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and repeated monitoring in patients with cryptogenic 
stroke, where the source of the blood clot is unknown, 
revealing a significant prevalence of undiagnosed AF.6,7

In practical terms, the development of simple methods 
to identify individuals at a high risk of AF would facilitate 
the selection of candidates for long-term monitoring 
devices. One such method involves the precise analysis of 
waveform patterns on the resting 12-lead ECG using arti-
ficial intelligence (AI), which has shown promise in identi-
fying patients with AF on sinus rhythm ECG (SR-ECG).8 
This approach is unique because, although the gold stan-
dard for diagnosing AF is the presence of AF on 12-lead 
ECG, AI-based methods can provide insight into the pres-
ence of AF even on ECGs where AF is not visually appar-

A trial fibrillation (AF) is one of the most prevalent 
cardiac rhythm disorders and is associated with 
increased morbidity such as ischemic stroke, and 

mortality.1–3 A significant challenge in managing AF is its 
timely detection, given that it is asymptomatic nature in 
many patients. Various screening tools have been pro-
posed as alternatives to the gold standard 12-lead ECG, 
including patient-initiated devices such as oscillometric 
blood pressure cuffs, intermittent ECG rhythm strips, or 
smartphone photoplethysmograms, as well as semi-contin-
uous options such as smartwatch ECGs and continuous 
wearable devices such as long-term Holter monitors, wear-
able belts, or 1–2 week continuous ECG patches.4,5 Addi-
tionally, implanted devices have been used for continuous 

Received August 20, 2023; revised manuscript received January 23, 2024; accepted January 25, 2024; J-STAGE Advance Publication 
released online February 27, 2024  Time for primary review: 31 days

Department of Cardiovascular Medicine (S.S., N.H., T.A., N.Y., M.K., H.S., H.K., S.M., Y.K., T.O., T. Uejima, Y.O., J.Y., T.Y.), 
Information System Division (H.N.), Department of Cardiovascular Surgery (T.H., M.M., M.I.), The Cardiovascular Institute, 
Tokyo; Nihon Kohden Corporation, Tokyo (J.M., T. Umemoto, W.M., T.T., A.H., K.S.), Japan

Mailing address: Shinya Suzuki, MD, PhD, Department of Cardiovascular Medicine, The Cardiovascular Institute, 3-2-19 Nishiazabu, 
Minato-ku, Tokyo 106-0031, Japan.  email: s-suzuki@cvi.or.jp

All rights are reserved to the Japanese Circulation Society. For permissions, please email: cr@j-circ.or.jp
ISSN-2434-0790

Lead-Specific Performance for Atrial Fibrillation Detection in  
Convolutional Neural Network Models Using  

Sinus Rhythm Electrocardiography

Shinya Suzuki, MD, PhD; Jun Motogi; Takuya Umemoto; Naomi Hirota, MD, PhD;  
Hiroshi Nakai; Wataru Matsuzawa; Tsuneo Takayanagi; Akira Hyodo; Keiichi Satoh;  
Takuto Arita, MD; Naoharu Yagi, MD; Mikio Kishi, MD; Hiroaki Semba, MD, PhD;  

Hiroto Kano, MD; Shunsuke Matsuno, MD; Yuko Kato, MD, PhD;  
Takayuki Otsuka, MD, PhD; Takayuki Hori, MD, PhD; Minoru Matsuhama, MD, PhD;  

Mitsuru Iida, MD, PhD; Tokuhisa Uejima, MD, PhD; Yuji Oikawa, MD, PhD;  
Junji Yajima, MD, PhD; Takeshi Yamashita, MD, PhD

Background: We developed a convolutional neural network (CNN) model to detect atrial fibrillation (AF) using the sinus rhythm 
ECG (SR-ECG). However, the diagnostic performance of the CNN model based on different ECG leads remains unclear.

