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Abstract 

BACKGROUND: Dementia is highly heterogeneous, with pronounced individual differences in 

neuropsychiatric symptoms (NPS) and neuroimaging findings. Understanding the heterogeneity of NPS 

and associated brain abnormalities is essential for effective management and treatment of dementia.  

METHODS: Using large-scale neuroimaging data from the Open Access Series of Imaging Studies 

(OASIS-3), we conducted a multivariate sparse canonical correlation analysis to identify functional 

connectivity-informed symptom dimensions. Subsequently, we performed a clustering analysis on the 

obtained latent connectivity profiles to reveal neurophysiological subtypes and examined differences in 

abnormal connectivity and phenotypic profiles between subtypes. 

RESULTS: We identified two reliable neuropsychiatric subsyndromes – behavioral and anxiety in the 

connectivity-NPS linked latent space. The behavioral subsyndrome was characterized by the connections 

predominantly involving the default mode and somatomotor networks and neuropsychiatric symptoms 

involving nighttime behavior disturbance, agitation, and apathy. The anxiety subsyndrome was mainly 

contributed by connections involving the visual network and the anxiety neuropsychiatric symptom. By 

clustering individuals along these two subsyndromes-linked connectivity latent features, we uncovered 

three subtypes encompassing both dementia patients and healthy controls. Dementia in one subtype 

exhibited similar brain connectivity and cognitive-behavior patterns to healthy individuals. However, 

dementia in the other two subtypes showed different dysfunctional connectivity profiles involving the 

default mode, frontoparietal control, somatomotor, and ventral attention networks, compared to healthy 

individuals. These dysfunctional connectivity patterns were associated with differences in baseline 

dementia severity and longitudinal progression of cognitive impairment and behavioral dysfunction.  

CONCLUSIONS: Our findings shed valuable insights into disentangling the neuropsychiatric and brain 

functional heterogeneity of dementia, offering a promising avenue to improve clinical management and 

facilitate the development of timely and targeted interventions for dementia patients.   
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Introduction 

Dementia is highly heterogenous, as reflected by variability in genetic risk factors, 

neuropsychiatric symptoms (NPS), neuroimaging, comorbidities and copathology (1, 2). Conventional 

analyses of dementia using neuroimaging and psychological behavior have focused on characterizing 

case-control group differences, assuming homogeneity among dementia patients (3-5). However, this 

approach neglects the inherent heterogeneity of dementia NPS and brain abnormalities, limiting our 

understanding of the underlying mechanisms of dementia.  

To untangle the heterogeneity of NPS of dementia, some studies focus on analyzing NPS 

subsyndromes, as it has been proposed that some NPS can be clustered into several neuropsychiatric 

subsyndromes (6). These subsyndromes often co-occur and show a similar clustering pattern of NPS, and 

provide insights into the pathophysiology of various cognitive impairments seen in different types of 

dementia (7) and the effectiveness of some dementia drug treatments (8). For instance, neuroleptic 

interventions have been shown to alleviate symptoms in some neuropsychiatric subsyndromes rather than 

specific NPS, e.g. delusions from other behavioral manifestations (9, 10). However, the traditional 

subsyndrome analytic framework, which used matrix decomposition of NPS score to obtain the 

subsyndromes (7, 11, 12) and then compared their differences across various dementia categories (4, 13), 

has two major limitations. Firstly, the purely unsupervised matrix decomposition of NPS fails to provide a 

clear neurobiological basis for the subsyndromes and shows a clear link to corresponding heterogeneous 

brain abnormalities. Secondly, typical dementia diagnostic categories derived from molecular phenotypes 

(14) may not adequately reflect the heterogeneity of NPS and alight well with underlying neurobiology 

observed in dementia patients (4).  

In recent years, researchers have employed data-driven multivariate methods to establish 

connections between neuroimaging features and psychological assessments for disentangling the shared 

heterogeneity across these two modalities (15-18). Two studies have utilized sparse canonical correlation 

analysis (sCCA) or partial least square analysis to uncover latent subsyndromes by linking phenotypes 
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with functional connectivity (FC), which quantifies synchronization in resting-state functional resonance 

magnetic imaging (fMRI) signals among different brain regions (15, 16). Using a similar method to 

derive subsyndromes for depression or autism, two additional studies further defined subtypes to parse the 

neurobiological heterogeneity present within these conditions (17, 18). However, the lack of cross-

validation limits the robustness and generalizability of the identified subsyndromes. More critically, no 

study has successfully derived FC-informed neuropsychiatric subsyndromes or identified potential 

subtypes by utilizing latent connectivity-NPS linked features, thus limiting our understanding of the 

heterogeneity within dementia.  

