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Abstract: Intervertebral disc (IVD) degeneration (IDD) is a pathological process that commonly
occurs throughout the human life span and is a major cause of lower back pain. Better elucidation
of the molecular mechanisms involved in disc degeneration could provide a theoretical basis for
the development of lumbar disc intervention strategies. In recent years, extracellular matrix (ECM)
homeostasis has received much attention due to its relevance to the mechanical properties of IVDs.
ECM proteolysis mediated by a variety of proteases is involved in the pathological process of disc
degeneration. Here, we discuss in detail the relationship between the IVD as well as the ECM and the
role of ECM proteolysis in the degenerative process of the IVD. Targeting ECM proteolysis-associated
proteases may be an effective means of intervention in IDD.

Keywords: ECM; IDD; protease

1. Introduction

Lower back pain is a chronic and widespread musculoskeletal disorder that occurs
in approximately more than 85% of people worldwide during their lifetime [1,2]. Disc
degeneration has been implicated as a major cause of lower back pain [3,4]. Current clinical
treatments for IDD include conservative treatment and surgical intervention. However,
these treatment strategies all tend to relief symptoms rather than eliminate the underlying
cause [1]. Further exploration of the molecular mechanisms involved in disc degeneration
will provide new therapeutic targets to intervene in lower back pain.

The IVD is a complex structure consisting of three parts: the nucleus pulposus (NP) at
its core, the annulus fibrosus (AF) surrounding it, and the endplates anchored to the upper
and lower sides [5]. Many studies have shown that a variety of genetic or environmental
etiologies that damage the nucleus pulposus, annulus fibrosus, or endplate can lead to
disc degeneration, with the nucleus pulposus bearing the brunt of the degeneration [6–8].
Currently, the nucleus pulposus cells are considered to bear the highest degree of remolding
during IDD and maintain the homeostasis of the ECM. In normal IVDs, the anabolism
and catabolism of the ECM are in a dynamic balance. When the homeostatic balance of
the ECM is disturbed by various stimuli, disc degeneration usually occurs [9]. As disc
degeneration progresses, proteoglycans and collagen type II content decrease significantly,
while collagen type I content increases significantly, resulting in decreased water absorption,
a dysfunctional mechanical microenvironment, and decreased resistance to the loading
of the ECM [10–12]. Mounting evidence indicate that various proteases play key roles
in ECM proteolysis in disc degeneration. Abnormal expression of diverse protease in
degenerated disc tissue and its role in ECM proteolysis have been reported. In this review,
we systematically describe the role of diverse proteases in IDD. In addition, recent advances
in the treatment of disc degeneration by maintaining ECM homeostasis are detailed in this
article. A better understanding of the precise mechanisms by which proteases are associated
with disc degeneration may provide guidance for the development of therapeutic strategies
for disc degeneration.
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2. ECM in IVD

The ECM is a non-cellular structure composed of about three hundred proteins [13].
ECM is present in the extracellular environment of all tissues and is involved in numerous
cellular processes [14]. The major ECM components of the IVD include collagens, proteo-
glycan, and non-collagenous proteins [15]. Fine-tuned ECM dynamics are essential for
the normal physiological functioning of the IVD [16]. NP cells are dispersed in a complex
network of interwoven polysaccharides and collagen, which continuously interact with the
surrounding ECM in a bidirectional manner to maintain tissue homeostasis [15].

2.1. Collagens

Collagen is a key component of the ECM and provides mechanical support for the
disc cells. By acting on cell membrane receptors, collagen regulates a variety of cellular
phenotypes including migration, proliferation, and differentiation [17]. Collagens I and II
constitute the bulk of fibrillar matrix of the IVD, with other collagen subtypes including III,
V, VI, IX, XI, XII, and XIV [18,19]. As the IVD degenerates, there is a shift from collagen
type II to collagen type I [10]. In addition, the distribution of collagens changes, with more
collagen II accumulating on the outer annulus and type I collagen accumulating in the
nucleus pulposus and inner annulus [20].

