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Abstract

Motivation: Cells are complex systems composed of hundreds of genes whose products interact to produce elabo-
rated behaviors. To control such behaviors, cells rely on transcription factors to regulate gene expression, and gene
regulatory networks (GRNs) are employed to describe and understand such behavior. However, GRNs are static
models, and dynamic models are difficult to obtain due to their size, complexity, stochastic dynamics and interac-
tions with other cell processes.

Results: We developed Atlas, a Python software that converts genome graphs and gene regulatory, interaction and
metabolic networks into dynamic models. The software employs these biological networks to write rule-based mod-
els for the PySB framework. The underlying method is a divide-and-conquer strategy to obtain sub-models and com-
bine them later into an ensemble model. To exemplify the utility of Atlas, we used networks of varying size and com-
plexity of Escherichia coli and evaluated in silico modifications, such as gene knockouts and the insertion of
promoters and terminators. Moreover, the methodology could be applied to the dynamic modeling of natural and
synthetic networks of any bacteria.

Availability and implementation: Code, models and tutorials are available online (https:/github.com/networkbiolab/
atlas).

Contact: risantibanez@uc.cl or alberto.martin@umayor.cl

Supplementary information: Supplementary data are available at Bioinformatics online.

of cellular behavior, and models are desired that encompass all cellular
processes (Karr et al., 2012, 2015; Sanghvi et al., 2013). If available,
those models would help create an understanding of complex cell dynam-
ics, with applications in biotechnology or biomedicine (Carrera and
Covert, 2015), e.g. designing minimal cells (Rees-Garbutt ez al., 2020) or
synthetic genomes (Fredens et al., 2019). Although there are available
whole-cell models for Mycoplasma genitalium (Karr et al., 2012) and re-
cently for Escherichia coli (Macklin et al., 2020) and there is a proposed
pathway to develop integrative and larger models (Covert et al., 2008;
Szigeti et al., 2018), whole-cell models are still not widely developed or
adopted (Szigeti et al., 2018).

1 Introduction

Recent technological advances have enabled the inquiry into, and under-
standing of, biological systems at an unprecedented level of detail (e.g.
Regev et al., 2017). From such developments, the impact of stochastic dy-
namics in living systems has been corroborated, measured and modeled
(Raj and van Oudenaarden, 2008). To date, most of the available models
look for the reproduction of cell metabolism at the genome scale using
constraint-based models (Szigeti ez al., 2018). However, constraint-based
models disregard the dynamic and stochastic nature of metabolism
(Costa et al., 2016) and the prediction of the impact of genetic modifica-
tions remains challenging [e.g. Foster er al. (2019) or Long and
Antoniewicz (2019)]. Dynamic modeling of metabolism has been pro-
posed to circumvent the drawbacks of constraint-based models (e.g.
Hidicke and Klamt, 2017) despite specific issues, such as the need for

2 Approach

calibration, extensive validation, and showing a time-consuming develop-
ment. Also, it is necessary to consider that metabolism is only one aspect

©The Author(s) 2020. Published by Oxford University Press.

Gene expression regulates metabolism, which, in turn, modulates
transcription, translation and degradation rates as well as the
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activity of transcription factors (Covert ef al., 2008). These proc-
esses interplay in networks of molecular interactions between DNA,
RNA, proteins and metabolites (Grimbs et al., 2019; Hernandez-
Prieto et al., 2014). Here, we aimed to perform the integrative mod-
eling of transcription, translation, regulation of gene expression, me-
tabolism and genome architecture, which is considered a prototype
whole-cell model (Szigeti ez al., 2018). We developed Atlas, a soft-
ware that facilitates the dynamic modeling of gene regulation and
bacterial metabolism by using biological networks to develop rule-
based models (RBMs) employing the PySB framework (Lopez et al.,
2013) for later simulation, curation and analysis. The developed
software takes inspiration from available tools that automate the re-
construction of draft constraint-based models, such as Merlin (Dias
et al., 2015), RAVEN (Agren et al., 2013; Wang et al., 2018),
ModelSEED (Henry et al., 2010), KBase (Arkin et al., 2018) and
other software (reviewed in Faria et al., 2018).