Methods and Results: In this retrospective analysis of a single-center, prospective cohort study, we identified 616 AF cases and 
3,412 SR cases for the modeling dataset among new patients (n=19,170). The modeling dataset included SR-ECGs obtained within 
31 days from AF-ECGs in AF cases and SR cases with follow-up ≥1,095 days. We evaluated the CNN model’s performance for AF 
detection using 8-lead (I, II, and V1–6), single-lead, and double-lead ECGs through 5-fold cross-validation. The CNN model achieved 
an area under the curve (AUC) of 0.872 (95% confidence interval (CI): 0.856–0.888) and an odds ratio of 15.24 (95% CI: 12.42–
18.72) for AF detection using the eight-lead ECG. Among the single-lead and double-lead ECGs, the double-lead ECG using leads 
I and V1 yielded an AUC of 0.871 (95% CI: 0.856–0.886) with an odds ratio of 14.34 (95% CI: 11.64–17.67).

Conclusions: We assessed the performance of a CNN model for detecting AF using eight-lead, single-lead, and double-lead SR-
ECGs. The model’s performance with a double-lead (I, V1) ECG was comparable to that of the 8-lead ECG, suggesting its potential 
as an alternative for AF screening using SR-ECG.
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of Helsinki (revised in 2013) and Ethical Guidelines for 
Medical and Health Research Involving Human Subjects 
(Public Notice of the Ministry of Education, Culture, 
Sports, Science and Technology, and the Ministry of Health, 
Labour and Welfare, Japan, issued in 2017). Written 
informed consent was given by all participants. The study 
protocol was reviewed and approved (IRB No. 424) by the 
Institutional Review Board of the Cardiovascular Institute.

Study Population
The Shinken database comprises all patients who newly 
visited the Cardiovascular Institute, Tokyo, Japan, exclud-
ing foreign travelers and patients with active cancer. This 
single-hospital database was established in June 2004, and 
further details have been described previously.13–15 For this 
study, we extracted data for 19,170 patients registered 
between February 2010 and March 2018, because a com-
puterized ECG database has only been available since 
February 2010. We excluded 2,092 patients for at least 1 of 
the following reasons: presence of AF (n=1,601), atrial 
flutter (n=185; of which 8 were coincident with AF), atrial 
tachycardia (n=3), paroxysmal supraventricular tachycar-
dia (n=190) on the initial-visit ECG, and insufficient fol-
low-up data (n=121). The remaining dataset of 17,078 
patients with a SR-ECG served as the main data source for 
CNN modeling in this study (Figure 1).

Development of the CNN Model
The 12-lead ECGs were recorded for 10 s while the patient 
was supine, using an ECG machine (MAC 5500 HD with 
GE CardioSoft V6.71; GE Healthcare, Chicago, IL, USA) 

ent. From the Mayo Clinic, Attia et al reported a landmark 
study using AI-enabled ECG analysis to predict AF on 
SR-ECG.8 Similarly, Raghunath et al reported on AI-
enabled ECG analysis using a larger ECG database from 
the Geisinger Health System in the USA.9 Additionally, 
Gruwez et al in Belgium reported on AI-enabled ECG 
analysis.10 These studies have had a significant effect 
because of the high predictive ability, with an area under 
the curve (AUC) of approximately 0.9.

Recently, there have been advancements in both mobile 
and smartwatch ECG technologies incorporating AI.11,12 
Mobile ECG systems offer a simpler and more accessible 
method of obtaining an ECG for individuals before visiting 
a clinical setting, and for physicians providing home-based 
medical care, both cases where obtaining a 12-lead ECG is 
not always feasible. These systems utilize fewer leads for 
recording the ECG, but in the context of AF screening in 
such circumstances, to date there have been no reports on 
AI-enabled ECG algorithms specifically designed to detect 
AF using single- or double-lead SR-ECG recordings.

We previously reported on a convolutional neural net-
work (CNN) model for AF detection using SR-ECG,13 
which achieved comparable AUC values to previous stud-
ies.8–10 In the present study, using the same dataset, we 
conducted an analysis to assess the lead-specific perfor-
mance of the CNN model.

Methods
Ethics and Informed Consent
This study was performed in accordance with the Declaration 

Figure 1.  Flowchart of patient selection. AF, atrial fibrillation; CNN, convolutional neural network; ECG, electrocardiogram; SR, 
sinus rhythm.
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CNN Modeling  We constructed the CNN using the 
Keras Framework with a Tensorflow backend (Google, 
Mountain View, CA, USA) and Python. From the 12-lead 
ECG recordings with a 10-s duration, we selected 8 inde-
pendent leads (leads I, II, and V1–6) for analysis.

