on the TPSS-D3/def2-QZVP(-g/f)
level, and these structures were used for comparison.

For the molecular crystal test sets ICE10 and X23, the refer-

ence geometries refer to experimental X-ray data which are
isotropically corrected for zero-point vibrational and thermal

effects.[85, 39] Here, we use the deviation of the unit cell volume
as measure to evaluate the accuracy of the tested methods.

Figure 9 depicts the geometries of two exemplary systems,
the p–p stacked and hydrogen-bonded cytosine–uracil base

pair, as obtained with the DFT methods in comparison with
the reference structures. The results for HF and HF-D3-gCP are

similar to B3LYP and B3LYP-D3-gCP and, therefore, these geo-
metries are not shown.

One can see immediately, that plain B3LYP cannot even
qualitatively correctly reproduce the p–p stacked structure

(Figure 9, top). As the London dispersion is completely missing,
the p–p stacked dimer is not a minimum on the PES, and the

optimization leads to the hydrogen-bonded structure. In con-

trast, all other four methods which include dispersion effects
can describe the p–p stacking. B3LYP-DCP and PBEh-3c yield

the most, and B3LYP-D3-gCP the least accurate structure. The
missing dispersion terms in plain B3LYP are less problematic

for the hydrogen-bonded dimer because hydrogen bonds are
mainly caused by electrostatic and induction interactions
which most density functionals cover rather accurately. Thus,

for the hydrogen-bonded dimer, plain B3LYP yields a geometry
which is as good as with M06-2X and even slightly better than
the B3LYP-D3-gCP structure. Again, B3LYP-DCP and PBEh-3c
have the smallest RMSD compared with the reference.

Table 2 presents the statistical data of the S22, S66 Õ 8, and
P26 test sets for small systems. The two best performing meth-

ods for each set are highlighted, and the data are converted to

normal error distributions in Figure 10.

In general, plain B3LYP and HF cannot correctly reproduce

the structures. Especially, when p–p stacking or nonpolar dis-

persion interactions are involved, these methods yield a practi-
cally unbound geometry or a different conformation, like the

hydrogen bonded dimer in the example shown above. Thus,
the mean (absolute) deviations for the intermolecular center-

of-mass distances RCMA for the S22 and S66 Õ 8 sets, as well as
the heavy atom positions in the S22 and P26 sets, are unac-

ceptably large. When the D3-gCP corrections are added, the

MDs and MADs for the RCMA of about 80 pm for S22 and about
40–50 pm for S66 Õ 8 drop significantly. B3LYP-D3-gCP yields

an MD of only 5 pm and an MAD of 11 pm in case of S22 and
the same values for both measures of 10 pm for the S66 Õ 8

set. HF-D3-gCP gives an MD of 9 pm and and MAD of 16 pm
for the S22 set. For S66 Õ 8, HF-D3-gCP in fact is one of the two

Figure 9. Comparison of the PBEh-3c, M06-2X, B3LYP, B3LYP-D3, B3LYP-D3-
gCP, and B3LYP-DCP geometries (colored) with the reference MP2/TZ struc-
ture (in gray) for the p–p stacked cytosine-uracil base pair (top) and the hy-
drogen-bonded cytosine-uracil base pair (bottom) from the S22 test set. Hy-
drogen bonds are indicated by dotted lines. The RMSDs for the heavy atom
positions are given in pm.

Table 2. Statistical data for the deviations of the intramolecular center-of-
mass distances RCMA

[a] and the mean RMSDs.[b]

S22 S66 Õ 8 S22 P26
MD MAD MAX MD MAD MAX RMSD RMSD

PBEh-3c 7.6 12.7 98.4 3.2 5.7 16.7 9.9 16.1
M06-2X ¢7.7 8.4 ¢44.7 ¢9.5 9.6 ¢24.6 6.5 8.4
B3LYP 78.7 82.6 389.9 40.2 43.0 362.5 55.1 48.8
B3LYP-D3-gCP 4.6 11.2 43.8 10.1 10.2 28.0 8.2 17.5
B3LYP-DCP ¢4.4 5.7 33.8 1.3 20.5 59.6 3.9 9.4
HF 81.8 82.2 263.2 54.2 54.2 362.5 53.2 49.6
HF-D3-gCP 8.6 15.6 135.4 1.7 2.8 f 18.4 11.7 12.7