In this study, we sought to employ sCCA (19) to identify cross-validated FC-informed symptom 

dimensions (subsyndromes) across dementia and healthy individuals exhibiting at least one 

neuropsychiatric symptom. Furthermore, we aimed to reveal stable subtypes for those subjects based on 

the identified subsyndromes. By accomplishing these goals, we expect to enhance our comprehension of 

the relationship between functional connectivity and NPS, as well as to elucidate the heterogeneity 

observed in dementia. Specifically, utilizing the Open Access Series of Imaging Studies (OASIS-3) 

dataset, we linked FC and NPS in the latent space using sCCA. This analysis resulted in the identification 

of two distinct neuropsychiatric subsyndromes: the behavioral subsyndrome and the anxiety 

subsyndrome. The behavioral subsyndrome was characterized by prominent connections involving the 

default mode network (DMN) and somatomotor network (SMN), and the neuropsychiatric symptoms in 

nighttime behavior disturbance, agitation, and apathy. On the other hand, the anxiety subsyndrome was 

characterized by connections involving the visual network (VIS) and the presence of anxiety symptom. 

Statistical analyses further confirmed associations between these two subsyndromes and other phenotypic 

characteristics, including functional disability. Furthermore, by employing K-means clustering, we 

identified three distinct and stable subtypes based on FC features linked to the subsyndromes. To gain 

deeper insight into the psychological underpinnings of dementias of these subtypes, we compared NPS, 

FCs, and the severity of cognitive-behavioral dysfunction at baseline across dementias of the three 
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subtypes. Additionally, we explored the long-term progression of cognitive-behavioral dysfunction within 

these subtypes. The proposed analytical framework for this study is illustrated in Figure 1. 

 

Figure 1. Framework of our study. A The BOLD signals extracted from the preprocessed fMRI, were grouped 
into 100 regions of interests (ROIs) defined by the Schaefer parcellation. FCs were obtained by calculating the 
Pearson correlation between pairwise ROI time signals. B PCA was applied to decompose the NPS into low-
dimensional orthogonal latent space. sCCA was then employed to maximize the correlation between FCs and 
principal components of NPS profile. C Subtype identification was achieved through Kmeans clustering along the 
NPS subsyndrome-linked FC latent features. 

 

METHODS 

Participants 
In this study, we utilized the longitudinal data collected from the Open Access Series of Imaging 

Studies (OASIS-3) database, which enrolled participants at Washington University in St. Louis over a 

period of 15 years (20). The dataset comprised resting-state fMRI scans and clinical assessments as well 

as neuropsychological measures from 1098 participants aged between 42 to 95. Exclusion criteria 

included medical conditions that precluded longitudinal participation (e.g. end-stage renal disease 
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requiring dialysis) or medical contraindications for the study arms (e.g. pacemaker for MRI, anticoagulant 

use for lumbar puncture).  

Neuropsychiatric Inventory 
The Neuropsychiatric Inventory (21) is a commonly used measure for evaluating 

neuropsychiatric related behavioral and psychological symptoms. It consists of twelve domains: 

delusions, hallucinations, agitation, depression, anxiety, euphoria, apathy, disinhibition, irritability, 

aberrant motor behavior, nighttime behavior disturbance, and appetite abnormality. The neuropsychiatric 

inventory assesses symptoms in four levels: 0 (no symptom), 1 (mild but not significant change), 2 

(significant but not dramatic change), 3 (dramatic change). 

