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Background. Rapid response to outbreaks of emerging infectious diseases is impeded by uncertain diagnoses and
delayed communication. Understanding the effect of inefficient response is a potentially important contribution of epidemic
theory. To develop this understanding we studied societal learning during emerging outbreaks wherein patient removal
accelerates as information is gathered and disseminated. Methods and Findings. We developed an extension of a standard
outbreak model, the simple stochastic epidemic, which accounts for societal learning. We obtained expressions for the
expected outbreak size and the distribution of epidemic duration. We found that rapid learning noticeably affects the final
outbreak size even when learning exhibits diminishing returns (relaxation). As an example, we estimated the learning rate
for the 2003 outbreak of severe acute respiratory syndrome (SARS) in Singapore. Evidence for relaxation during the first eight
weeks of the outbreak was inconclusive. We estimated that if societal learning had occurred at half the actual rate, the
expected final size of the outbreak would have reached nearly 800 cases, more than three times the observed number of
infections. By contrast, the expected outbreak size for societal learning twice as effective was 116 cases. Conclusion. These
results show that the rate of societal learning can greatly affect the final size of disease outbreaks, justifying investment in
early warning systems and attentiveness to disease outbreak by both government authorities and the public. We submit that
the burden of emerging infections, including the risk of a global pandemic, could be efficiently reduced by improving
procedures for rapid detection of outbreaks, alerting public health officials, and aggressively educating the public at the start
of an outbreak.

Citation: Drake JM, Chew SK, Ma S (2006) Societal Learning in Epidemics: Intervention Effectiveness during the 2003 SARS Outbreak in
Singapore. PLoS ONE 1(1): e20. doi:10.1371/journal.pone.0000020

INTRODUCTION
Rapidly spreading outbreaks of infectious diseases are an in-

creasing concern for global public health [1,2] and security [3].

Emerging infections, which are typically defined as infectious

diseases that have newly appeared in a population or are rapidly

increasing in incidence or geographic range [4], are a particular

concern because at the time of emergence little is known about

their epidemiology, particularly pathology, symptomatology, and

transmissibility. Thus, the crucial tasks of assessing epidemic risk

and determining what public health interventions should be taken

are complicated by uncertainty that borders on complete

ignorance. Of course, this uncertainty is rapidly reduced as the

outbreak progresses and information concerning symptoms of

infection, the biology of the infectious agent, the epidemiology of

transmission, and the effectiveness of health precautions and

intervention is collected and disseminated.

This learning process has not been considered in theories of

outbreak control [5,6] or in near real-time models of emerging

infections [7,8] (compare correspondence in refs [9,10]). Here, we

study the collective effects of various processes (including possibly

unidentified phenomena) on the change in the rate at which

infectious persons are isolated. We refer to this set of processes

collectively as ‘‘societal learning’’. A partial list of the processes

contributing to societal learning includes isolation and identifica-

tion of the infectious agent, development of tests for clinical

diagnosis, disseminating information to public health and medical

personnel, disseminating information to the public, and imple-

menting public health policies including restrictions on individual

movement or quarantine.

Disease control theory focuses on an quantity called the

reproductive ratio, designated here as R0 at the start of the

outbreak and, if changing over time, Rt at time t. Outbreaks are

considered to be under control when Rt,1, implying that outbreak

conditions are such that on average disease prevalence will decline.

Most research in theoretical epidemiology has focused on how Rt is

related to disease and population parameters in order to

understand how to induce the change from R0.1, during

emergence, to Rt,1. Recent developments include techniques

for estimating R0 from the initial stages of an outbreak [11,12] and

a model to ascertain the effect of a delay between the onset of an

outbreak and the implementation of public health policies aimed

at controlling disease spread [13]. Here, we contribute to this

developing toolbox for disease forecasting a model to understand
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how societal learning affects the expected final size and duration of

disease outbreak. Though some computational disease-specific

models have recognized the importance of time-varying rates in

disease spread, particularly with respect to the outbreak of SARS

in 2003 [14,15] (compare [16]), we believe this is the first

analytical treatment of the concept.