[a] From the reference values for the S22 and S66 Õ 8 test set. [b] RMSD
for the heavy atom positions in case of S22 and P26 compared with the
reference. An MD>0 denotes too large intermolecular distances. All
values are given in pm. The two best performing methods are highlight-
ed.
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best methods and yields an MD of only 2 pm and and MAD of
only 3 pm. The RMSD for the heavy atom positions are similar

for B3LYP-D3-gCP and HF-D3-gCP, about 10 pm for the S22
and about 15 pm for the P26.

B3LYP-DCP performs somewhat better than B3LYP-D3-gCP
for S22 and gives the best results for this set with an MAD of

¢4 pm, an MAD 6 pm, and an RMSD value for the heavy atom

positions of only 4 pm. In case of the S66 Õ 8 set, the MD of
1 pm is even lower, and the best value obtained but the MAD

of 21 pm is much larger than those for all other dispersion-
corrected methods. M06-2X yields one of the two best values

for the heavy-atom RMSDs of 7 and 8 pm for the S22 and P26
set, respectively. It is the only method which consistently gives

too small intermolecular center-of-mass distances RCMA for both

the S22 and S66 Õ 8 set. The MDs are ¢8 and ¢10 pm, respec-
tively. The MADs are very similar, indicating that this error is

systematic. PBEh-3c yields results comparable to HF-D3-gCP
and slightly worse than M06-2x, with an MD of 8 pm, an MAD

of 13 pm and an RMSD value of 10 pm for the S22 set. In case
of the S66 Õ 8, the performance is better. The MD is 3 pm and
the MAD is with 6 pm the second best value obtained.

Note that the S66 set consists of the most reliable reference
data, while the S22 and P26 systems are only optimized at the
MP2 level. A comparison of the S66 equilibrium CMA distances
calculated at MP2 level reveals an MAD of 3.3 pm compared

with the coupled cluster reference. Therefore, MAD values of
a few pm on the S22 and P26 sets do not indicate significant

deviations and are within the MP2 error. Even more important

in this context are systematic errors in the reference structures.
For instance some of the largest PBEh-3c outliers for S22 occur

for the p-stacked benzene dimer, for which MP2 is known to
overbind significantly.[93] Presumably, in this case the MP2 refer-

ence is in fact off (too short distance) as indicated by a distance
underestimation by 3.4 % compared to the CCSD(T) reference

for the benezene dimer in the S66 Õ 8 set.

The influence of the dispersion and counterpoise correction
schemes for the S66 equilibrium distances is summarized in

Figure 10. In analogy to the binding energy analysis in the pre-
vious paragraph, we show HF and B3LYP deviations with and

without correction converted into normal error distributions.
These distributions mainly confirm the analysis given above.

While the uncorrected methods yield rather bad structures, the
most consistent methods are the dispersion and counterpoise

corrected ones, though B3LYP-D3-gCP yields slightly too large
intermolecular distances.

Among the dispersion-corrected methods B3LYP-DCP seems
to be the best performer for all three test sets but we could

not identify a method which is clearly superior to others. It is

important to note, that due to the larger 6-31 + G(2d,2p) basis
set and the dispersion correcting potentials themselves, the

geometry optimizations with B3LYP-DCP are an order of mag-
nitude slower than with all other methods employed.

In order to show the influence and the interplay of disper-
sion and BSSE for supermolecular systems, we optimized com-

plex 5 of the S30L and the phe complex of the L7 set with

plain B3LYP, B3LYP-D3, B3LYP-gCP, and B3LYP-D3-gCP. The over-
lays of these geometries with the reference structure are pre-

sented in Figure 11.
As already observed for the small complexes, the plain

B3LYP functional gives too large distances for the p–p stacked
systems due to the dominant effect of missing dispersion. The

RMSD of the heavy atom positions is 59 pm for 5 and 94 pm

Figure 10. Error statistics of S66 equilibrium center-of-mass distances for corrected and uncorrected HF and B3LYP in a SV(P) basis set converted into normal
error distributions.