An RBM employs an abstract language very similar to chemical
equations capable of encoding millions of individual reactions
(Danos et al., 2007) depending on the strictness of rule definitions.
Further, we chose to develop RBMs because of their modularity;
also, they allow deterministic simulations through network gener-
ation (Blinov et al., 2004, 2006; Hlavacek et al., 2006), do not re-
quire the modeling of mass balances for all molecular species
(network-free simulations) (Sneddon et al., 2011), and permit sto-
chastic simulations employing Gillespie’s Stochastic Simulation
Algorithm (Gillespie, 1976) or modifications (Danos et al., 2007,
2008; Sneddon et al., 2011). In addition to the mentioned features,
RBMs are more readable than their counterparts, such as ODE-
based models, which makes RBMs easier to review, inspect and cor-
rect collaboratively using version control tools, e.g. Git (Perez-
Riverol et al., 2016). Finally, rule-based languages were used previ-
ously to model automatically signaling pathways, e.g. with the soft-
ware INDRA (Gyori et al., 2017) and KAMI (Harmer et al., 2019).

3 Materials and methods

3.1 Biological networks

Primary data employed were obtained from the EcoCyc database
(Karp et al., 2018b; Keseler et al., 2017) with the help of an updated
version of PythonCyc (https://github.com/latendre/PythonCyc) and
PathwayTools version 24 (Karp et al., 2019). The modified API is
distributed  freely  from  https://github.com/networkbiolab/
PythonCyc and the Python Package Index with examples of use at
https://github.com/networkbiolab/pythoncyc-notebooks.

Data were formatted as biological networks. For instance, genes
are connected to their regulators in a canonical gene regulatory net-
work (GRN) and we modified the network to connect transcription
factors to DNA-binding sites and RNA polymerase-sigma factors
(RNAP-¢) to promoters to obtain a sigma-specificity network. In the
case of metabolic networks, we employed tripartite networks in
which a reaction connects to the associated enzyme and metabo-
lite(s) instead of the more common bipartite representation of reac-
tions and metabolites. Finally, three types of interaction networks
[protein—protein, protein~-DNA binding sites (a GRN) and protein—
metabolite] were formatted as collapsed hyper-graphs (Klamt ez al.,
2009) to encode complexes, i.e. networks where (a group of) nodes
connect to a group of nodes. We employed brackets to denote com-
plexes, e.g. ‘[crp, crp]’ representing the CRP homodimer and ‘[crp,
CAMP, crp, CAMP]’ to define the CRP-cyclic AMP dimer. The soft-
ware Atlas disregards the order of components: ‘[crp, CAMP, crp,
CAMP]’ and ‘[crp, crp, CAMP, CAMP]’ are equivalents. The net-
works employed in this work are in the Supplementary Material on-
line and in the examples directory at https://github.com/
networkbiolab/atlas.

3.2 Natural and synthetic GRNs used as examples

Natural GRNs representing data from E.coli were employed as
examples and include the lactose, arabinose and fucose degradation
operons (Lacl, AraC and FucR regulons), the central carbon metab-
olism (Millard et al., 2017) and all E.coli transporters and enzymes

from the BioCyc database (Karp et al., 2018b; Keseler ez al., 2017).
In addition, we employed the regulation of gene expression for the
E.coli sigma factors (sigma factors model) (Perez-Acle et al., 2018).
Primary data were completed with available information on genome
architecture from Cho et al. (2009) and sigma factor specificity from
Cho et al. (2014).

We modified the sigma factors model (Perez-Acle et al., 2018) to
exemplify the modeling of synthetic designs prior to experimenta-
tion. These modifications include the knockout of each sigma factor
modeled and the incorporation of a promoter and/or a terminator to
modify the rpoBC operon (Cho et al., 2014). The two types of in sil-
ico modifications were made modifying the genome graph used as
input for Atlas, adding a promoter or a terminator between the rpoB
coding DNA sequence (CDS) and the rpoC ribosome binding site
(RBS) or removing the CDS of each sigma factor preserving the nat-
ural promoters, RBS and terminators. In the case of the insertion of
an rpoC promoter, the GRN was modified to incorporate the
RNAP-¢ specificity of the rpoB promoter.

3.3 Draft, simulation, curation and analysis of RBMs
Draft sub-models were obtained using biological networks as input
and combined later in a divide-and-conquer modeling strategy.
These ensemble models were employed for simulation, curation and
calibration.

Models were simulated with the PySB interfaces for the SciPy
ODE integrator (Virtanen et al., 2020) and the Kappa Simulator
v4.0 (KaSim) (Boutillier ez al., 2018). The ODE integration requires
the enumeration of all components and individual reactions (net-
work generation) (Blinov et al., 2004, 2006; Hlavacek et al., 2006).
In any situation in which the network generation procedure took ex-
cessive time to finalize (set as a 5-min threshold), network-based
simulations were replaced by network-free simulations employing
KaSim.