We also retrospectively explore the effect of societal learning

during the 2003 outbreak of SARS in Singapore, using weekly

data on the time between onset of symptoms and removal of

infectious individuals. We speculate that societal learning will

generally exhibit diminishing returns because increasing the

removal rate becomes more difficult as individual isolation

approaches a theoretical maximum rate. In such a case, the rate

of societal learning is said to relax. We introduce statistical

models to distinguish between relaxing and non-relaxing learning

and test for relaxation during this outbreak. Finally, we discuss

societal and epidemiological factors that might affect societal

learning, we observe that a difficult task during the early stages

of an outbreak is to estimate the learning rate and suggest that

the rate estimated here might be used as prior information in

future outbreaks, and we conclude by recommending rapid

investment in research at the time of initial detection when

actions taken to reduce disease spread can be most efficient and

cost effective.

Public health officials routinely make judgments whether or not

to raise alarms about developing outbreaks. This decision is

complicated by severe uncertainty during the early phases of an

outbreak. Further, bureaucratic inertia and the ignorance that

necessarily accompanies emerging infections discourage rapid

response. By contrast, false alarms resulting from hasty and

premature assessment of outbreak risk can be very costly, and must

be avoided if possible. Understanding the role of societal learning

in disease outbreaks is important for properly balancing these

competing objectives.

METHODS

Basic theoretical model
Our concept of societal learning is characteristically reflected in

outbreak dynamics as an increase over time in the rate at which

infectious individuals are removed from circulating in the

population. That is, we expect that as information about clinical

symptoms, modes of transmission, the duration of incubation, etc.,

is collected and disseminated, the average time between the onset

of symptoms and individual self-removal from the population (for

instance by admission to hospital) or forced isolation (e.g.,

quarantine) will decline. From a dynamical perspective, we

represent the average removal rate of individual cases as a function

of time since the outbreak began, marked by the time at which the

index case became infectious. For emerging diseases we assume

that direct transmission between infected persons is the primary

source of infection and that development of immunity and

removing infectious individuals have negligible impact on the

susceptible population. These assumptions are reasonable for

outbreaks that ultimately do not infect more than a small fraction

of the total population, i.e., emerging infections with relatively low

prevalence. Finally, we assume that transmission is a Markov

process, an approximation that amounts to assuming that

individual infectious contacts are independent (compare [17]).

Thus, representing the individual rate of infection by the constant

parameter b0 and the rate of removal as a function of time c(t),

these assumptions imply that the growth of the epidemic is a time-

inhomogeneous stochastic birth-death chain [18–20]. Accordingly,

the change over time in the probability distribution of the number

of infected individuals x is given by

d

dt
PI tð Þ~ Iz1ð Þc tð ÞPIz1 tð Þz

I{1ð Þb0PI{1 tð Þ{I c tð Þzb0ð ÞPI tð Þ,I§1:

ð1Þ

This model has been previously studied and applied to problems

ranging from population dynamics to astronomy [18,19,21]. In

particular, the expected final epidemic size for this model is [18]:

X~I0 1z

ð?

0

b0e{r tð Þdt

0
@

1
A, ð2Þ

where

r tð Þ~
ðt

0

c tð Þ{b0dt, ð3Þ

and I0 is the initial number of infected individuals. Further, the

distribution function for the duration of the outbreak with I0 = 1 is:

F tð Þ~1{ 1z

ðt

0

er tð Þc tð Þdt

0
@

1
A

{1

: ð4Þ

This is a very general model, as we have only specified that the

transmission rate b0 is constant and that the rate of removal c(t)

changes over time, consistent with the concept of societal learning.

Societal learning
Conceptually, we decompose the removal rate, c(t), into two

components. The first component represents removal in the

absence of societal learning (i.e., through unexceptional health

procedures or natural recovery) and is referred to as the base

removal rate. The second component is an effect of societal

learning and is assumed to be additive to the base removal rate.

Consequently, we represent the total removal rate as function of

time c(t) = a(t)+b where b is the base removal rate and a(t) is

a function for the additional effect of societal learning. (Refer to

Table 1 for biological interpretations of parameters discussed in

this section.) Next, we consider two different learning scenarios.