2.2. Proteoglycans

Proteoglycans are macromolecules composed of core proteins and glycosaminoglycan
(GAG) side chains. Aggrecan, the most abundant proteoglycan in IVD, is responsible for
much of the water-attracting properties due to its high fixed charge density [10]. As age
and degeneration progress, aggrecan is cleaved into non-aggregating fractions, leading
to reduced hydration of the IVD [15]. Decorin is a member of small leucine-rich proteo-
glycans (SLRPs), which are widely expressed in connective tissue [21]. Decorin binds
to a variety of ECM proteins such as collagen type I, II, III, and VI, which contribute to
ECM assembly [22,23]. In addition, decorin binds to various signaling factors to regulate
cell proliferation and differentiation and ECM turnover [24,25]. Decorin has been shown
to be highly expressed in degenerating discs and may be involved in tissue repair [21].
Versican is a large extracellular proteoglycan that plays important roles in cell division,
adhesion, migration, differentiation, and ECM turnover [26,27]. Previous studies have
shown that versican is more highly expressed in IVD tissue than in articular cartilage and
has a higher abundance in the nucleus pulposus [28]. In addition, in vitro studies have
shown that versican exerts a protective effect by promoting the proliferation and adhesion
of NP cells [29].

2.3. Non-Collagenous Proteins

Elastin is cross-linked by the soluble precursor tropoelastin [30]. Mature Elastin is
present in various soft tissue ECM and is the most hydrolytically resistant ECM macro-
molecule [31]. Elastin constitutes approximately 10% of the IVD matrix and its abundance
is higher in the AF compared to the NP [32,33]. Elastin, together with collagen, is thought
to play an important role in IVD biomechanics [34,35]. Fibronectin, a ubiquitous secretory
glycoprotein, plays a key role in the adhesion of many cell types by interacting with cell
surface specific receptors and ECM components [36]. In addition, Anderson et al. showed
that all five Fibronectin splice variants are present in IVD tissues [37]. Laminin is a het-
erotrimeric complex consisting of three polypeptide chains (α, β, and γ) [38]. At least 15
Laminin isoforms are formed by the combination of three different peptide chains, and
multiple Laminin isoforms and their receptors are expressed in IVD tissues [38]. In addition,
integrin-mediated interaction with Laminin regulates the phenotype of NP cells [39].
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3. ECM Dysregulation in IDD

Mounting evidence has shown that various genetic and environmental factors, such as
reduction in nutrition, overloading biomechanical stress, diabetes mellitus, smoking and in-
fection, can damage NP cells and, thus, cause the dysregulation of ECM homeostasis [6–8].

First, the process of disc degeneration is accompanied by the progressive loss of
notochord-like NP cells and their transformation into chondrocyte-like NP cells, partly
attributed to non-physiological loading, inflammation, metabolic dysregulation, and
hypoxia [40–43]. Notochord-like NP cells are essential for ECM homeostasis, and the
loss or phenotypic alteration of notochord-like NP cells can lead to ECM dysregulation.
Chondrocyte-like NP cells exhibit a different expression profile of ECM components com-
pared to notochord-like NP cells. Chondrocyte-like NP cells tend to express collagen type I,
which is capable of forming stronger fibers, accompanied by a reduced amount of more
absorbent proteoglycans and collagen type II [44,45]. In addition, the shift from anabolic
to catabolic metabolism occurs in IDD. A variety of cytokines expressed by degenerating
nucleus pulposus cells upregulate the expression of proteases involved in the remodeling
of the ECM [46–49]. Altogether, there is a decrease in proteoglycans and collagen type II
and an increase in collagen type I during the degeneration process.