Models were exported to the kappa language and analyzed with
the Kappa Static Analyzer (KaSA) from the Kappa platform
(Boutillier ez al., 2018) to perform reachability analysis (Danos
et al., 2008; Feret, 2007) after their reconstruction or any manual
curation. In brief, RBMs describe a network of reactions, some of
which could be dead rules due to the unavailability of preceding
rules that synthesize reactants in the required form. Curation of the
data was carried out manually, for instance, to remove duplications
(e.g. gene products with two identical reactions but different metab-
olite names), ambiguities (e.g. names referring to a family of metab-
olites), lack of compartmental information [e.g. transport reactions
in which substrate(s) and product(s) are the same metabolite but are
located in different compartments], incorrect stoichiometry of reac-
tion per enzymatic complex, missing gene regulations and others.

In the case of the sigima factor model and its in silico genetic modi-
fications, we performed the following analysis. The dynamics of 1000
stochastic simulations for 100 units of time performed with KaSim
were contrasted by employing the software edgeR (Chen et al., 2014;
Robinson et al., 2010). Simulations were carried out with arbitrary
rates at one event per unit time (also arbitrary). In the case of the add-
ition of a promoter and/or a terminator to modify the rpoBC operon,
the three resulting models were subject to calibration with the tran-
scriptomics data of cold stress from Jozefczuk ez al. (2010), GEO ac-
cession GSE203035, assuming the new networks describe the correct
genome architecture. We calibrated the binding and unbinding rates
of the RNAP-¢ complexes to promoters and the RNA decay rates of
the new models and the reference model by employing the software
Pleione and the described strategy 3 with the y* fitness function
(Santibanez et al., 2019): 100 iterations, 100 models per iteration,
selecting two models to recombine with a probability inverse to the
ranking (see the Supplementary Material online for more details).
After calibration, co-expression networks were constructed with
ExpressionCorrelation (http://www.baderlab.org/Software/
ExpressionCorrelation) for the average values of 1000 simulations.
The ExpressionCorrelation employs Pearson’s correlation coefficient
and we selected absolute values higher than 0.95 for visualization.

The co-expression and other networks were visualized with the
software Cytoscape v3.7.2 (Shannon et al., 2003; Su et al., 2014)


https://github.com/latendre/PythonCyc
https://github.com/networkbiolab/PythonCyc
https://github.com/networkbiolab/PythonCyc
https://github.com/networkbiolab/pythoncyc-notebooks
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1040#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1040#supplementary-data
https://github.com/networkbiolab/atlas
https://github.com/networkbiolab/atlas
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1040#supplementary-data
http://www.baderlab.org/Software/ExpressionCorrelation
http://www.baderlab.org/Software/ExpressionCorrelation

Atlas

5475

and models were visualized within Jupyter notebooks with the soft-
ware pyViPR (Ortega and Lopez, 2020).

4 Results and discussion

4.1 Software overview and basic workflow

An overview of the Atlas software is depicted in Figure 1. The atlas
module has functions to reconstruct independent models from gen-
ome graphs and protein—protein, protein-metabolites and protein—
DNA interaction and metabolic networks. In addition, a specialized
function could simultaneously employ data from the genome graph

and from a sigma-specificity network (RNAPg-promoters inter-
action network) to produce a model of bacterial regulation of gene
expression. As models are independent, the module also provides a
function to combine them, and functions to add regulatory relation-
ships to gene expression rules; to get, remove, modify and add rules;
and remove and get the current value of a parameter. After recon-
struction, models require to set their parameters (if they were not
provided as metadata in the networks) and to define the initial con-
dition. The user of Atlas could choose from a variety of simulators
and, finally, plot the results of simulations. In the case of stochastic
simulations, the results include every simulation along with the
mean and standard deviation. The user could export the model at

« read_network

+ check_metabolic_network
= check_interaction_network
* check_genome_graph

analyzeConnectivity

utils

* interactionNetwork.addinteraction
* interactionNetwork.removelnteraction

* metabolicNetwork.addReaction
+ metabolicNetwork.removeReaction
* metabolicNetwork.expand_network (Step 4)

r
Reconstruction functions: (Step 5)

= construct_model_from_genome_graph

+ construct_model_from_interaction_network

= construct_model_from_metabolic_network

= construct_model_from_sigma_specificity_network

* combine_models (Step 6)

atlas

atlas rbm

* {get, replace}_parameter

= {get, remove, modify, add}_rule
« add_regulation

J(

Set parameter, observables, and initial condition (Step 7)