First, we suppose that societal learning is constant, i.e., that over

any interval a doubling in time since the outbreak began

Table 1. Interpretation of parameters related to societal
learning.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

symbol interpretation

c1 removal rate under simple learning model

c2 removal rate under learning model with relaxation

g1 average infectious interval under simple learning model

g2 average infectious interval under learning model with relaxation

a0 basic learning rate

a1 relaxation

b base removal rate

t time
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corresponds to a doubling in the learned component of the

removal rate. Then, the effect due to learning can be represented

as a line a(t) = a0t, where a0 is called the ‘basic learning rate’, and

the removal rate is linear: c1(t) = a0t+b. Special cases of this model

have a0 = 0, where there is no effect of societal learning (resulting

in the simple stochastic epidemic), and b = 0 where there is no

natural recovery. The model with linear removal rate implies that

the average time between infection and removal over time follows

a hyperbola, g(t) = (c1(t))21 = (a0t+b)21, and that there is no upper

bound to the rate at which infected individuals can be isolated;

effectively, we suppose that the average time between infection

and removal can be brought arbitrarily close to 0. For most

(perhaps all) diseases this is an unreasonable assumption in the

long run (though it may be a reasonable approximation at the start

of an outbreak). In particular, the effect of societal learning

probably decreases as the removal rate gets high and the interval

between the onset of symptoms and isolation approaches

a minimum biologically plausible quantity. This is a scenario in

which cumulative number of removed patients is a decelerating

function of time marked by diminishing returns. To incorporate

such relaxation in our model we should generalize a(t) for instance

a(t) = a0ta1, with a1#1. Where a1 = 1 this model is equivalent to the

linear model discussed above. Of course, there is no principled

theoretical reason why a1 cannot be greater than 1. Such a case is

unlikely, however, and would imply acceleration not only in

removals, but in the removal rate. In either case we have the

general model for the removal rate c2(t) = a0ta1+b and the

associated model of the duration of the interval between onset of

symptoms and removal g2(t) = c2(t) = (a0ta1+b)21. In this case g(t) is

approximately a power law with respect to time. We remark that

learning relaxation could also result from diminishing returns on

methods for disseminating information. For instance, if diagnostic

information is transmitted by word-of-mouth, models for the

spread of a rumor suggest that the fraction of the population which

remains uninformed declines roughly logistically: first approxi-

mately proportional to the number of people who are in possession

of the rumor but declining constantly over time as uninformed

individuals become increasingly rare [6,22]. Examples of c1 and c2

and the associated g1 and g2 are shown in Figure 1.

Substituting the above model for societal learning in eqns (2)

and (4) obtains two quantities of special interest: the expected

outbreak size,

X~I0 1z

ð?

0

b0e

�a0 t
a1z1ð Þ

a1z1
�btzb0t

dt

0
@

1
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and the distribution of extinction times,

F tð Þ~1{ 1z

ðt

0

e
a0 t
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c2 tð Þdt
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Figure 1. Examples showing the effect of societal learning on removal rate (c) and average duration between infection and removal (g). Plots on the
left are for the simple model with no relaxation. Compare with plots on the right ranging from modest to severe relaxation. Denoting the vector of
parameters y = [a0, a1, b], plots on the left are for y = [0.0066, 1, 0.12] (black), y = [0.0086, 1, 0.12] (blue), y = [0.0106, 1, 0.12] (red). Plots on the right
are for y = [0.0066, 0.9, 0.12] (black), y = [0.0066, 0.7, 0.12] (blue), y = [0.0066, 0.5, 0.12] (red). The units in which time is measured do not affect the
form of these plots. However, for comparison the x-axis can be interpreted in units of days in which case the black points on the left side coincide
with the parameter estimates reported in Table 1. Axes on plots of g are log-log.
doi:10.1371/journal.pone.0000020.g001
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from which the probability density of the duration of outbreaks is

obtained as the derivative with respect to time,

f tð Þ~ er tð Þc tð Þ

1z
Ðt
0

er tð Þc tð Þdt

� �2 0vtv?
: ð7Þ

Finally, in this representation of the epidemic process, the

concept of the reproductive ratio (designated by R0 at the

beginning of the outbreak, Rt thereafter) is deterministic and is

given by Rt =b0/c(t). Setting this equation to one and solving for t

obtains the time until the outbreak is brought under control. For

the case c(t) = c1(t), the time to control is given by Tc = (b02b)/

a0.Still more models could be considered. However, we report

below that the final epidemic size is affected mostly by the

parameter a0, the rate of societal learning at the beginning of the

outbreak, so that the precise shape of the removal function does

not greatly matter.