Second, changes in the ECM in the process of IDD impact the behavior of NP cells. The
degenerative process of the IVD is accompanied by an increase in fibrotic-like collagen type
I and a decrease in water-attracting proteoglycans and collagen type II [10–12]. The altered
ECM composition increases its stiffness and regulates the phenotype and function of NP
cells [50]. Available evidence indicates that a stiff substrate induces phenotypic changes
including proliferation, apoptosis, and senescence in nucleus pulposus cells and is closely
associated with disc degeneration [51]. In addition, ECM remodeling alters the mechanical
microenvironment of the IVD. Inappropriate forces imposed on the nucleus pulposus,
such as compression, stretch, and shear, impair the functioning of the nucleus pulposus
cells [52–55]. Available evidence suggests that the response of nucleus pulposus cells to
sustained mechanical stimuli is closely related to disc degeneration [16,56]. Furthermore,
alterations in ECM composition modulate NP cell behavior by directly affecting cell–ECM
interactions without altering the mechanical environment [39,57]. Dysregulation of ECM
homeostasis is closely related to the process of disc degeneration, and proteolysis of the
ECM occurs at the beginning of this process. A better understanding of the role played by
ECM proteolysis in the degenerative process of the IVD will contribute to the development
of new therapeutics.

4. The Proteolysis of ECM in IVD Pathogenesis
4.1. Matrix Metalloproteinases (MMPs)

MMPs, a class of Zn+-dependent endopeptidases, were first described in 1962 and are
mainly responsible for the degradation of the ECM. To date, a total of 23 human MMPs
have been identified [58]. Under normal human physiological conditions, MMPs are in
a low expression state. Injury remodeling processes and an inflammatory environment
increase their expression [59]. MMPs are first secreted as zymogens and are activated in the
extracellular space by the hydrolytic cleavage of inactive structural domains or oxidative
modification of thiol groups [60]. Importantly, MMPs are involved in a wide range of
biological processes and are closely associated with disease development [61–63].

MMP expression is low in normal IVD tissue but increased in degenerative IVD
tissue [20]. Studies using human IVD specimens show that MMPs increase gradually
with an increasing grade of IVD degeneration [64]. In addition, highly expressed MMPs
have been described in multiple animal models of degenerative discs [65–68]. Collectively,
this evidence indicates that the level of MMPs expression is positively correlated with
the grade of IVD degeneration. It also has been demonstrated that highly expressed
MMPs are involved in IDD pathogenesis. Under pressure overload conditions, NP cells
exhibit abnormal MMPs expression and corresponding ECM degeneration. Omlor et al.
demonstrated a progressive elevation of MMP-13 with sustained applied pressure, which
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resulted in enhanced catabolism of the ECM [69]. Using a rat tail static stress model, Yurube
found an imbalance in the expression of MMPs and anti-catabolic proteins [70]. Similarly,
Yan et al. showed that compression loading altered the expression of multiple MMPs [71].
In addition, the inflammatory microenvironment demonstrated a significant effect on the
expression of MMPs. Zhang et al. found disc degeneration accompanied by elevated
expression of inflammatory cytokines and catabolic enzymes in a goat disc degeneration
model [72]. It has been proven that inflammatory cytokines indirectly induce the hydrolytic
activity of MMP-2 by elevating the expression of MT-MMP [73]. In addition, much evidence
suggests that oxidative stress is also closely associated with over-activated MMPs. Reactive
oxygen species (ROS) are involved in the transduction of multiple intracellular signaling
pathways, but excessive ROS production can impair cellular function. In an earlier study,
Nasto and colleagues showed that mitochondria-derived ROS degenerate in myeloid cells
by upregulating the expression of MMP-1 and MMP-3 [74]. Dimozi showed that exogenous
ROS addition can also induce the expression of ECM enzymes including MMP-1, MMP-3,
and MMP-9 in hydrogen peroxide-treated NP cells [75]. There is increasing evidence
that high glucose is closely associated with excessive ROS production, and Cheng et al.
showed that oxidative stress impairs ECM metabolic homeostasis through the activation of
p38/MAPK in high glucose-induced degenerating NP cells [76]. In a recent study, Liu et al.
showed that oxidative stress resulted in decreased expression of the antioxidant protein
FOXOs and upregulated expression of MMP-13 [77]. Furthermore, a range of therapies
targeting MMPs has been explored to treat disc degeneration. Cheng et al. used hydrogel
delivery of ferulic acid targeting MMP-3 to improve ECM homeostasis for the treatment
of IDD [78]. Using a bioresponsive hydrogel loaded with miR-29a, Feng et al. proposed
a strategy for targeting MMP-2 to treat disc degeneration [79]. Further exploration of the
precise mechanisms of MMPs is needed to develop promising therapies for IDD.