Other clinical and psychological assessments 
To assess functional impairment, we utilized multiple measures Clinical Dementia Rating Scale 

(CDR), Mini-Mental State Examination (MMSE), and Functional Activities Questionnaire (FAQ). The 

CDR evaluates cognitive impairment in six domains including memory, orientation, judgment and 

problem solving, community affair, home and hobbies and personal care, and provides a global CDR 

score and the sum of boxes (SOB) (22). The CDR range from 0–3: no dementia (CDR = 0), questionable 

dementia (CDR = 0.5), MCI (CDR = 1), moderate cognitive impairment (CDR = 2), and severe cognitive 

impairment (CDR = 3). The MMSE is also designed for the evaluation of cognitive impairment (23), but 

only the total score was accessible. Smaller MMSE denotes more severe cognitive dysfunction. The 

functional ability is evaluated by FAQ (24) in 10 daily activities: 1) writing checks, paying bills, and 

keeping financial records; 2) assembling tax records and making out business and insurance papers; 3) 

shopping alone for clothes, household necessities, and groceries; 4) playing a game of skill such as 

bridge, other card game, or chess; 5) heating water for coffee or tea and turning off the stove; 6) preparing 

a balanced meal; 7) keeping track of current events; 8) paying attention to and understanding a TV 

program, book, or magazine; 9) remembering appointments, family occasions, and medications; and 10) 

travel out of the neighborhood. Moreover, the neuropsychological assessment battery (NAB) (25) was 

applied in assessing neuropsychiatric disturbances and cognitive and behavioral dysfunction. For the 
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NAB, ten neuropsychological tests measure attention/working and episodic memory, executive function, 

and language, including the Digit Span Forward and Backward test, Logical Memory, and Digit Symbol 

Coding in Wechsler Memory Scale (WAIS-R) (26), Category fluency of animal and vegetable (FLU-

ANI/ FLU-VEG) (27), Trail Making Test Part A and B (28), and Boston Naming Test (29).  

Image acquisition and preprocessing 
Neuroimaging data in OASIS-3 was scanned in 3 different Siemens scanners (Siemens Vision 1.5 

T, 2 scanners of TIM Trio 3T) and Siemens BioGraph mMR PET-MR 3T. High resolution T1-weighted 

structural image (TR = 2.4 s, TE = 3.08 ms, FOV = 256 × 256 mm, FA = 8°, voxel size 1 × 1 × 1 mm3) 

and resting-state functional image (EPI; TR = 2.2 s, TE = 27 ms, FOV = 240 × 240 mm, FA = 90°, 

duration = 6 min, voxel size 4 × 4 × 4 mm, 36 slices) were used. This study focused on the analysis of 

participants who had both fMRI and at least one neuropsychiatric symptom at baseline. As a result, a total 

of 177 subjects were utilized. 

The acquired rs-fMRI data were preprocessed using the reproducible fMRIPrep pipeline (30). 

The T1 weighted image was corrected for intensity nonuniformity and then skull stripped. Spatial 

normalization was done through nonlinear registration, with the T1w reference (31). Using FSL, brain 

tissue such as cerebrospinal fluid, white matter, and grey matter was segmented from the reference, brain-

extracted T1 weighted image (32). The fieldmap information was used to correct distortion in low-

frequency and high-frequency components of fieldmap caused by field inhomogeneity. With less 

fieldmap distortion, a corrected echo-planar imaging reference was obtained from a more accurate co-

registration with the anatomical reference. The blood oxygenation level dependent (BOLD) reference was 

then transformed to the T1-weighted image with a boundary-based registration method, configured with 

nine degrees of freedom to account for distortion remaining in the BOLD reference (33). Head-motion 

parameters (rotation and translation parameters of volume-to-reference transform matrices) were 

estimated with MCFLIRT (FSL). BOLD signals were slice-time corrected and resampled onto the 

participant’s original space with head-motion parameters, susceptibility distortion correction, and 
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then resampled into standard space (MNI152NLin2009cAsym space), generating a preprocessed BOLD 

signal. Automatic removal of motion artifacts using independent component analysis (ICA-AROMA) 

(34) was performed on the preprocessed BOLD time-series in MNI space after removal of non-steady-

state volumes and spatial smoothing with an isotropic Gaussian kernel of 6 mm FWHM (full-width half-

maximum).  

Calculation of resting-state functional connectivity 
The voxel time series were averaged into time series of 100 regions of interest (ROIs) defined by 

the Schaefer parcellation (35). Pearson correlation was then computed between time series of each pair of 

ROIs, resulting in 4950 FCs for each participant. Fisher’s r-to-z transformation was applied to enhance 

normality of connectivity, followed by z-score normalization. 