Data and test for societal learning
To test for societal learning in the 2003 outbreak of SARS in

Singapore, we used the mean number of days between the onset of

clinical symptoms and removal, by week, to fit different models for

the removal process c. These data are slightly different than those

that appeared previously as Figure 1 in [15] and include some

reclassified cases based on serological tests (S. Ma, unpublished

data). Societal learning models were fit to the reciprocal of the

mean of observed lags between onset of symptoms and removal

ci = 1/gi for each week i, using nonlinear least squares regression.

Model fit was assessed using Akaike’s Information Criterion (AIC)

assuming the observations are drawn from a normal distribution

with mean ci and homogeneous variance. We tested three

hypotheses: (i) the null hypothesis of no base removal rate

corresponding to b = 0; (ii) the null hypothesis of no saturation in

learning corresponding to a1 = 1; finally, (iii) the null hypothesis of

no societal learning at all is given by a1 = 1 for a0 = 0.

Simulation
To represent the full epidemic process for SARS the societal

learning theory developed above must be modified to account for

a significant latent period [12]. Accordingly, we adopt the familiar

S-E-I-R modeling framework (Figure 2A in [5]), modified to

represent stochastic (Markov) dynamics with time-inhomogeneous

parameters. As before, we adopt the reasonable assumption that

the population is large compared to the eventual size of the

outbreak so that S remains constant throughout. Thus, by

substituting b0 = aS and ignoring the dynamics of removed

individuals, we obtain the two-compartment model in Figure 2B,

where X and Y designate the classes that were formerly E and I.

Finally, consistent with our earlier definition of societal learning,

we allow the removal rate c to be a function of time, designated

c(t). We assume that each state variable X and Y can take only

integer values (demographic stochasticity) and that individual

transitions between classes are Markovian. This model is a pair of

coupled birth-death chains and is a generalization of the model

studied in the earlier part of this paper.

We obtained parameter values for these simulations as follows.

Using a Bayesian approach, Lipsitch et al. [15] determined that

the basic reproductive ratio (R0) for this outbreak was in the range

[2.2, 3.6]. These values accord well with the likelihood-based

estimate of Wallinga and Teunis [23], who report a point estimate

of R̂0~3:1 and 95% confidence interval [2.3, 4.0]. Interpreting

the estimates of Lipsitch et al. [15] as the rate of secondary

infection in a wholly susceptible population, R0 is related to our

parameters through the relation b0 = R06c0. Recognizing that

uncertainty in both R0 and c will affect the accuracy of model

projections we obtain an upper limit on b0 (not a confidence

interval because the parameters are not independent) from

b+ = R0
+6c+ and a lower limit from b0

2 = R0
26c2, where (+)

and (2) indicate the upper and lower limits on the estimate

intervals for the respective parameters. To obtain a central (‘‘best’’)

estimate of b0 we take the midpoint of the range [2.2, 3.6] = 2.9

and multiply by the point estimate of our regression ĉ0~0:12 to

obtain b̂~0:35. Throughout, we used the point estimate from the

regression analysis above (0.046, see also Results) for the basic

learning rate after dividing by seven to convert from weeks to days:

a0 = 0.0066. As the learning rate never declined over the course of

this outbreak, no relaxation was included in the model. Finally, the

transition rate between latent and infectious individuals (g) is

approximately equal to the reciprocal of the duration of the

incubation period. We used a transition rate of 0.15 d21,

corresponding to an average incubation period of approximately

6.7. days. This is roughly consistent with, e.g., the ranges of

estimates compiled by the World Health Organization (Table 1 in

[24]) and the estimate (6.37 d) and 95% confidence interval [5.29,

7.75] reported by Donnelly et al. [25], but slightly larger than the

estimate of 4.8 d (95% confidence interval: [4.37, 5.29]) obtained

by Kuk and Ma [26] under the assumption that incubation times

are drawn from a Weibull distribution.