4.2. A Disintegrin and Metalloprotease with Thrombospondin Motifs (ADAMTSs)

ADAMTS is a secreted protease of the metalloproteinase family that contains a throm-
bospondin structural domain that allows it to bind to ECM components, which can further
lead to ECM proteolysis [80,81]. ADAMTS can be further classified into four categories
based on their function and preferential ECM substrates. The hyalectanases (ADAMTS-1,
ADAMTS-4, ADAMTS-5, ADAMTS-8, ADAMTS-9, ADAMTS-15, and ADAMTS-20) mainly
target proteoglycans, while pro-collagen N-propeptidases (ADAMTS-2, ADAMTS-3, and
ADAMTS-14) mainly target collagens I, II, and III. ADAMTS-13 is involved in the cleavage
of the von Willebrand factor, which contributes to the pathophysiology of coagulation and
thrombotic thrombocytopenic purpura. The function of the remaining ADAMTS (ADAMTS-
6, ADAMTS-7, ADAMTS-10, ADAMTS-12, ADAMTS-16, ADAMTS-17, ADAMTS-18, and
ADAMTS-19) is unclear.

Degenerative aggrecan is an important biochemical feature of IDD. The hyalectanases
are responsible for aggrecan degradation in disc degeneration [82]. Pockert et al. demon-
strated that ADAMTS-1, 4, 5, 9, and 15 accumulate in degenerating disc tissue and may
contribute to the alteration of the ECM during disc degeneration [83]. Wang et al. found that
inflammatory cytokines regulate ADAMTS-5 expression through SDC4, which is involved
in the pathophysiology of disc degeneration [84]. Using a rat tail static compression model,
high expression of ADAMTS-4 and ADAMTS-5 was observed [70]. In addition, the direct
degradation effect of ADAMTS-4 on the ECM of the nucleus pulposus was assessed. It was
shown that intradiscal injection with ADAMTS-4 impaired cell activity and collagen con-
tent [85]. It also has been demonstrated that sIL-13Rα2-Fc is able to rescue ECM degradation
by targeting ADAMTS-8 [86]. Collectively, these studies indicated that the hyalectanases
play key roles in the pathophysiology of disc degeneration. In addition to hyalectanases,
other ADAMTSs have been reported to be associated with disc degenerative processes.
For example, McCann et al. found that TNF-α and ADAMTS-7 were highly expressed
in IL-21-treated NP cells, and further studies showed that inflammatory factor-induced
expression of multiple catabolic enzymes was ADAMTS-7-mediated [87,88]. In addition,
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Yu et al. found elevated expression of ADAMTS-7 and ADAMTS-12 in degenerated disc
tissue accompanied by degradation of the cartilage oligomeric matrix protein [89]. Further
investigation of the role of ADAMTSs in IDD etiology is critical for IDD intervention.

4.3. Cathepsins Proteases

Cathepsins belong to the peptidases family, which are primarily involved in the endo-
somes and lysosomes for protein degradation [61]. There is increasing evidence indicating that
cathepsins are also expressed in the extracellular space and are involved in the degradation of
the ECM [90]. Cathepsins are composed of different protease families: cysteine, serine, and
aspartyl proteases. Cathepsins play an important role in a variety of diseases, such as bone
and joint degenerative diseases, and are receiving widespread attention [61].