* set_parameter

+ set_observable

« set_initial.{monomers, cplx, dna, met, prot, rna,
from_pattern}

Simulation functions (Step 8)
+ scipy, bngODE, cupsoda, bngS5A, bngPLA, bngNF,
kasim, stochkit

S Cytoplasm

simulation

—— a-glucose

Plotting functions (Step 9) 801 ~——— B-glucose
* plot.{monomer, dna, metabolite, protein, cplx, rna,

pattern}
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Export functions (Step 10)

* to_{sbml, matlab, mathematica, potterswheel, bngl,
bngnet, python, pysb}

= to_{kappa, pysb, stochkit, json} 0-

Concentration [A.U.]

export
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Time [A.U.]

i —

Fig. 1. Overview of the Atlas software and a typical workflow from gathering data to plot simulation results. (Left) Atlas is a python3 software divided into four modules. The
atlas module has functions to reconstruct RBMs from biological networks in plain text. The utils module has functions to read and check networks (uniqueness of reactions
and uniqueness of interactions), analyze the models produced by Atlas with KaSA and get information from locally installed BioCyc databases with the help of the
PathwayTools software. The simulation module has functions to set parameters, observables and initials, simulate the model with a variety of software and plot the results.
Finally, the export module has functions to export the model through any supported format in the PySB framework. Functions that require external software are highlighted:
PathwayTools (green), Docker (blue) and BioNetGen/KappaTools (yellow). (Right) A typical workflow is divided into the following steps: (i) review and compile data from
the literature using a spreadsheet software, (ii) obtain protein complex composition from PathwayTools with ‘utils.interactionNetwork.FromGeneList’, (iii) obtain metabolic
data from PathwayTools with ‘utils.metabolicNetwork.FromGeneList’ or ‘utils.metabolicNetwork.FromEnzymeList’, (iv) expand the metabolic network (enzymes, substrates,
products) to a source—target format for visualization, (v) reconstruct models matching the type of network and, optionally, add regulatory interactions of protein-DNA inter-
actions to gene expression rules or correct rules if necessary, (vi) combine sub-models, (vii) set parameters, observables and the initial condition of model components, (viii)
simulate the model and (ix) plot variables. Optionally (Step 10), export the model for simulation, analysis, or curation with external tools. Light blue denotes a manual step.
A.U., arbitrary unit



5476

R.Santibanez et al.

any stage in a variety of formats, and employ external tools to simu-
late, curate or analyze the reconstructed model. Complementarily,
Atlas provides utilitarian functions that are able to read and check
the different networks, analyze the connectivity of the model and
obtain data from the BioCyc databases (Caspi et al., 2016; Karp
et al., 2018a). Data could be transformed and exported for visual-
ization with Cytoscape (Shannon et al., 2003; Su et al., 2014) and
models could be visualized within Jupyter notebooks with pyViPR
(Ortega and Lopez, 2020).

An important note is the definition of the different components
of the model (or agents). We defined five distinct agents: Proteins
(‘prot’), Metabolites (‘met’), DNA (‘dna’), RNA (‘rna’) and
Complexes (‘cplx’). A ‘Complex’ agent is an alias for complexes,
such as the RNAP or the bacterial ribosome. All agents have a
‘name’ and a ‘location’ site for identification purposes. In addition,
all components have interaction sites named ‘dna’, ‘met’, ‘prot’ and
‘rna’ that allow interaction with another agent of the matching type.
The DNA and RNA agents have an additional identification site
called ‘type’ to define their nature: promoter, RBS, CDS, terminator
or binding site. Finally, proteins, DNA and RNA agents have two
sites, named ‘up’ and ‘dw’, that enable the automated description of
complexes of the same type. Two proteins interact in their ‘up’ and
‘dw’ sites because the unique ‘prot’ site per agent allows only dimer-
ization. Following the definition of agents, Atlas is capable of writ-
ing complexes of any size and determining the correct internal links
of components. See the Supplementary Material online for more
details.

4.2 The lactose operon: modeling regulation of gene

expression, transcription, translation and metabolism
We modeled a variety of metabolic networks of different sizes and
complexities. The lactose model is composed of three enzyme-cod-
ing genes and one regulator, the arabinose-fucose model is com-
posed of 13 enzyme-coding genes and two regulators, the E.coli
central carbon metabolism model is composed of 200 enzyme-cod-
ing genes and the genome-scale metabolic model of E.coli is com-
posed of 3596 transport and enzymatic reactions. To highlight the
capabilities of Atlas, we describe in detail the modeling of the lactose
metabolism because it is a common model of gene regulation with
more than 50 years of biochemical information (Lewis, 2011).