Comparison between model predictions and

observed outbreak size
Retrospectively comparing model-based estimates of the expected

outbreak size with the 238 observed cases (a partially circular

comparison to begin with) is complicated by the fact that the

number of initially infected individuals (the initial condition) is not

defined by the model but must be asserted. One possibility is to

assume that the outbreak begins with the index patient (I0 = 1), but

then the outbreak size of the theoretical model is biased by

a significant portion of outbreaks that fail due to stochastic fadeout

[27]. An alternative is to compare the observed outbreak size with

the theoretical distribution of outbreak sizes for outbreaks

initialized at I0 = 1 conditioned on a ‘major’ or ‘observable’

outbreak occurring. However, this simply pushes back the problem

of specifying the initial condition as some number of cases must be

Figure 2. (A) Basic S-E-I-R compartmental model of infectious disease, in
which outbreak dynamics are represented by the number of individuals
in four compartments corresponding to susceptible, exposed, in-
fectious, and removed (or recovered) individuals. The rate at which
individuals move from susceptible to exposed is according to mass-
action dynamics with proportionality constant a. Individuals move from
exposed to infectious at rate g and from infectious to removed at rate
c. (B) By assuming that the number of susceptible individuals is
approximately constant (an appropriate approximation for outbreaks in
which prevalence is never a large fraction of the total population) we
introduce the new variable b = aS and reduce the four-compartment S-
E-I-R model to a two-compartment model, designated here by the state
variables X and Y.
doi:10.1371/journal.pone.0000020.g002
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specified to correspond with ‘major’ or ‘observable’. We adopted

a third alternative. We reasoned that the first time medical

personnel are alerted to the fact that there might be an emerging

outbreak is the time that the index patient is observed to be

infectious, corresponding to the removal of the patient from the

population. At this time, the patient has infected an expected

additional R0 individuals (by the definition of R0) and these

infectious, or soon-to-be-infectious individuals are circulating in

the susceptible population. We refer to this as the ‘second

generation initialization’. Alternatively, the hospitalization of one

individual with an anomalous infection is unlikely to attract

significant attention. Consideration of a possible outbreak more

likely corresponds to the admittance in quick succession of several

patients with anomalous infections, that is when the second

generation of infected individuals is isolated and a third generation

of individuals is infected. This is the ‘third generation initializa-

tion’. Accordingly, we simulated two distributions of final outbreak

sizes. First we initialized at I0 = 3, which is the midpoint of the

estimated interval for R0 identified by Lipsitch et al. [15],

I2~R̂0~2:9, rounded to the nearest integer, corresponding to

second generation initialization. Second, we initialized at I0 = 8,

which is the rounded value of the expected number of infected

individuals in the third generation, I3~R̂2
0&8:4. To understand

the importance of societal learning during the actual outbreak in

Singapore, we simulated 10,000 iterations of the stochastic S-E-I-

R model described above using Gillespie’s direct method [28] with

double and half the estimated basic learning rate while all other

parameters were set to their best estimates and with initial

condition I0 = 8. Empirical quantiles and the coefficient of

variation (a measure of dispersion, the ratio of the standard

deviation to the mean) were used to summarize the distributional

properties of simulations.

RESULTS

Effects of societal learning on final epidemic size
To look at the effects of societal learning and relaxation on