Dando et al. described a rabbit IVD model in which intradisc injection of Cathep-
sins B resulted in proteoglycan breakdown and histological and imaging alterations of the
IVD [62]. Further studies demonstrated that Cathepsins B was highly expressed in degen-
erating discs [63]. Ariga et al. found that cathepsins D, K, and L accumulate at the site of
degenerated discs and that this specific localization may be associated with ECM disorders
during disc degeneration [91]. In addition, Gruber et al. found that cathepsins K expression
was significantly elevated in degenerated discs and positively correlated with receptor activa-
tor of the NF-κB ligand [92]. In a zebrafish model, the impact of high bone mineral density
induced by mutant cathepsins K on IVDs was examined [93]. It was found that high bone
mineral density was significantly associated with disc degeneration. Additionally, Kontti-
nen et al. demonstrated a significant increase in cathepsins K-positive cells in degenerating
IVDs [94]. These studies suggest that cathepsins play key roles in IDD.

4.4. Other Proteases

High temperature requirement A1 (HTRA1) belongs to the serine protease family and
is capable of degrading a variety of ECM components. Tiaden et al. found that HTRA1
expression was elevated in degenerating discs, and further studies showed that HTRA1
could upregulate various catabolic enzymes [95]. Hepsin (HPN) is also known as trans-
membrane Serine Protease 1 (TMPRSS1), whose overexpression leads to degradation of
the IVD ECM [96]. Plasmin is involved in the activation of several MMPs [97]. Salo et al.
showed that plasmin was present in degenerating disc tissue with high expression of
multiple catabolic enzymes, suggesting that plasmin may be associated with anabolic im-
balance during disc degeneration. In addition, Campos et al. demonstrated that heparanase
isoforms (HPSE1 and HPSE2) are highly expressed in degenerated disc tissues [98].

5. Therapeutic Targeting of Proteases for ID

Current clinical treatments for IDD are aimed at relieving symptoms rather than
directly targeting disc degeneration. Given the critical role of ECM proteolysis driven by
proteases in the process of disc degeneration, targeting proteases in disc degeneration is an
alternative option. Here we review recent advances in modulating ECM homeostasis for
the treatment of IDD (Table 1).

Table 1. Recent advances in modulating ECM homeostasis for the treatment of IDD.

Strategies Interventions Effects Reference(s)

Anti-inflammation

Cardamonin, Salubrinal, Suramin Downregulate multiple proteases by
inhibiting NF-κB [99–101]

Crocin, Sesamin Downregulate multiple proteases by
inhibiting JNK [102,103]

PRP
Downregulate multiple MMPs and
increase levels of several beneficial

growth factors
[104,105]
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Table 1. Cont.

Strategies Interventions Effects Reference(s)

Anti-oxidation

Danshen Downregulate MMP-3 [106]

Genistein Downregulate MMP-13 via
Nrf2-mediated antioxidant system [107]

DHP Downregulate MMP-3 and ADAMTS-5
via activating sirtuin-1 [108]

Stem cells therapy

Stem cell implantation
Induce differentiation of stem cells into

nucleus pulposus cells and stimulate
endogenous ECM regeneration

[109,110]

TIMP-1 overexpression modified
BMSCs

Modulate ECM anabolic catabolic
homeostasis [111]

Chemokine CCL-5 Recruit disc stem/progenitor cells to
nucleus pulposus [112]

Metabolic modulation

Marein Downregulate MMP-3 and MMP-13 [113]

Pyridoxamine Downregulate MMP-13 and ADAMTS-5
by antagonizing AGE [114]

ALN Downregulate MMP-1, MMP-3 and
MMP-13 [115–117]

Biomaterials

FA-G/C/GP hydrogel Downregulate MMP-3 and upregulate
aggrecan and type II collagen [78,118]

TA-functionalized polymer
capsules Downregulate MMP-3 and ADAMTS-5 [119]