The CNN modeling was based on the model developed 
by Attia et al.8,13 The conceptual architecture is shown in 
Figure 2, and the detailed architecture is shown in 
Supplementary Figure 2. The model comprised layers for 
both temporal and lead axes. The temporal axis layers 
consisted of a convolution part and a residual part. The 
convolution part included a convolution layer, a batch-
normalization layer, a non-linear Rectified Linear Unit 
(ReLU) activation layer, and a maximum pooling layer. 
The residual part comprised 2 residual blocks based on the 
Residual Network (ResNet) and average pooling, which 
were repeated X times (X was determined to achieve optimal 
performance, as outlined below). The lead axis layers 
consisted of paired batch-normalization layers, non-linear 
ReLU activation layers, and convolutional layers. There-
after, a second paired batch-normalization layer and a 
layer for non-linear ReLU activation were included. The 
configuration of the lead axis layers were designed in the 
context of multiple-lead ECG models. Therefore, when we 
applied this structure to models using a single-lead ECG 
only, a 1×1 convolution filter was applied in the lead axis 
convolution. Finally, the data passed through a dropout 
layer with global average pooling and were fed into the 
final output layer, activated by the softmax function, 
which generated the probability of AF.

The model was trained using the Keras software library 
on a computer with 128 GB RAM and a single Quadro 
P-2200 (NVIDIA) graphics processing unit. In the model 
training process, the Adam optimizer with categorical 
cross entropy as the loss function was used. The learning 
rate was set at 0.0001 and the maximum epochs was set at 
500. Training was stopped if the loss did not decrease for 
200 epochs in the internal-validation dataset, and the 
model with the lowest loss was selected. Considering the 
class imbalance between the positive and negative cases, we 

at a sampling rate of 500 Hz. The raw digital records were 
stored using the MUSE data management system. From 
the total study population of 17,078 patients, we identified 
those with a SR-ECG who met the criteria for the “AF 
label” and “SR label” to develop the CNN models for AF 
detection.13 Subsequently, the CNN models for AF detec-
tion were constructed using the dataset of SR-ECGs.8,13

Selecting “AF Label” SR-ECGs  Patients with SR-ECGs 
were included in the “AF label” group if they met both of 
the following criteria: (1) at least 1 AF-ECG recorded in 
the ECG database during follow-up, and (2) at least 1 SR-
ECG within 31 days before or after the first AF-ECG. A 
total of 616 patients were selected, and their corresponding 
SR-ECGs were used for the “AF label” dataset (Figure 1). 
In the case of multiple SR-ECGs with AF labels being 
available for the same patient, the SR-ECG taken on the 
nearest day to the first AF-ECG was chosen.

Selecting “SR Label” SR-ECGs  Patients with SR-ECGs 
were included in the “SR label” group if they met all of the 
following criteria: (1) no recorded AF-ECG in the ECG 
database during follow-up, (2) did not have a previous 
diagnosis of AF before the initial visit to hospital, and (3) 
an observation period ≥1,095 days. A total of 3,412 
patients were selected, and their corresponding SR-ECGs 
were used for the “SR label” dataset (Figure 1). The SR-
ECG taken at the initial visit was chosen for analysis.

Dataset Management  Given the small number of posi-
tive cases (AF) in the present study, we used the 5-fold 
cross-validation method to enable all data to be included 
in the testing dataset.16 Management of the dataset with 
this validation method is shown in Supplementary Figure 1 
and described briefly. First, the dataset was randomly 
divided into 5 groups, and then 1 of the 5 groups was set as 
the testing dataset, and the others as the training dataset in 
which 12.5% of the data were used as the internal-valida-
tion dataset. Finally, the model was run 5 times using dif-
ferent combinations of training and testing datasets. 
Accordingly, model output was obtained from 5 testing 
datasets of 5 different models, in which all data were 
included in the testing dataset.