The lactose operon from E.coli consists of three genes: the -gal-
actosidase gene lacZ, the lactose permease gene lacY (also known as
lactose-proton symporter) and the galactoside O-acetyltransferase
gene lacA. The EcoCyc database indicates that LacY can incorporate
a-lactose, melibiose, lactulose, 3-O-galactosylarabinose and melibio-
nate into the cell cytoplasm. Interestingly, the common colorimetric
substrate ONPG (o-nitrophenyl-f-galactoside) is mentioned in the
description for the lactose transport, but there is no inclusion of the
reaction for LacY. Next, LacZ could metabolize lactose into p-gal-
actose and glucose, lactulose into B-galactose and fructofuranose,
and 3-O-galactosylarabinose into f-galactose and arabinose. Data
from the literature (e.g. Huber ez al., 1981; Juers et al., 2012) were
used to complete the data derived from the EcoCyc database and
were added manually to the network (Supplementary Tables S1 and
S$2 and Fig. S1) and the final network is depicted in Figure 2A (labels
were omitted for visualization purposes). The modeling of similar
corrections for other enzymes could be useful to understand the dy-
namic properties of metabolic pathways before experimental valid-
ation of the kinetics properties of each enzyme. In the case of lactose
degradation, simulations of the curated metabolic network are
shown in Figure 2B for the two anomers of glucose, galactose and
allolactose produced from a source of 100 molecules (or an arbitrary
concentration unit) of -lactose. As expected, the degradation of lac-
tose into glucose and galactose is complete, while mutarotation
allows for the equilibrium of anomers. Although sugar mutarota-
tions are very slow reactions, they are spontaneous and we included,
in Atlas, the capacity to model non-enzymatic reactions as EcoCyc
reports 145 ‘spontaneous’ and three transport reactions without an
identified gene.
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Fig. 2. Simulation of RBMs for the lactose degradation pathway. (A) Visualization
of the curated metabolic network from the EcoCyc database. Nodes represent
enzymes (red), reactions (green) and metabolites (cyan). Shapes represent substrates
(diamonds), intermediates (triangles) and products (circles). Arrows show the reac-
tion reversibility. (B-E) Total concentration of glucose, galactose, and allolactose
produced from 100 molecules of lactose with hypothetical parameters. The continu-
ous lines represent a deterministic simulation (SciPy, B and C) or the mean of 100
stochastic simulations (KaSim, D and E) with the area showing 1 SD. (B) Simulation
of the metabolic network reconstructed from the network in (A). (C) Simulation of
the metabolic and protein—protein interaction networks. (D and E) Simulation of
the metabolism, protein—protein interactions, transcription, translation and gene ex-
pression regulation: (D) depicts the natural situation in which allolactose binds a
lacI protein and is protected from degradation, and (E) shows a hypothetical situ-
ation in which allolactose cannot bind the lacl protein. Models at https:/github.
com/networkbiolab/atlas/tree/master/examples/lactose. A.U., arbitrary unit

Once we curated the metabolic network, we modeled the pro-
tein—protein interaction network that connects gene expression to
the metabolism for reactions performed by protein complexes
(Supplementary Fig. S2 and Table S4). For the E.coli lactose metab-
olism, the B-galactosidase is a homotetramer, the galactoside O-ace-
tyltransferase is a homotrimer and the lactose-proton symporter acts
as a monomer. We employed the collapsed hyper-network
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representation to describe the protein—protein interactions from the
literature or assumptions and automated the modeling of assembly
processes. For instance, the assembly process for the -galactosidase
tetramer comes from dimers (Matsuura ef al., 2011), and we sup-
posed the existence of a galactoside O-acetyltransferase dimer as
pre-complex (Fowler et al., 1985). Additionally, we took into con-
sideration the reaction stoichiometry for each enzymatic complex.
In this curation step, we identified whether reactions could happen
independent of complex assembly (i.e. monomers are catalytically
active) or if the protein complex is necessary for the catalytic activity
in vivo (i.e. monomers are inactive). For the fS-galactosidase com-
plex, each subunit is catalytically active only when the tetramer is
assembled (Li ef al., 2018). Similarly, the galactoside O-acetyltrans-
ferase active sites act independently of each other and because they
are formed with residues from two adjacent monomers (Lewendon
et al., 1995; Wang et al., 2002), the trimer was assumed to be the
only active catalytic form. Figure 2C shows deterministic and sto-
chastic simulations for an RBM including the assembly of protein
complexes and the metabolic reactions. Interestingly, the determinis-
tic and stochastic simulations disagree at the beginning of the dy-
namics, although they reached a similar steady-state. Because the
stochastic simulation requires the assembly of enzyme complexes be-
fore performing any metabolic reaction, simulations showed a lag-
phase, which is in contrast to the deterministic simulation.