Aspirin controllable release
hydrogel

Downregulate MMP-3/13 and
ADAMTS-4/5 [120]

Injectable microspheres load with
TNFRII or APETx2

Downregulate MMP-3 and ADAMTS-5
via modulate local inflammation

microenvironment
[121,122]

Gene therapy

AAV2-TIMP1 promote synthesis of type II collagen [123]

TGF-β3, CTGF and TIMP1
co-transduction

Promote synthesis of aggrecan and type
II collagen [124]

ADAMTS-5 siRNA Downregulate ADAMTS-5 [125]

PRP: Platelet-Rich Plasma, DHP: 1,4-dihydropyridine, TIMP-1: tissue inhibitor of metalloproteinase 1, CCL-
5: C-C motif chemokine ligand 5, ALN: alendronate, TNFRII: tumor necrosis factor receptor type II. TGF-β3:
transforming growth factor, CTGF: connective tissue growth factor, ADAMTS: A disintegrin and metalloprotease
with thrombospondin motifs, MMP: Matrix metalloproteinase.

5.1. Anti-Inflammation

Inflammatory stimulation is one of the most important etiologies of disc degenera-
tion, emphasizing its ability to upregulate multiple proteases. Anti-inflammatory therapy
demonstrates the potential for treating disc degeneration. The NF-κB pathway has been
reported to mediate the transcriptional activation of multiple hydrolases in response to
inflammatory stimuli. In cytokine-induced inflammatory models, multiple bioactive com-
pounds were shown to downregulate the expression of multiple proteases by inhibiting
NF-κB, which in turn blocked the ECM destruction process [99–101]. In addition, Li et al.
found that Crocin and Sesamin exerted anti-inflammatory effects by inhibiting the acti-
vation of the JNK pathway and slowed down the degradation of the degenerating IVD
ECM [102,103]. It has also been reported that Platelet-Rich Plasma (PRP) to treat disc
degeneration, and the results showed that PRP treatment promoted the production of
major components of the ECM and inhibited the expression of MMP-1/3 [104,105]. These
studies suggest that inhibition of inflammation represents a new class of treatment for disc
degeneration (Table 1).



Int. J. Mol. Sci. 2022, 23, 1715 7 of 15

5.2. Anti-Oxidation

In recent years, there has been increasing evidence that oxidative stress is closely
related to the imbalance of ECM homeostasis in degenerated discs. Using a rat model of
IDD, Qin et al. found that Danshen effectively attenuated the disc degeneration process
by targeting the oxidative reaction [106]. Wang et al. demonstrated that Genistein (GES)
treatment rescued the expression levels of aggrecan and type II collagen in TBHP-treated
NP cells. The role of GES in restoring ECM homeostasis was further demonstrated to
be achieved through Nrf2-mediated anti-proteases [107]. 1,4-dihydropyridine (DHP), a
specific sirt1 agonist, was shown to be a potential therapeutic agent for IDD due to its
antioxidant effect. The administration of DHP significantly alleviated the degeneration
of the ECM by reducing the expression of MMP-3 and ADAMTS-5 in degenerating NP
cells [108]. Aspirin is widely used as an anti-inflammatory agent for the treatment of low
back pain. Liu et al. found that aspirin exerts antioxidant and anti-inflammatory effects in
an AMPK-dependent manner. Aspirin treatment protected NP cells from ECM degradation
by inhibiting the expression of multiple hydrolases, including MMP-3/13 and ADAMTS-5.
Furthermore, aspirin intervertebral injections significantly hindered the degenerative pro-
cess of the IVD in a rat model [126]. In addition, melatonin and N-acetyl cysteine (NAC)
were reported to maintain ECM homeostasis by regulating redox homeostasis [127,128].
These studies suggest that antioxidant drugs may be a promising therapeutic strategy for
disc degeneration, emphasizing their modulation of ECM homeostasis (Table 1).