Figure 2.  Convolutional neural network analysis.
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Outcome Measurement and Statistical Analysis
First, patient characteristics were summarized as mean ± stan-
dard deviation [SD] for continuous variables and n (%) for 
categorical variables. Differences between the 2 groups 
were tested by unpaired t-tests for continuous variables 
and chi-squared tests for categorical variables. Second, the 
performance of the CNN models was assessed using 8-lead 
(I, II, V1–6), single-lead, and double-lead (I, II; I, V1 to I, 
V6; II, V1–II, V6) ECGs. The evaluation metrics included 
AUC, sensitivity, specificity, accuracy, and F1 score. The 
model performance data are presented as the mean (SD) of 
5 model runs with 5-fold cross-validation. For AUC, 95% 
confidence intervals (CIs) were calculated considering 
5-fold cross-validation.18 Third, the distribution of patients 
in the AF label and SR label groups, categorized by 
diagnostic probability levels determined by each CNN 

weighted the loss function n times higher for the positive 
class samples compared to the negative class samples, 
where n was determined based on the ratio of the number 
of negative to positive data in the training dataset (n=6).

Receiver operating characteristics (ROC) curves were 
generated, and the AUC was used to evaluate the perfor-
mance of the CNN model in determining the presence or 
absence of AF using ECG data. By analyzing the ROC 
curve in the internal-validation dataset, we determined the 
number of repetitions (X) for the combination of the 2 
residual blocks and average pooling described above. The 
probability threshold for classifying AF was determined as 
the point on the ROC curve closest to the (0,1) point17 in 
the internal-validation dataset for each of the 5 models in 
the 5-fold cross-validation method (thresholds are pre-
sented in Supplementary Table).

Table 1. Patients’ Characteristics

Total  
(N=4,028)

AF label  
(N=616)

SR label  
(N=3,412) P value

Age, years 62.2±13.3    67±12.4 61.4±13.2 <0.001

Male, n (%) 2,529 (62.8) 404 (65.6) 2,125 (62.3)   0.123

Height, cm 162.8±9.6　　　　 162.7±10.1　　 162.8±9.5　　　　   0.346

Weight, kg 62.6±13.6 61.6±13.1 62.8±13.6   0.016

BMI, kg/m2 23.5±3.9　　 23.1±3.6　　 23.5±3.9　　   0.005

Systolic BP, mmHg 131.2±20.1　　  130±20.6 131.4±20.0　　   0.077

Diastolic BP, mmHg 76.4±12.6 73.5±13.0 76.9±12.4 <0.001

IVST, mm 9.8±2.3 10.5±2.4　　 9.7±2.2 <0.001

PWT, mm 9.0±1.6 9.5±1.7 9.0±1.5 <0.001

LVDd, mm 46.8±6.4　　 48.7±8.1　　 46.4±6.0　　 <0.001

LVDs, mm 30.1±7.4　　 32.4±9.3　　 29.7±6.9　　 <0.001

LVEF, % 65.0±11.3 62.3±13.6 65.5±10.7 <0.001

LAD, mm 36.2±6.4　　 40.0±7.2　　 35.5±6.0　　 <0.001

Congestive HF, n (%) (HF admission within 90 days)  119 (3.0) 50 (8.1)    69 (2.0) <0.001

HF with reduced EF, n (%)  346 (8.6)   89 (14.4)  257 (7.5) <0.001

Ischemic heart disease, n (%) (PCI within 90 days)    888 (22.0)   85 (13.8)    803 (23.5) <0.001

Asymptomatic ischemia, n (%)  164 (4.1) 24 (3.9)  140 (4.1)   0.911

Old myocardial infarction, n (%)  187 (4.6) 26 (4.2)  161 (4.7)   0.677

Acute coronary syndrome, n (%)  308 (7.6) 43 (7.0)  265 (7.8)   0.564

Aortic stenosis, n (%)  232 (5.8)   87 (14.1)  145 (4.2) <0.001

Aortic regurgitation, n (%)  153 (3.8) 45 (7.3)  108 (3.2) <0.001

Mitral regurgitation, n (%)  183 (4.5)   76 (12.3)  107 (3.1) <0.001

Mitral stenosis, n (%)    21 (0.5) 12 (1.9)      9 (0.3) <0.001

Tricuspid regurgitation, n (%)    58 (1.4) 18 (2.9)    40 (1.2)   0.002

Hypertrophic cardiomyopathy, n (%)    54 (1.3) 11 (1.8)    43 (1.3)   0.338

Dilated cardiomyopathy, n (%)    36 (0.9)   6 (1.0)    30 (0.9)   0.815

Dilated hypertrophic cardiomyopathy, n (%)      6 (0.1)   2 (0.3)      4 (0.1)   0.230