Figure 11. Comparison of the B3LYP, B3LYP-D3, B3LYP-gCP, and B3LYP-D3-
gCP geometries (colored) with the reference TPSS-D3/def2-QZVP(-gf) struc-
ture (in gray) for a) complex 5 of the S30L set and b) the phe complex of
the L7 set. The RMSDs for the heavy atoms are given in pm.
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for phe. If the D3 scheme is employed, the distances are slight-
ly too small due to the BSSE. The RMSDs drop to 13 and

29 pm, respectively. When we only correct for the BSSE by gCP,
the distances are again far too large and the RMSD values are

similar to those of plain B3LYP. Only if dispersion and BSSE cor-
rections are employed together (B3LYP-D3-gCP level), accurate

geometries are obtained. Visually, the agreement with the ref-
erence structure is very good, and the heavy-atom RMSDs are

only 12 pm for 5 and 16 pm for phe. These two examples

clearly show, that not only for interaction energies, but also for
geometries of large systems, it is important to treat London

dispersion and BSSE on the same footing.
Finally, we investigate the structures of the previously intro-

duced X23 and ICE10 solid state benchmark sets. As noted
before, we use the experimental crystal densities (or crystal
volumes) from X-ray measurements. These mass densities have

been back-corrected for zero-point and thermal effects, which
are important as they can alter the mass density by 1 to 5 %

with a typically decreased density (enlarged unit cell volume).
In Table 3, we give the statistical deviations from the reference
unit cell volumes for the methods PBEh-3c, M06-2X, B3LYP,
B3LYP-D3-gCP, and B3LYP-DCP all with the same basis sets as

in the molecular calculations.

The general picture that emerged from the molecular com-
plexes is confirmed for the crystals. However, because of the

larger long-range contributions to the interaction, the differen-
ces between the tested methods are more pronounced. Again,

M06-2X and B3LYP-DCP are numerically problematic and suffer

from SCF convergence problems. As already seen for the mo-
lecular dimers, M06-2X suffers from BSSE, which leads to sys-

tematically too small unit cells by 13 % and 15 % for the X23
and ICE10 set, respectively. For plain B3LYP, inconsistent behav-

ior for the two test sets is found. For the more dispersion do-
minated X23 systems, the unit cells are substantially too large

by more than 20 %, though for some systems, the error com-

pensation leads to better results than B3LYP is inherently capa-
ble. For instance, the geometries of the oxalic acid polymorphs

are very reasonable with only 4 % deviation from the reference
density. The ice polymorphs are more strongly dominated by

electrostatic and induction effects with only small dispersion
contribution. Here, the BSSE is even larger compared with the

missing dispersion leading to too small unit cells. Applying
both correction schemes (D3 and gCP) results in a more con-

sistent performance. At this level, for both test sets, a reason-
able MAD of about 8 % is obtained. A combined optimization

of the gCP and D3 parameters would probably lead to even
better geometries. B3LYP-DCP is based on a larger basis set

with rather diffuse functions, which explains some of the con-
vergence problems. However, this also minimizes the BSSE,

and the results are good with MADs for the X23 and ICE10 ref-

erence unit cell slightly below and slightly above 4 %, respec-
tively. Again, especially the ice polymorphs are described to

a high accuracy consistent with the excellent lattice energies.
On the X23 set, B3LYP-DCP is only outperformed by the new

PBEh-3c composite method. The geometries are competitive
to more expensive calculations based on converged PAW basis

sets with typical unit cell errors of about 3 %.[39, 94]

As prototypical example for a London-dispersion-dominated
crystal, we investigate the benzene crystal in more detail. It

has various energetically-close-lying polymorphs,[95, 96] and it
was used extensively to test and judge electronic structure

methods (including wavefunction expansions,[97, 98, 99, 100, 101] dis-
persion corrected DFT,[89, 82, 102, 103, 94, 104] and semiempirical MO

methods[105, 106, 107]). We show a potential energy surface (PES)

scan of the benzene crystal in Figure 12. Each structure corre-
sponds to a constrained volume optimization at the TPSS-D3

level in a converged PAW[108, 109] basis set, and we additionally
highlight the equilibrium point. The reference point refers to

the back-corrected experimental unit cell volume combined
with a highly accurate CCSD(T) computed lattice energy.[113]

Because of SCF convergence problems, M06-2X results are

not included. Concerning the other methods, substantial differ-
ences in the computational speed are observed. With identical

numerical setups, the relative timing for one single-point
energy calculation of PBEh-3c, B3LYP/SV(P), and B3LYP-DCP/6-

31 + G* are 1.0:1.2:8.2 with PBEh-3c being the fastest and
B3LYP-DCP/6-31 + G* the slowest method. The higher compu-

tational cost is mainly due to the larger and more diffuse basis

set, which leads (especially in periodic boundaries) to a sub-
stantially higher number of computed integrals.