5.3. Stem Cells Therapy

Recently, many studies have focused on stem cell therapy for disc degeneration by
the injection or transplantation of stem cells, which aim to reconstitute the ECM of the
IVD [129]. Previous studies have reported that the co-incubation of nucleus pulposus
cells with stem cells can induce stem cell differentiation, leading to regenerative repair
of degenerated discs [110]. Further, Yang and his colleagues used bone marrow derived
mesenchymal stem cells (BMSCs) injections to treat disc degeneration. They showed that
BMSCs transplantation alleviated disc degeneration by stimulating endogenous ECM re-
generation in addition to autonomous differentiation [109]. Yi et al. used human tissue
inhibitor of metalloproteinase 1 (TIMP-1) overexpression modified BMSCs to treat degener-
ated discs by directly targeting the ECM anabolic catabolic homeostasis [111]. In addition,
Wang et al. found that BMSCs promoted ECM regeneration in degenerated NP cells via the
miR-101-3p/EIF4G2 axis [130]. However, stem cell injections or transplants alone often fail
to achieve the desired effect due to their lack of protection and support by the ECM. In a
recent study, Feng et al. used an injectable microsphere scaffold for the delivery of stem
cells, which provided a suitable environment for stem cell implantation, proliferation, and
differentiation, and significantly improved the efficacy of stem cell therapy for degenerated
discs [131]. In a similar study, Ukeba et al. used ultra-purified alginate gels loaded with
BMSCs to treat degenerated discs, which significantly promoted ECM synthesis with signif-
icantly higher efficacy than BMSCs injection alone [132]. In addition, Frapin et al. treated
disc degeneration by modulating the distribution of endogenous disc stem/progenitor
cells. Chemokine CCL-5 was delivered to the nucleus pulposus via pullulan microbeads
(PMBs) to recruit disc stem/progenitor cells, which reversed the phenotype of degenerat-
ing NP cells [112]. Collectively, substantial evidence suggests that stem cell injection or
transplantation is an effective treatment for targeting the degenerating ECM, but further
studies are needed to assess their safety and efficacy (Table 1).

5.4. Metabolic Modulation

Metabolic diseases such as the hyperglycemic microenvironment produced by dia-
betes mellitus and estrogen deficiency-induced bone loss have been shown to be closely
associated with disc degeneration [77,133,134]. Marein, a plant active ingredient with
antidiabetic effects, was shown to alleviate degeneration of the ECM of the degenerating
NP cells due to high glucose exposure [113]. In addition, anti-inflammatory combined with
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anti-advanced-glycation-end-products (AGEs) treatment significantly improved disc de-
generation in a mouse model of diabetes mellitus [114]. Using an ovariectomized rat model,
Song et al. found that alendronate (ALN) treatment significantly retarded the progression of
disc degeneration. ALN not only reduced the expression of multiple hydrolases and type I
collagen, but also promoted the expression of aggrecan and type II collagen, and the under-
lying mechanism may be related to the maintenance of disc structural integrity [115–117].
In conclusion, these data suggest that the imbalance in metabolic homeostasis may be a
potential target for the degeneration of the IVD ECM (Table 1).