Hypertensive cardiomyopathy, n (%)  326 (8.1)   84 (13.6)  242 (7.1) <0.001

Ischemic cardiomyopathy, n (%)    99 (2.5) 30 (4.9)    69 (2.0) <0.001

Aortic aneurysm, n (%)  106 (2.6) 26 (4.2)    80 (2.3)   0.012

Aortic dissection, n (%)    74 (1.8) 33 (5.4)    41 (1.2) <0.001

Hypertension, n (%) 2,396 (59.5) 420 (68.2) 1,976 (57.9) <0.001

Diabetes, n (%)    740 (18.4) 150 (24.4)    590 (17.3) <0.001

Smoking history, n (%) 1,791 (44.5) 280 (45.5) 1,511 (44.3)   0.597

Chronic kidney disease, n (%)    905 (22.5) 241 (39.1)    664 (19.5) <0.001

Data are presented as the mean±standard deviation unless otherwise stated. AF, atrial fibrillation; BMI, body mass index; BP, blood pressure; 
HF, heart failure; IVST, intraventricular septum thickness; LAD, left atrial diameter; LVDd, left ventricular end-diastolic diameter; LVDs, left 
ventricular end-systolic diameter; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; PWT, posterior left ventricu-
lar wall thickness; SR, sinus rhythm.
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Evaluation of the Utility of the CNN Models to Detect AF
Basic Performance of the CNN Models  The basic perfor-

mance of the CNN models for detecting AF using 8-lead, 
single-lead, and double-lead ECGs is summarized in 
Table 2 (detailed information of the 5-model runs is shown 
in Supplementary Table). The AUC (95% CI) for the 8-lead 
ECG was 0.872 (0.856–0.888). The AUCs (95% CI) for 
single-lead ECGs were generally lower than that for the 
8-lead ECG, but relatively higher for single-lead V1 (0.843 
[0.826–0.860]) and V6 (0.845 [0.827–0.862]). The AUCs 
(95% CI) for double-lead ECGs were generally higher than 
for the single-lead ECGs, especially in combinations using 
lead I, and were highest for double-lead I, V1 (0.871 
[0.856–0.886]).

Distribution of Patients According to the CNN Model Outputs   
The distribution of patients in the CNN model outputs 
using the 8-lead ECG is shown in Figure 3. The proportion 
of patients in the AF-label group sharply increased with a 
high probability (model output >0.9), while the proportion 
of patients in the SR-label group sharply increased with a 
lower probability (model output <0.1).

The distribution of patients according to the CNN model 
outputs using single-lead and double-lead ECGs is shown 
in Supplementary Figure 3 and Supplementary Figure 4. In 
the models with single-lead ECGs, a sharp increase in the 
AF-label and SR-label patients in high and low probabili-
ties, respectively, of the model output was observed in 
single-lead V1 and the double-leads I and II, which was 
similar to what was observed in the 8-lead ECG. Among the 
models with double-lead ECGs, a similar sharp increase was 

model, was described using the entire dataset. Fourth, 
odds ratios were calculated based on the CNN model’s 
diagnoses using 8-lead, single-lead, and double-lead ECGs. 
This calculation involved the ratio of true/false positives 
divided by the ratio of false/true negatives, utilizing the 
entire dataset. Fifth, the gradient-weighted class activation 
mapping (GradCAM) method was used for the multi-
input models.19

The statistical analyses were performed using R version 
4.0.3 (The R Foundation, Vienna, Austria) and SPSS ver-
sion 28.0 (IBM Corp., Armonk, NY, USA).