outbreak control, we studied the average outbreak size over a range

of scenarios (Figure 3). For simplicity, we assumed b0 = 1

throughout and compared different versions of the removal and

learning process by tuning the parameters for the basic learning

rate (a0) and the relaxation rate (a1). The temporal resolution of

this model is therefore not explicit. Thus, for concreteness assume

that all rates are in units of days and that the baseline infectious

period (g = c21) is 3 d. Then, the basic reproductive ratio is

R0~b0=c~3 and we obtained the average epidemic size from eqn

(5) for combinations of a0 and a1 in the ranges a0[
1

6
,
5

2

� �
and

a1[ 0:44,1½ �. These ranges illustrate the range of cases between

extremes in which societal learning is slow and relaxation is rapid

(practically no effect of societal learning) and where societal

learning is fast and no relaxation occurs at all (similar to the

outbreak of SARS). Figure 3 shows that a0, the basic rate of

societal learning, can be important for controlling outbreaks. The

effect of relaxation can be examined by comparing the average

outbreak size at various values of a1,1 with the value at a1 = 1,

where there is no relaxation. Evidently, relaxation must be

extremely rapid (around a1 = 0.5) for the effect to be noticeable. Of

course, this phenomenon is accentuated by its interaction with the

basic societal learning rate so that if learning is extremely slow the

effect of relaxation becomes more important.

Figure 3. Effects of societal learning and learning relaxation on the expected outbreak size in a stochastic epidemic model.
doi:10.1371/journal.pone.0000020.g003
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Societal learning during the 2003 SARS outbreak in

Singapore
The observed removal rate increased consistently over the course

of the 2003 SARS outbreak in Singapore (Figure 4). We found no

effect of relaxation in the rate of societal learning, although there

was strong evidence for both a baseline removal rate and an effect

of learning (Table 2). We first fit the full model, but failed to reject

the null hypothesis of no relaxation. Consequently, we fit the

reduced model with a constant learning rate, which is equivalent

to the full model with exponential parameter a1 = 1. In this model,

both the base removal and learning parameters were highly

significantly different than zero (base: P = 0.002; learning rate:

P,0.0001). We remark that the reciprocal of the estimated base

removal rate (b) can be interpreted as the duration of the infectious

period in the absence of special intervention. Accordingly, we

obtained an estimate of 8.3 d (95% confidence interval: [5.8,

14.3], obtained by inverting the confidence limits reported in

Table 2).

Inspection of the plots in Figure 4 suggests that the observation

in week 8 may be of exceptional importance to the final model. In

terms of regression diagnostics, it may have high leverage (greatly

affecting the uncertainty in parameter estimates) and high

influence (greatly affecting the estimates themselves). A plot of

standardized residuals versus leverage for the reduced model

shows that this point is indeed matched by only one other point

(week 0) for leverage (Figure 5). Overlaying contour intervals for

Cook’s distance, a measure of influence, shows that this point also

has high influence. Accordingly, so that the reader may compare

we re-fit both the full and reduced models after dropping this point

(Table 2). In this case the AIC difference is less than two, so that

neither model is better supported by the data. Further while the

Figure 4. Average daily removal rate of infectious individuals (c)
increased consistently for eight weeks following the initial outbreak of
SARS in Singapore in 2003. Average infectious period obtained as g =
1/c. Error bars are 95% confidence intervals calculated from the
t-distribution given the mean and standard deviation of observed
intervals between onset of clinical symptoms and removal. Confidence
intervals are not provided for week 0, where only one case was
observed (so zero degrees of freedom), or week 8, where the
combination of high standard deviation in the observed interval (s.d.:
1.9) and few degrees of freedom (d.f.: 5) results in a nonsensical
confidence interval that includes zero and negative values.
doi:10.1371/journal.pone.0000020.g004

Table 2. Parameter estimates for a model of societal learning in the 2003 SARS outbreak in Singapore.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a0 (wk21) parameter a1 (no units) b (wk21) AIC

Full Model 0.046 (20.016, 0.109) 1.0007 (0.395, 1.606) 0.121 (0.040, 0.202) 227.7

Reduced Model 0.046 (0.036, 0.057) na 0.121 (0.070, 0.172) 229.7

Full Model (w/o week 8) 0.079 (0.052, 0.159) 0.676 (0.352, 0.999) 0.105 (0.023, 0.134) 230.2