Connectivity-NPS linked dimension analysis 
We sought to identify latent dimensions linking functional connectivity and NPS in a data-driven 

manner. The analysis details are described below. 

Dimensionality reduction  
Significant correlations among NPS symptoms were observed in previous study (1) as well as in 

our study (Figure S1). The presence of collinearity among NPS symptoms may result in ill-conditioning 

for the subsequent canonical correlation analysis step (36). To address this issue, we employed principal 

component analysis (PCA) to decompose high-dimensional collinear features into orthonormal bases. 

Seven orthogonal principal components extracted from twelve NPS domains (Figure S2A, >80% variance 

explained) were used for further sparse canonical correlation analysis.  

Sparse canonical correlation analysis 
We employed sparse canonical correlation analysis (sCCA) to identify canonical variates that 

exhibited maximum correlation between the projected principal components of NPS and FC across both 

healthy controls and patients. As a multivariate statistical approach, sCCA identifies linear 

transformations that result in maximal correlation between matched canonical variates while alleviating 

the overfitting issues through sparse constraints, achieved by L1 regularization (37). Model performance 
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was assessed by calculating the average correlation of pairwise canonical variates in ten-fold cross 

validation. To determine the optimal hyperparameters for L1 regularization and the number of principal 

components, we conducted a grid search within the inner loop of ten-fold cross-validation, aiming to 

maximize the average correlation of available canonical variates. As indicated in Figure S2B, the highest 

average correlation was obtained when using seven principal components and an L1 regularization 

penalty of 0.6. For subsequent analyses, we focused on the first and second canonical variates since they 

accounted for nearly 80% covariance between FC and NPS (Figure S2C). Importantly, our cross-

validation showed that only these two canonical FC variates exhibited significant correlation with their 

corresponding canonical NPS variates and survived the permutation test with the false discovery rate 

(FDR) correction of cross-validated correlation coefficients of all decomposed canonical variates (Figures 

2A, 3A, Table S1).    

Clustering-based identification of neurophysiological subtypes 
Using the neuropsychiatric subsyndrome-linked latent FC features, we employed the K-means 

clustering approach to identifying distinct neurophysiological subtypes in dementia. Considering the 

importance of incorporating healthy controls alongside dementia patients to capture the heterogeneity of 

dementias, we included both groups in the clustering analysis, drawing inspiration from the concept of 

normative modeling, which utilizes the healthy group as a reference (38). To evaluate the clustering 

performance, we calculated Calinski Harabasz and silhouette metrics by conducting 1000 trials of 

randomly subsampling 90% of the subjects (39, 40). Both metrics serve as internal cluster validation 

indices, with higher values indicating better clustering. The Calinski Harabasz metric quantifies the ratio 

of between-cluster variance to within-cluster variance, while the silhouette metric calculates the ratio of 

difference between the intra-cluster distance and nearest-cluster distance to difference between the 

maximum of the intra-cluster distance and nearest-cluster distance. Additionally, we assessed the stability 

of cluster assignments by testing whether pairs of subjects were consistently assigned to the same cluster 

across 1000 random subsamplings. To confirm the robustness of our subtype findings in relation to the 
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selection of clustering approach, we performed the same subtyping analysis using hierarchical clustering 

(Ward’s method) and compared the results with those obtained using K-means clustering.  

Post-hoc analyses 
Having identified neuropsychiatric subsyndromes, we further examined their associations with 

original FCs and NPS, respectively. We calculated the Pearson correlation coefficient to assess the 

relationship between the FC and subsyndrome-linked FC latent features. Since neuropsychiatric 

symptoms were ordinal variables, we calculated the Spearman correlation coefficient to evaluate the 

association between NPS and subsyndrome-linked FC latent features. Additionally, we examined the 

associations between other continuous phenotypic characteristics (such as age and MMSE) and 

subsyndromes-linked FC latent features using Pearson correlation. For discrete phenotypic characteristics, 

such as gender and presence of functional behavioral disability, we used analysis of variance to evaluate 

the associations with subsyndrome-linked FC latent features.  