Results
Patients’ Characteristics
The patients’ characteristics are presented in Table 1. The 
total dataset (n=4,028) included 616 AF-label and 3,412 
SR-label patients. Among these, 404 (65.6%) and 2,125 
(62.3%) were male in the AF-label and SR-label groups, 
respectively. The mean age was 67.0±12.4 years in the AF-
label group and 61.4±13.2 years in the SR-label group 
(P<0.001). The mean left ventricular ejection fraction was 
62.3±13.6% in the AF-label group and 65.5±10.7% in the 
SR-label group (P<0.001), and the respective mean left 
atrial diameters were 40.0±7.2 mm and 35.5±6.0 mm 
(P<0.001). The prevalence of congestive heart failure was 
8.1% in the AF-label group and 2.0% in the SR-label group 
(P<0.001), and the respective prevalence of mitral regurgi-
tation was 12.3% and 3.1% (P<0.001).

Table 2. Performance of the Convolutional Neural Network Model for Detecting Atrial Fibrillation on 8-Lead, 
Single-Lead, and Double-Lead Electrocardiograms

Model pattern / Leads AUC (95% CI) Sensitivity Specificity F1 score Accuracy

All leads (8 leads) 0.872 (0.856–0.888) 0.760 0.828 0.565 0.818

Single lead

  I 0.801 (0.781–0.820) 0.703 0.739 0.447 0.733

  II 0.806 (0.787–0.825) 0.692 0.754 0.454 0.744

  V1 0.843 (0.826–0.860) 0.736 0.792 0.512 0.783

  V2 0.815 (0.795–0.835) 0.721 0.772 0.488 0.764

  V3 0.805 (0.785–0.825) 0.703 0.757 0.461 0.749

  V4 0.757 (0.734–0.779) 0.674 0.724 0.420 0.716

  V5 0.808 (0.788–0.827) 0.732 0.739 0.463 0.738

  V6 0.845 (0.827–0.862) 0.792 0.743 0.493 0.750

Double leads

  I, II 0.862 (0.845–0.879) 0.778 0.806 0.545 0.801

  I, V1 0.871 (0.856–0.886) 0.782 0.800 0.543 0.797

  I, V2 0.863 (0.846–0.879) 0.782 0.790 0.533 0.789

  I, V3 0.863 (0.847–0.880) 0.784 0.797 0.542 0.795

  I, V4 0.862 (0.846–0.879) 0.787 0.793 0.539 0.792

  I, V5 0.864 (0.848–0.880) 0.787 0.783 0.528 0.784

  I, V6 0.865 (0.849–0.881) 0.797 0.792 0.544 0.793

  II, V1 0.851 (0.834–0.868) 0.750 0.790 0.519 0.784

  II, V2 0.860 (0.843–0.877) 0.769 0.789 0.523 0.786

  II, V3 0.830 (0.811–0.849) 0.726 0.800 0.513 0.788

  II, V4 0.824 (0.805–0.843) 0.703 0.802 0.501 0.786

  II, V5 0.848 (0.830–0.865) 0.778 0.782 0.521 0.782

  II, V6 0.857 (0.841–0.873) 0.768 0.794 0.532 0.790

For each AUC, 95% CIs are calculated, taking into account the 5-fold cross-validation. AUC, area under the curve; 
CI, confidence interval; SD, standard deviation.
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observed in the model using double-lead ECGs, especially 
when using the combination with lead I. The odds ratio 
(95% CI) was 14.46 (11.75–17.81) for double-lead of I, II; 
14.34 (11.64–17.67) for double-lead of I, V1; and 14.97 
(12.10–18.53) for double-lead of I, V6, which were compa-
rable to the 8-lead ECG (Figure 4).

GradCAM for the Diagnosis of AF in the CNN Models  The 

particularly observed when using lead I in the combination.
Odds Ratios Based on the Diagnosis of the CNN Models   

The odds ratio (95% CI) for the AF label, based on the 
diagnosis of the CNN model using the 8-lead ECG, was 
15.24 (12.42–18.72) (Figure 4). Lower odds ratios were 
observed for the AF label in the CNN models using single-
lead ECGs, whereas relatively higher odds ratios were 

Figure 3.  Proportion of patients according to the model output in CNN-derived model using the 8-lead ECG. The vertical scale 
indicates the proportion of patients in the SR-label group (blue) and those in the AF-label group (orange). The horizontal scale 
indicates the diagnostic probability for AF yielded by the CNN model. AF, atrial fibrillation; CNN, convolutional neural network; 
ECG, electrocardiogram; SR, sinus rhythm.