The benzene crystal nicely reflects the basic properties of
the described methods regarding the treatment of dispersion
dominated systems. Plain B3LYP just shows a shallow BSSE-re-
lated minimum. This correctly disappears when the gCP correc-
tion is applied. Only in combination with both correction

schemes (B3LYP-D3-gCP), a very reasonable PES is obtained
with nearly perfect lattice energy (¢13.16 (B3LYP-D3-gCP) vs.
¢13.22 kcal mol¢1 (reference)), but slightly too large unit cell
(by 2.6 % too low mass density). The B3LYP-DCP approach

shows a clear minimum which is somewhat too low (lattice
energy of ¢15.22 kcal mol¢1) and too small unit cell (by 4.5 %

too large mass density). The potential of PBEh-3c agrees excel-

lently with the reference, and both the unit cell volume and
the lattice energy are within 1.2 % and 0.8 kcal mol¢1, respec-

tively.

Table 3. Statistics (MD, MAD, SD, MAX)[a] for the relative deviations of the
cell volume for the X23 and ICE10 sets.

X23 ICE10
MD MAD SD MAX MD MAD SD MAX

PBEh-3c 1.8 2.7 3.2 10.2 2.5 5.0 7.7 16.6
M06-2X[b] ¢12.5 12.5 4.4 23.3 ¢14.9 14.9 2.2 17.3
B3LYP 22.1 22.1 15.5 57.3 ¢5.7 5.7 1.4 8.3
B3LYP-D3-gCP 5.5 7.6 6.4 14.7 7.6 8.3 5.5 15.8
B3LYP-DCP[b] ¢3.5 3.6 2.1 7.5 ¢4.4 4.4 1.9 7.0

All values are given in %. The two best performing methods with smallest
MAD are highlighted. [a] An MD>0 denotes cell volume that is too large.
[b] Only 70 % of the systems could be converged.
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5 Conclusion

In this short topical Review, we have critically analyzed widely

used quantum chemical HF and DFT computations employing

relatively small single-particle basis sets of double-zeta quality.
As indicated by the tremendous number of publications which

are based on this or similar theoretical levels, these methodol-
ogies are practically very relevant. We highlighted the two

main error sources in standard applications, namely the BSSE
and the missing London dispersion interaction. Different strat-

egies to treat and correct the errors were reviewed and tested

on mainly noncovalently bound systems with varying size. We
analyzed both energetic and geometric properties. Due to the

efficiency of the methods, their main applications are large
supramolecular or periodic systems, which were also the focus

of our analysis.
As main result of our investigations, it is nowadays not justi-

fied to rely on fortuitous error compensation as for example, in

the popular B3LYP/6-31G* approach. Without additional com-
putational overhead, the main error sources can be treated

with semiclassical potentials, and the composite method
B3LYP-D3-gCP/DZ outperforms the plain functional clearly. Fur-
ther improved results are obtained, when the BSSE and
London dispersion are directly included in the method design
as recently done in the PBEh-3c functional with good to excel-

lent results on all tested geometries and reference energies.
Only for some systems with particular high requirements on
the basis set (e.g. very strong hydrogen bonds or anions), the
performance is slightly worse compared with, for example,
a ’hybrid’/QZ level.

Using ECP-type potentials to simultaneously cure the func-

tional and basis set errors works very well for small complexes
similar to those used in the training sets for the method. How-
ever, with the tested B3LYP-DCP scheme, the computational
costs are closer to that of a triple-zeta basis set. More impor-
tantly, the quality of the results for larger systems deteriorates

and the performance is unsatisfying. We attribute this inconsis-
tency to a wrong distance behavior of the correction potential

as the finite ECP expansion cannot recover the correct R¢6 limit
of the dispersion interaction.