5.5. Biomaterials

In recent years, novel bioactive materials based on bioengineering have been widely
used to treat disc degeneration. Cheng et al. constructed an injectable thermosensitive
chitosan–gelatin–glycerol phosphate (C/G/GP) hydrogel for the treatment of disc de-
generation by the controlled release of ferredoxin acid. This study demonstrated that
C/G/GP gels are well adapted to ferulic acid and achieve controlled release through their
thermosensitive properties to target oxidative stress-induced ECM degeneration [78,118].
Using a bioresponsive hydrogel loaded with miR-29a, Feng et al. proposed a strategy
for targeting MMP-2 to treat disc degeneration. In this study, the investigators exploited
the hyperactivation of proteases in degenerating discs to prepare a hydrolase-responsive
miRNA delivery system to regulate ECM homeostasis [79]. Moreover, Larrañaga et al. pre-
pared tannic acid (TA)-functionalized polymer capsules to target MMP-3 and ADAMTS-5
for the treatment of IVDs. The antioxidant functionalized polymer capsules prepared in
this study represent the application of polymer capsules for the treatment of oxidative
stress-induced ECM degeneration [119]. More recently, a controllable release hydrogel
was prepared for the delivery of aspirin. This study demonstrated that controlled release
gels carrying aspirin significantly alleviated the ECM degeneration of the IVDs and had
superior mechanical properties [120]. Additional efforts to treat degenerating discs include
injectable microspheres loaded with tumor necrosis factor (TNF) receptor type II. This
antagonist microsphere significantly slows disc degeneration by targeting disorders of
ECM metabolism [121]. Similarly, a GelMA microsphere coupled with the active peptide
APETx2 was shown to modulate local inflammation overactivation in the degenerated IVD.
This study suggests that modulation of the inflammatory microenvironment is a potential
means of targeting ECM degradation [122]. In recent studies, caveolae associated protein 2
(Cavin-2) modified engineered extracellular vesicles were used to treat disc degeneration.
Cavin-2 modification significantly increased the extracellular vesicle uptake efficacy in
degenerating NP cells compared to stem cell-derived extracellular vesicles alone [135]. Col-
lectively, these studies demonstrate the great potential of bioactive materials in targeting
IVD ECM degeneration, but more studies are needed to evaluate their long-term safety and
efficacy (Table 1).

5.6. Gene Therapy

Recently, gene therapy has received increasing attention. There is evidence that gene
therapy has the potential to treat IDD [136,137]. Given the important role of multiple pro-
teases in the imbalance of ECM metabolism, targeting proteases through gene therapy may
provide a new strategy for the treatment of IDD. Using a rabbit model of IDD, Leckie et al.
showed that AAV2-TIMP1 effectively alleviated disc degeneration by increasing collagen
type II levels [123]. Similarly, another study showed that TIMP1 co-transduction with trans-
forming growth factor (TGF-β3) and connective tissue growth factor (CTGF) promoted
the synthesis of ECM in degenerated discs [124]. In addition, ADAMTS-5 siRNA was
shown to retard disc degeneration by directly targeting the protease ADAMTS-5 [125].
Thus, transduction of endogenous proteases inhibitors and direct targeting of proteases
have important potential applications in the treatment of IDD (Table 1).

Despite the great progress made in exploring IDD therapeutic strategies, many chal-
lenges remain in its translational future. The avascularity of the nucleus pulposus results
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in a lack of nutrient supply to the core region of the disc. The poor microenvironment
of the IVD is a great obstacle to the treatment of IDD [133,134]. Proteases activation is
thought to be a driver of ECM degradation in the disc; however, IDD treatment strategies
targeting proteases have also failed to meet expectations due to transient effects [138].
Overall, further studies in developing therapeutic intervention for IDD should take these
factors into account.

6. Conclusions

The imbalance of ECM homeostasis is closely related to the pathological process of
disc degeneration. ECM proteolysis, mediated by multiple hydrolases in the extracellular
space, plays an initiating role in this process (Figure 1). Here, we describe in detail the role
of the major proteases in disc degeneration and list strategies for targeting the ECM to treat
degenerative discs.

Given the paucity of therapeutic options for disc degeneration and the critical role of
proteases in this regard, targeting one or more proteases demonstrates potential for treating
disc degeneration. However, the regulation and precise mechanisms of key proteases in
disc degeneration are still largely unknown. Further research is needed that focuses on the
molecular mechanisms of proteases regulation and to develop effective treatments for disc
degeneration that target proteases.

Figure 1. General mechanisms of the pathological process of IDD and the role of proteases in the
imbalance of ECM metabolism. Proteolysis activation leads to an imbalance in ECM homeostasis
when the IVD is subjected to various stimuli, in which proteases play a key role.
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