Figure 4.  Odds ratios for detecting 
atrial fibrillation with the CNN models 
using the 8-lead, single-lead, and 
double-lead ECG. CNN, convolutional 
neural network.
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to report lead-specific predictive ability of a CNN model 
for predicting AF using the SR-ECG.

In our CNN models, among the single-lead ECGs, the 
AUC was relatively high in leads V1 and V6, with AUCs 
of 0.843 and 0.845, respectively. Among the double-lead 
ECGs, the model’s performance was highest when using 
leads I and V1, achieving an AUC of 0.871 and an odds 
ratio of 14.34, followed by double-leads I and V6, with an 
AUC of 0.865 and an odds ratio of 14.97. It is widely 
acknowledged that structural changes in the atria are 
prominently detected in leads II and V1. Consequently, it 
is assumed that the CNN models placed strong emphasis 
on the P wave in leads II and V1, which was supported by 
the finding of the GradCAM analysis. Moreover, the 
GradCAM analysis indicated that the CNN models placed 
strong emphasis on the QRS and ST-T segments in lead 
V6, consistent with our previous findings in s machine-
learning model analysis.23

However, it was an unexpected result that the model’s 
performance, in terms of both AUCs and odds ratios, was 
generally higher when using lead I than lead II in the dou-
ble-lead ECGs. There are 2 reports that the amplitude of 
the P wave in lead I, rather than in lead II, is associated 
with progression of electrical remodeling in the left 
atrium.24,25 Park et al reported a significant correlation 
between the mean left atrial voltage measured before pul-
monary vein isolation and the P wave amplitude in lead I 
(β=2.510, P=0.010), but not with that in lead II (β=0.714, 
P=0.250).24 Moreover, Schreiber et al reported that left 
atrial low voltage areas (as a percentage of the total left 
atrial area) were more associated with P-wave amplitude 
in lead I (R=−0.578, P<0.001) than in lead II (R=−0.450, 
P<0.001).25

Clinical Implications of the CNN Model and Future 
Perspective
Wearable devices, such as an Apple Watch, could poten-
tially aid in detecting AF, but not everyone is using such 
devices. Moreover, they are not yet capable of providing 
continuous monitoring specifically for AF. Therefore, 
diagnosing early-phase AF still relies on long-term ECG 
monitoring. Determining which individuals are at high risk 
for AF and should undergo such examination remains a 
significant challenge.

The core concept of “AI-ECG on SR-ECG” arises from 
the question: “Who is at high risk for AF and should 
undergo long-term ECG monitoring?” The CNN models 
using SR-ECG, taking into account previous findings8–10,13 
and those from the present study, could identify individu-
als at high risk of AF. It is noteworthy that the best perfor-
mance for such screening was achieved with the all-lead 
ECG, available only in the clinical setting. Alternatively, 
fewer-lead ECGs could provide screening at home using a 
portable device. Additionally, in the hospital setting, a 
fewer-lead ECG is easier to record and can be particularly 
useful for patients who have difficulty undressing or mov-
ing to a bed. Given its ease of recording, it also could be 
valuable for mass screening or repeated checks.

Of note, our model demonstrated that the AUC for the 
double-lead ECG (I, V1) was comparable to that for the 
8-lead ECG. The ECG with lead I is easy to record, albeit 
somewhat inconvenient. Strictly speaking, the V1 lead is 
not considered a “single lead” because it requires Wilson’s 
central terminal (determined by 3 potentials) as a reference 
potential. For clinical use with this double-lead ECG, 

GradCAM images corresponding to the 8-lead, single-lead 
and double-lead ECGs are displayed in Supplementary 
Figure 5, depicting the specific areas of focus identified by 
the CNN models in a patient with true positive results for 
the AF label. As shown in Supplementary Figure 5A, the 
GradCAM on the 8-lead ECG revealed that the CNN 
model placed strong emphasis on various segments in the 
I and II leads, as well as the P wave in the V1 lead, and the 
QRS and ST-T segments in the V6 lead. On the other hand, 
for both the single-lead and double-lead ECGs, the CNN 
models primarily focused on the P wave, with some atten-
tion given to the QRS and ST-T segments (Supplementary 
Figure 5B,C).