Reduced Model (w/o week 8) 0.040 (0.300, 0.049) na 0.137 (0.096, 0.177) 228.7

95% Wald confidence intervals shown in parentheses. Model selection is based on AIC, with the model with lowest AIC being most parsimonious. AIC values differing by
two or more are sufficiently different to prefer the model with the lower AIC. AIC values for models fit to different datasets (i.e., with and without the observation at
week 8) are not comparable. Due to correlation of parameters, the full model in unable to estimate a0 and b with high precision (i.e., large confidence intervals).
However, in the model fit to all the data finding that a1 is negligibly different than 1 justifies removing this parameter from the model (resulting in the reduced model),
permitting much more precise estimation of the remaining parameters. The AIC difference in this case is entirely due to the superfluous parameter a1.
DOI: 10.1371/journal.pone.0000020.t002..
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Figure 5. Plot of standardized residuals vs. leverage for nine
observations used in the statistical model. One point (corresponding
to week 8, in the upper right hand corner of the plot) exhibits high
leverage and falls outside the Cook’s distance contour at C = 1. As this
point may have unduly influenced the estimated model, the full and
reduced models were re-fit to the data excluding this point.
doi:10.1371/journal.pone.0000020.g005
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maximum likelihood estimate for a1 is quite low (a1 = 0.676; to be

interpreted as considerable relaxation), the confidence interval

barely fails to include 1, so the evidence is not conclusive.

Effect of latent period
To study the effect of the duration of the latent period on average

outbreak size, we simulated 500 iterations of the model at each of

13 different durations for the average latent period. The average

outbreak size decreased with the duration of the latent period as

shown in Figure 6.

Comparison between model and observed outbreak

size
The average size of simulated outbreaks initiated with the second

generation initialization condition (I0 = 3) was 102 cases. The 2.5%

and 97.5% quantiles were 4 and 321 cases, respectively. The

coefficient of variation in the final outbreak size was 0.85. The

average size of simulated outbreaks initiated with the third

generation initialization condition (I0 = 8) was 278 cases. The 2.5%

and 97.5% quantiles were 56 and 611 cases, respectively, with

coefficient of variation 0.52. Thus, the observed total outbreak size

(238 cases; [29]) is consistent with either the second or the third

generation initialization conditions. Outbreak simulations in which

learning occurred at half the observed rate had average final

outbreak size of 799 cases while outbreak simulations in which

learning occurred at twice the observed rate had average final

outbreak size of 116 cases.

DISCUSSION
We found little evidence for relaxation in the learning rate for

SARS in Singapore. First, restricting our discussion to the analysis

with all data, we find that the maximum likelihood estimate of the

relaxation parameter is extraordinarily close to one (differing by

0.07%), perfect non-relaxation. Admittedly, the confidence in-

terval on this parameter is large. One interprets this to mean that

the vigilance of the public health community as a whole continued

throughout the outbreak and that improvement in intervention

effectiveness continued unabated. However, we also found that

one relatively uncertain data point was important to this analysis

(week 8). Whether this point should be excluded from in-

terpretation is unclear. On one hand, it is a real observation and

(because of its high influence) is known to contain a great deal of

information. Therefore, one is inclined to allow this observation

considerable weight. On the other hand, its importance, especially

at the end of the data series is suspicious. If we exclude this point

from analysis post hoc, we find that we are unable to make any

strong conclusions at all. What most likely occurred is that the

distribution of average infectious period at the point where the

outbreak was rapidly brought under control was highly dispersed

(high variance) and highly skewed. Accordingly, the mean removal

rate probably does relax, but the data that were available to this

study are too aggregated to make this inference conclusively.

It is unknown if the rate of learning estimated in this study is

unique to this outbreak or if it might be more representative. We

remark that both parameters in the learning rate model are readily

interpreted, and that theoretical effects of improvement in

surveillance, mechanisms for informing public health personnel

and the public, and rapid research response could be studied by

extending this simple model to represent more realistically the

effects of alternative policies as covariates.

The final size of an outbreak is greatly affected by transmission

events early during the outbreak process. Outbreaks can be

curtailed when public health interventions are rapid and efficient.

But the severity of an outbreak is often unclear during these initial

stages of transmission when intervention can be most effective

[11,27]. Further, there are limits to how quickly diagnostic

information about an emerging infection can be obtained and

disseminated to health care providers. This is not the first model to

consider the effect of changes in the removal rate (e.g., [14,15]).