Next, the model was coupled to a representation for transcrip-
tion and translation in addition to the activity of transcription fac-
tors. We employed the Kappa BioBrick Framework (KBF) (Stewart
and Wilson-Kanamori, 2011) and automated the modeling of rules
describing bacterial transcription and translation. The KBF describes
transcription and translation as a succession of rules. These rules de-
scribe the reversible docking of RNAP (ribosome) to a promoter
(RBS), the sliding of the RNAP through the DNA and sliding of the
ribosome through the RNA, and fall off from the terminator
(RNAP) or the stop codon (ribosome). Atlas considers all promoters
and terminators to write the rules described in the KBF. The tran-
scription from the lactose operon is initiated at four promoters and
terminated by two Rho-independent terminators (Fig. 3). Moreover,
we modeled an internal promoter that drives transcription from the
lacYA operon, although its importance iz vivo is not clear (Zaslaver
et al., 2006). Employing the rules defined in KBF, we reconstructed
a model for transcription and translation that considers the genomic
architecture of the lactose operons and coupled it to the metabolic
model presented previously (including protein assembly). Therefore,
the resulting ensemble model requires only DNA (and the transcrip-
tion/translation machinery) to produce the necessary proteins for
metabolic activity.

Finally, the RBM representing the lactose metabolism was com-
pleted with a representation of transcriptional control. To model
gene regulation, we added to the interaction network the Lacl-
allolactose and LacI-DNA binding site complexes. In the case of
Lacl, each dimer binds in tandem to one DNA-binding site, and two
dimers could dimerize, forming a DNA loop that impedes the bind-
ing of RNAP-¢ to promoters or initiates transcription (Rutkauskas
et al., 2009). To inactivate Lacl, free proteins bind allolactose,
which seems to impede the binding of Lacl-allolactose to DNA-
binding sites (Lewis, 2005). In principle, the modeling of DNA-
binding protein interactions requires one rule per transcription

= acve

RAEP3)

factor, as we could ignore differences in the rates of DNA-protein
kinetics. However, the different affinities, the genomic architecture
and the transcription factor mechanisms [reviewed in van Hijum
et al. (2009)] encouraged the development of another approach. To
do so, overlapping DNA-binding sites and other genomic features
(represented in Fig. 3) were defined as a collapsed hyper-network
similar to what was done for protein complexes (Supplementary
Table S5). Figure 2D shows the results of simulations in which allo-
lactose binds free lacl proteins, while Fig. 2E shows the simulation
from a hypothetical situation in which free lacl proteins cannot bind
allolactose. The difference between both situations was modest and
showed an earlier rise of the glucose and galactose concentration
around 100 units of time when allolactose could bind lacI proteins
(Supplementary Fig. S3). Because allolactose binds free lacl proteins,
the release of lacl proteins freeing the promoter occurred in both
models.

Although system parameters could be found in databases or cali-
brated [e.g. with pyBioNetFit (Mitra et al., 2019) or Pleione
(Santibanez et al., 2019)], the results show that modeling of RBMs
for metabolism, protein complex assembly, transcription, transla-
tion and regulation of gene expression can be done in an automated
manner, facilitating deterministic and stochastic simulation.
Parameters employed for simulation are detailed in Supplementary
Tables S2-S5 and a benchmark is detailed in Supplementary Table
Sé.