Discussion
Major Findings
We developed a CNN-derived algorithm using digital 
ECG to predict AF and there were 2 major findings for the 
performance of the model. (1) The AUC with the 8-lead 
ECG was 0.872 (95% CI: 0.856–0.888) and the odds ratio 
was 15.24 (95% CI: 12.42–18.72). (2) Among the single- 
and double-lead ECGs, the model performance was high-
est when using the double-leads of I and V1, with an AUC 
of 0.871 (95% CI: 0.856–0.886) and an odds ratio of 14.34 
(95% CI: 11.64–17.67).

Comparison With Previous Studies
Using AI-enabled ECG to predict AF using the 12-lead 
SR-ECG has already been reported by other study 
groups,8–10,20 which found a high predictive ability for AF 
using the AUC: 0.90 in the study by Attia et al,11 and 0.87 
in the studies by Raghunath et al9 and Gruwez et al.10 It is 
quite surprising that the SR-ECG can predict AF with such 
high predictive capability. In our previous study, in which 
we excluded patients with structural heart diseases, we 
obtained an AUC of 0.86,13 and in the present study with-
out any exclusion criteria, we obtained an AUC of 0.872.

Although our model predicted AF using the SR-ECG, 
it showed relatively high sensitivity (0.760) and specificity 
(0.828). Moreover, the positive predictive ratio was 0.436 
(= 468 / [468 + 586] in Figure 4), resulting in an F1 score of 
0.565. Of course, the SR-ECG cannot provide an absolute 
diagnosis of AF. However, the diagnostic values of the 
CNN model would be satisfactory for determining possible 
candidates for further screening with long-term ambula-
tory ECG recordings.

Model Performance According to Differences in Lead 
Application
The models for predicting AF using the SR-ECG have 
been based on the hypothesis that the AF signature, result-
ing from structural changes in the atria, can be identified 
by 12-lead ECG during SR,8,21 because structural changes 
in the atria predispose to atrial arrhythmia.22 Furthermore, 
in our previous study that utilized hundreds of ECG 
parameters analyzed with a random forest algorithm, the 
importance of the ECG parameters in predicting AF was 
similar in the P wave, QRS complex, and ST-T segment.23 
This suggests that structural changes in the ventricle, likely 
due to aging or atherosclerosis, may be also of importance, 
which gives rise to another hypothesis that the predictive 
ability of the CNN model may differ according to each 
single-lead ECG; however, no reports have addressed this 
issue. To the best of our knowledge, our study is the first 
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adopting a specific lead that mimics V1 lead may be neces-
sary, necessitating further studies.

Study Limitations
There are several to highlight. First, our CNN-derived model 
was constructed using only data from a single cardiovas-
cular center in Japan. Given that the CNN models may 
detect subtle ECG morphologic changes to identify AF, 
the model may not be generalizable to other populations. 
Second, although we used data from 19,170 patients, the 
number of cases with AF (n=616) was relatively small, 
which may limit generalizability. Third, although we 
restricted SR-ECG recordings with the SR label to patients 
followed up for ≥1,095 days, there remains a possibility of 
undetected AF in patients with the SR label. Fourth, our 
AI-enabled ECG model should be validated against exter-
nal datasets to confirm the generalizability. Finally, we 
could not completely understand how the model makes 
predictions.

Conclusions
We evaluated the performance of a CNN models for 
detecting AF using 8-lead, single-lead, and double-lead 
SR-ECGs. The performance of the model with a double-
lead (I, V1) ECG was comparable to that of the 8-lead 
ECG, suggesting that an ECG with fewer leads can serve 
as an alternative for AF screening using SR-ECG.
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