To investigate neural circuit abnormalities within each subtype, we conducted a comparative 

analysis of FC between dementia patients in each subtype and healthy controls using the Wilcoxon 

signed-rank test. To account for multiple comparisons, we applied FDR to correct the p-values of the 

detected FC differences for each subtype. Additionally, we utilized the Chi-square test to identify 

associations between categorical phenotypes and dementia patients in each subtype. For ordinal 

phenotypes, we employed the Kruskal-Wallis analysis of variance to detect differences across dementia 

patients in each subtype. In cases where significant phenotypic differences were observed across all 

subtypes, we used Dunn’s test to further examine the pairwise relationships. We corrected the 

significance of Dunn’s test results for each assessment using FDR. To validate the longitudinal cognitive 

abnormal progression of dementia within each subtype, we employed linear mixed-effect models. These 

models included the characteristic assessment score at each study visit as the dependent variable, while 

dementia subtype label, time state, and the interaction of subtype label and time as independent variables. 

We applied FDR correction to the p-values of interaction effects in all phenotypic items.  
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RESULTS 

Behavioral subsyndrome and linked functional connectivity pattern 
The first latent component showed a significant correlation between FC and NPS latent features (r 

= 0.22, p = 0.002 and ppermute = 0.007) (Figure 2A), as confirmed through 10-fold cross-validation. 

Following the finding in a previous study (41), we named the first latent component behavioral 

subsyndrome based on its significantly negative correlation with the NPS scores in domains of nighttime 

behavior disturbance, agitation, and apathy (Figure 2B). To explore its neurobiology, we calculated 

Pearson correlation between each FC and the behavioral subsyndrome-linked FC latent features. The most 

significantly correlated FCs were visualized in Figure 2C, while all significant correlations surviving the 

FDR correction were shown in Figure S3A and grouped according to Yeo’s 7 networks (42) (Figure 2D). 

The behavioral subsyndrome-linked FCs were characterized by connectivity within SMN and DMN, as 

well as between-network connectivity involving FPC, SMN, DAN, and DMN. Additionally, we observed 

that the FC latent features exhibited significantly positive correlations with total scores of MMSE and 

FLU-VEG while showing negative correlation with CDR-SOB (Table S4). Futhermore, a more severe 

behavioral subsyndrome was associated with lower scores in CDR domains of memory, home & hobbies, 

judgment & problem solving, orientation, and community affairs and increased disability in paying 

attention evaluated by FAQ (Table S3, Figures S4 and S5), indicating that greater behavioral 

subsyndrome severity was linked to better cognitive performance.  
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Figure 2. Behavioral subsyndrome profile and linked FC pattern. A Correlation between FC and NPS latent 
features, evaluated by 10-fold cross-validation (r = 0.22, p = 0.002 and ppermute = 0.007). B Correlation coefficients 
between the behavioral subsyndrome-linked FC latent features and NPS. The statistical significance of correlation is 
denoted by *(p ≤ 0.05), **(p ≤ 0.01), ***(p ≤ 0.001), and ****(p ≤ 0.0001).  C Top 50 (absolute) strongest 
correlations (FDR correction) between the behavioral subsyndrome-linked FC latent features and FC features. The 
FCs are depicted in red or blue based on their positive or negative correlation, respectively. Node size indicated the 
node strength calculated from the summed FC strength of each ROI. D All significant (pfdr < 0.05) correlation 
coefficients between the behavioral subsyndrome-linked FC latent features and FC features were grouped into Yeo’s 
7 networks, including visual network (VIS), somatomotor network (SMN), dorsal attention network (DAN), ventral 
attention network (VAN), limbic network (LIM), frontoparietal control network (FPC), default mode network 
(DMN). 

 
Anxiety subsyndrome and linked functional connectivity pattern 

A significant correlation was also observed for the second latent component between FC and NPS 

latent features (Figure 3A, r = 0.19, p = 0.01 and ppermute = 0.006). This latent component was designated 

as the anxiety subsyndrome, as it showed the highest positive correlation with the NPS anxiety score 

(Figure 3B). The FCs that exhibited dominant and significant correlations with the anxiety subsyndrome-

linked FC latent features are depicted in Figure 3C (all significantly correlated FCs surviving FDR 
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correction are visualized in Figure S3B). The FC showing the strongest positive correlation with the 

anxiety subsyndrome was between the right middle frontal cortex (DMN) and supramarginal gyrus (VIS), 

while the FC between the left superior temporal cortex (SMN) and middle occipital cortex (VIS) 

exhibited the strongest negative correlation with the anxiety subsyndrome. When grouping the 

correlations into seven networks,it was observed that the anxiety subsyndrome primarily correlated with 

connections within the VIS and between-network connections involving VIS, SMN and DMN (Figure 