In summary, it is indeed possible to effectively use quantum

chemical methods with small basis set expansions when all
arising errors are treated properly. The good results for both,

energetic and geometric properties of large and periodic sys-
tems is encouraging, and we expect this to translate into glob-

ally accurate potential energy surfaces, which is important for
thermodynamic properties and ab initio molecular dynamics.

In this context we would like to mention the problem of sol-

vation effects that was not discussed in this Review. Dispersion
effects are omnipresent and also occur for any molecule when

it is solvated as in most chemical applications. Molecular dis-
persion (or BSSE) effects are then partly quenched, that is, in-

tramolecular contributions are replaced by intermolecular ones
with the solvent. An accurate account of these effects requires

sophisticated solvation models with the same high accuracy as

the quantum chemical treatments which is difficult to obtain
at present. Whenever comparisons of computed molecular to

experimental liquid phase data are made, we recommend to
include consistent continuum solvation models like COSMO-
RS[111, 112] or DCOSMO-RS[111] (for geometry optimizations). Only
such treatments eventually will lead to the ’right answer for

the right reason’. In any case, due to the broad area of possible
applications of for example, the new PBEh-3c composite
scheme in describing host–guest binding enthalpies, lattice en-

thalpies of organic crystals, and structures of larger biologically
relevant molecules, the future for quantum chemical modeling

of these systems seems bright.

6 Computational Details

For the single-point energy calculations on the benchmark sets
S22,[76, 93] S66 Õ 8,[34] WATER27,[86] L7,[88] S30L,[84] ICE10,[85] and
X23[89, 82] the geometries were taken as provided in the correspond-
ing references. The computations for the molecular systems were
carried out with either the current development version of ORCA

Figure 12. Lattice energy of the benzene crystal along a PES based on contained volume optimizations (TPSS-D3/’CBS’ level). The experimental geometry is
back-corrected for zero-point and thermal effects as described in refs. [85,39], and the reference lattice energy corresponds to a CCSD(T) estimate.[110]
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3.0[113, 114] in case of B3LYP[9, 10, 11, 12]-DCP[53, 54]/6-31 + G(2d2p)[13] or
TURBOMOLE 7.0[115, 116] for all other methods (HF, B3LYP, M06-2X,[40]

PBE0,[117] and PBEh-3c[39]) in combination with the double-z basis
set def2-SV(P)[118] (modified in case of PBEh-3c for boron to neon,
for details see ref. [39]). The resolution-of-identity (RI) approxima-
tion for the Coulomb integrals[119] was applied in all cases except
B3LYP-DCP using matching default auxiliary basis sets.[120] For the
integration of the exchange-correlation contribution the numerical
quadrature grids m4 (m5 in case of M06-2X)[121] and grid 6 were
employed in TURBOMOLE and ORCA, respectively. The energy con-
vergence criteria were set to 10¢7 Eh in all cases.

The periodic calculations were conducted with a developer version
of the CRYSTAL14 program.[122] It is the ideal choice for cost-effec-
tive DFT calculations in small basis sets as it can exploit full point
and space group symmetry. The Brillouin zone is sampled with
a G-centered k-mesh with grid density of approximately 0.025 æ¢1

(for details see refs. [85,82]). Standard integral thresholds and large
DFT integration grids were used.

The calculation of the D3(BJ)[45, 65] dispersion correction and the
gCP BSSE correction[74] were carried out with our own programs
dftd3 and gcp, respectively. These programs are freely available
from our website.[123]

For the structure optimizations of the benchmark sets S22 and
P26,[78] the geometries as provided in the corresponding references
were taken as start coordinates. Again, for B3LYP-DCP/6-31 +
G(2d,2p), ORCA 3.0 was employed and TURBOMOLE 6.6 was used
in for HF, B3LYP, M06-2X, PBE0, and PBEh-3c in combination with
the def2-SV(P) basis set (modified in case of PBEh-3c). The D3(BJ)
and gCP corrections to the gradients were again calculated with
our own programs dftd3 and gcp. The convergence criteria were
set to 10¢7 Eh for energies and 10¢5 Eh/Bohr for gradients.
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