4.3 Modeling natural and synthetic transcriptional

control: the sigma factors model
We later addressed the modeling of RNAP-¢ assembly and tran-
scriptional control of its expression mediated by the activity of
sigma factors. Compared to eukaryotes, bacteria have only one
RNAP and different sigma factors that confer promoter specificity
(Mauri and Klumpp, 2014). The bacterium E.coli has seven sigma
factors that interact physically with the core RNAP to form holoen-
zymes. The purpose here is to present how to model transcription
control as the RBM is presented and calibrated elsewhere (Perez-
Acle et al., 2018; Santibanez et al., 2019) and to employ it to model
synthetic transcriptional control. Also, Atlas models a molecular
step in bacterial transcription disregarded in KBF (Stewart and
Wilson-Kanamori, 2011): the sigma factor is released from holoen-
zymes when transcription is initiated (Mauri and Klumpp, 2014).
We modeled the holoenzymes binding to promoters as if those
interactions were the binding of any transcription factor to their
cognate DNA-binding sites. To do so, we considered the RNAP-¢
specificity (Supplementary Table S7) and the genome architecture
(Supplementary Table S8) simultaneously, two features that we
employed separately for the modeling of DNA-protein interactions
and transcription. Both networks are represented in Figure 4A (a ca-
nonical GRN) and B (an extended network to show the considered
genome architecture). The resulting model describes holoenzymes
explicitly as a complex of five proteins instead of a unique agent
modeling the RNAP complex employed in the lactose model.
Results for the dynamics of the described GRN are shown in
Figure 4C and D for a hypothetical case of only RNA synthesis with-
out mRNA degradation. It can be seen that gene expression shows
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Fig. 3. Genomic organization of the E.coli lactose operon. The lactose operon shows four promoters controlled independently by the repressor Lacl, the activator-repressor
CRP, the repressor H-NS and the repressor MarA. An internal promoter and two terminators contribute to the expression dynamics of enzymes and the transporter. Image
from the EcoCyc website (Keseler et al., 2017, https://ecocyc.org/gene? orgid=ECOLI&id=EG10527#tab=TU)
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Fig. 4. Stochastic simulation of the E.coli sigma factor GRN. (A) Visualization of the curated GRN from the EcoCyc database. The light blue nodes represent the seven sigma
factor and the green nodes represent the three RNAP subunits encoding genes. Arrows represent the positive regulation of transcription determined from sigma factor specifi-
city for promoters. (B) Extension of the GRN to encode the genomic architecture of the 10 considered genes. The rpoB and rpoC (left side of the outer ring) form a single op-
eron. Labeled white nodes are the promoters, purple nodes are the RBSs, red nodes are the CDS and unlabeled white nodes are the terminators. (C-F) Mean of 100 stochastic
simulations (KaSim) and 1 SD from the mean. (C and D) Stochastic simulation of the natural genomic architecture and regulatory interactions. (E) Stochastic simulation for
the network modified with an iz silico internal rpoC promoter. (F) Stochastic simulation for the network modified with an in silico internal rpoB terminator. Models at https://

github.com/networkbiolab/atlas/tree/master/examples/sigma-model. A.U., arbitrary unit

similar rates, though the results are influenced by the parameter val-
ues and the initial condition for proteins.

The use of Atlas is not restricted to natural networks and allows
for the modeling of a different genomic arrangement of genes. One
purpose of such a procedure is to assess differences in mRNA and
other cell component dynamics with the final goal of
computational-aided design before experimental evaluation. For the
sigma model, we modeled three variants that modified the rpoBC
operon architecture. Those variants are: (i) the incorporation of an
internal promoter between rpoB and rpoC genes allowing for the
interaction of an RNAP-¢ complex, (ii) the incorporation of an in-
ternal terminator allowing for the falloff of the RNAP and (iii) the
incorporation of both. Our simulations showed that the incorpor-
ation of a promoter for rpoC reduced the synthesis rate for rpoB due
to reduced RNAP availability for its promoter (Fig. 4E). This, in
turn, is determined by the model parameters and initial condition.
On the other hand, the addition of the internal terminator reduced
the synthesis rate for rpoC (Fig. 4F) due to a reduced probability of
continuing RNA elongation from rpoB into rpoC. Finally, simultan-
eous modifications showed no changes in RNA synthesis rates due
to compensation of falling off RNAPs from the rpoB terminator and
the interaction of RNAP-¢ holoenzymes to the synthetic rpoC pro-
moter (Supplementary Fig. S4B), and showed similar expression
rates as the situation of independent rpoB and rpoC operons
(Supplementary Fig. S4D).

More realistic stochastic simulations were performed with the
sigma factors model extended to model RNA degradation as uni-
molecular decay (Perez-Acle et al., 2018). In contrast to the simula-
tion results shown in Figure 4E and F, and Supplementary Figure $4,
the in silico variants were calibrated as if the new models represent
the natural genomic architectures. Also, we performed an indirect

comparison of mRNA quantities using Pearson’s correlation coeffi-
cient to compare mRNA dynamics for the average of simulations.
We report correlations higher than 0.95 as the absolute value in a
co-expression network (Supplementary Fig. S5). The expression pro-
files for rpoB and rpoC remained correlated in all variants, in con-
trast to a correlation coefficient of 0.57 determined from the
original data. A complete explanation is tailored to the ability of the
performed calibration to find parameter values that most closely re-
semble the experimental data for an unnatural transcriptional net-
work and delineates the need for (cell-free) experiments to
accurately measure RNA synthesis rates in modified genomic
contexts.