However, in contrast to earlier studies, we first explicitly

considered societal learning parametrically in a theoretical model.

Our model also more realistically represents the ramping up of

intervention in contrast to models that simply have ‘‘before

control’’ and ‘‘after control’’ regimes (e.g., [13]). We showed that

the final outbreak size decreases rapidly with a modest investment

in learning. We also found strong evidence of learning in data

from the 2003 outbreak of SARS in Singapore. Public health

interventions for SARS include encouragement to report to

hospital rapidly after the onset of clinical symptoms, contact

tracing for confirmed and suspected cases, and quarantine,

monitoring, and restricting the travel of contacts [25,30]. We

believe these interventions were highly effective at reducing the

final size of the SARS outbreak.

A limitation of this analysis is that we only consider temporal

changes in removal, though information dissemination and public

concern almost certainly led to a decline in transmission (b0) too

[15]. Unfortunately, this effect is much more difficult to

independently estimate and must instead be inferred from the

information provided by the epidemic curve together with

observations of the onset-of-symptoms to removal interval. In

general, however, the model studied here (eqn 1) and its solution

(eqn 2) will also apply to this situation and can be used wherever

such data are available. The effects of biological and social factors

that might bring about changes in transmissibility is an important

area for further theoretical research.

Our estimate of the duration of the infectious period (8.3 d,

95% CI: [5.8, 14.3]) is consistent with measures of viral shedding,

obtained by Peiris et al. [31] using quantitative reverse

transcriptase on sequential nasopharyngeal aspirates/throat and

nose swabs (NPA/TNS), in which maximum virus excretion

occurs around the tenth day of illness (compare also [24]). Indeed,

only about 35% of NPA/TNS continued to test positive by the

third week since the onset of symptoms [24].

Figure 6. Relationship between the average latent period (x-axis) and
average total outbreak size in simulations (y-axis). Latent period is log2

transformed (to illustrate a wide range of possible values) and ranges
from 1 d to 4096 d (,11 y). The approximate location of SARS is
indicated by the arrow.
doi:10.1371/journal.pone.0000020.g006
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These results underscore the value of immediate action at the

start of an outbreak (high a0). The processes considered to

contribute to societal learning include such publicly visible actions

as declaring a state of emergency, global health alert, or

(minimally) disseminating information to the public. The societal

and economic costs of mistakenly declaring a state of emergency

can be tremendous, but are probably small in comparison to the

costs of failing to intervene in a major preventable outbreak. Thus,

we echo Anderson et al. [32] in concluding that the major lessons

of the 2003 outbreak of SARS are to improve surveillance and

detection, including real-time data collection; develop capability

for rapid response by the research community; and devise

mechanisms for immediate implementation of effective interven-

tions. Important topics for research include estimating the effect of

learning on transmission (the parameter b0 in the model), and

identifying the different activities that contribute to learning (a0)

and relaxation (a1) and their costs. Then, a cost sensitive model

should be developed to balance the competing goals of raising

unnecessary alarm and preventing a major outbreak. Such a model

would be most useful if it had reference points that would trigger

alerts at different levels (i.e., to function as an early warning system)

and could guide intervention efforts. Such a model would not need

to be purely economical, but could incorporate loss of human life

and well-being as constraints on the decision set.

Of course, learning rates (and possibly relaxation) will vary

geographically reflecting different societal conditions, research

institutions, levels of emergency preparedness, etc. Further, these

phenomena may also differ among emerging diseases, for instance

depending on their similarity to diseases that are well understood

or their resistance to laboratory isolation and characterization.

Despite these limitations, we suggest that our estimate of the basic

learning rate (0.0066 d21; 95% confidence interval [0.0051,

0.0081]) could be used as prior information during future

outbreaks. The difficulty of forecasting the total epidemic curve

at an early stage is well appreciated [7]. By eliminating the need to

simultaneously estimate highly correlated parameters, a good

understanding of the dynamical consequences of public health

response would enable real-time modeling to focus on estimating

disease parameters like transmission rates [11]. Then, estimated

disease components and known or conjectured models for

response, including models of societal learning, could be integrated

in a single modeling framework for projections.
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