Finally, we performed in silico knockout experiments.
Comparisons employing the edgeR software (Chen ez al., 2014;
Robinson er al., 2010) and a threshold for the false discovery rate
(FDR) of 0.05 showed that the deletion of rpoD and rpoS had the
most impact in mRNA synthesis, while the other deletions did not
show differential expressed genes. The knockout of rpoD impedes
the expression of rpoS (Fig. 4B) while we observed lower expression
for fliA and fecl and higher expression for rpoA, rpoE, rpoH and
rpoN compared to the reference model. In turn, the knockout of
rpoS showed lower expression for rpoB and fecl and higher expres-
sion for fliA. The determined fold change and FDR values are pre-
sented in Supplementary Tables S9 and S$10, respectively. However,
simulations were done to highlight the capability of A#las to model
different genetic modifications and parameters did not reflect any
experimentally determined rate. Also, the models did not incorpor-
ate degradation rules for mRNAs, and an extension of the model to
synthesize and degrade proteins will allow for the detailed modeling
of in silico designs and the comparison of simulations to
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experimental data from synthetic constructs employing cell-free
translation-transcription technologies (Borkowski ez al., 2018).

5 Conclusion

Mathematical and computational modeling is often viewed as a spe-
cialized task. To facilitate modeling, we automated the development
of RBMs, as these types of models show simulation flexibility, a rea-
sonable degree of readability, modularity for integrative modeling
and good simulation scalability.

Atlas produces sub-models from genome graphs, and protein—
protein, protein—-metabolites and protein~DNA interaction and
metabolic networks. We developed, in this work, a divide-and-
conquer strategy supported by the modularity of RBMs, as it is the
pathway for the development of whole-cell models (Szigeti et al.,
2018). The software produces RBMs for the PySB framework
(Lopez et al., 2013) and rules can be added in any order while PySB
checks on whether new rules are compatible with the current model.
In addition, PySB could export to kappa language and we employed
the KaSA software (Boutillier et al., 2018) to further assess the co-
herence of the developed RBMs. Simulation of RBMs could be done
within PySB and calibration of exported models could be performed
with pyBioNetFit (Mitra ef al., 2019, only BNGL models) or
Pleione (Santibanez et al., 2019, BNGL and kappa models) to com-
pare the reconstructed models with experimental data or available
models.

Atlas contrasts with available software because it lacks a graph-
ical interface [e.g. RuleBender (Smith et al., 2012) and VirtualCell
(Blinov et al., 2017)], although the user could employ Atlas within a
Jupyter notebook and use pyViPR (Ortega and Lopez, 2020) to visu-
alize the model structure. Also, Atlas relies on the user to obtain for-
matted data to model interactions, in contrast to INDRA (Gyori
et al., 2017), which can use natural language processing to read in-
formation and reconstruct models. In turn, Atlas can model metab-
olism, transcription and translation, as well as widespread protein—
protein interactions found in signaling pathways that INDRA
(Gyori et al., 2017) and KAMI (Harmer et al., 2019) can model.

Finally, the models and the Atlas software are extensible, for in-
stance, to model cooperative behavior not currently supported. The
utilization of the law of mass action for the metabolic network (and
other reactions) limits the utility of the resulting RBMs in the cur-
rent form, but exporting to BNGL or kappa leverages this impos-
ition, as they support mathematical expressions as reaction rates.
However, we expect to extend Atlas to consider enzyme-metabolite
interactions and describe the detailed mechanisms of enzyme reac-
tions (Saa and Nielsen, 2017) and allosteric regulations of metabolic
activity, as well as to model the assembly of ribosomes (Davis et al.,
2016; Gupta and Culver, 2014; Shajani et al., 2011). Notably, Atlas
is already compatible with metabolic and interaction data from
eukaryotes and we obtained a model from data for 1991 metabolic
reactions of the yeast Saccharomyces cerevisiae from BioCyc. In
addition, we expect further interoperability with INDRA models of
signaling pathways to model protein modifications, such as phos-
phorylation and the collaboration from researchers. With collabor-
ation in mind, we shared the developed models in this work at
https://github.com/networkbiolab/atlas/tree/master/examples.
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