3D). Moreover, the anxiety subsyndrome score exhibited a significant positive correlation with the CDR-

SOB score, FAQ paying attention score and negative correlation with the MMSE, FLU-VEG, FLU-ANI, 

and WAIS-R scores (Tables S3 and S4, Figure S5). A larger anxiety subsyndrome was associated with 

increased scores across five domains of the CDR, including memory, home & hobbies, judgment & 

problem solving, orientation, and community affairs (Table S3, Figure S4), indicating that a more 

pronounced anxiety subsyndrome was associated with a more severe cognitive deficit. Notably, males 

exhibited significantly larger anxiety subsyndrome scores compared to females (Table S2).  
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Figure 3. Anxiety subsyndrome profile and linked FC pattern. A Correlation between FC and NPS latent 
features, evaluated by 10-fold cross validation (r = 0.194, p = 0.010 and ppermute = 0.006). B Correlation coefficients 
between the anxiety subsyndrome-linked FC latent features and NPS symptoms. The statistical significance of 
correlation is denoted by *(p ≤ 0.05), **(p ≤ 0.01), ***(p ≤ 0.001), and ****(p ≤ 0.0001). C Top 50 (absolute) 
strongest correlations (FDR correction) between the anxiety subsyndrome-linked FC latent features and FC features. 
The FCs are depicted in red or blue based on their positive or negative correlation, respectively. Node size indicated 
the node strength calculated from summed FC strength of each ROI. D All significant (pfdr < 0.05) correlation 
coefficients between the behavioral subsyndrome-linked FC latent features and FC features were grouped into Yeo’s 
7 networks.  

 

Behavioral and anxiety subsyndromes-linked FC latent features define three 
subtypes 

To further disentangle the neurobiological and neuropsychiatric heterogeneity of dementias, we 

performed K-means clustering analysis on all subjects to reveal subtypes, using anxiety and behavioral 

subsyndromes-linked FC latent features. We seeked the distinct characteristic profiles of dementia within 

these subtypes. As a result, we successfully identified three distinct neurophysiological subtypes (Figure 
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4A).  All evaluation metrics of our clustering analysis confirmed the highest level of separability and 

stability among these three subtypes (Figure S6). Furthremore, the corroborating findings from 

hierarchical clustering analysis (Figure S7) further demonstrated the robustness of our subtype findings, 

as verified by a Jaccard similarity of 1 between the derived subtype labels and those from K-means 

clustering. 

To investigate the neurobiological basis of dementia patients within these subtypes, we examined 

the differences in FCs between dementia patients in each subtype and all healthy controls using the 

Wilcoxon rank sum test. We identified hypo-connections (significantly smaller FCs) and hyper-

connections (significantly larger FCs) in dementia patients compared to healthy controls. In subtype 1, the 

largest hypo-connection was observed between the left insula (SMN) and left superior parietal cortex 

(DAN), while the largest hyper-connection was found between the right precentral gyrus (SMN) and right 

middle frontal cortex (FPC, Brodmann area 8) (Figure 4B, Figure S8A). The differences in brain 

connections mainly involved within-network connections of SMN and VAN, as well as between-network 

connections of SMN, FPC, and DAN (Figure 4D). In subtype 2, the largest hypo-connection was 

observed between the left inferior temporal cortex (DAN) and left inferior parietal cortex (DAN), while 

the largest hyper-connection was found between the left middle frontal cortex (DMN) and right 

supramarginal cortex (VAN) (Figure 4C, Figure S8B). The differences in brain connections mainly 

involved within-network connections of VIS and between-network connections of SMN, VIS, and DMN 

(Figure 4E). For subtype 3, no significant FC differences were observed compared to all healthy controls.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547427doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.02.547427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Subtypes defined from NPS subsyndromes-linked FC latent features. A Scatter plot of three clusters 
of subjects along the dimension of anxiety subsyndrome and behavioral subsyndrome. Deeper color indicated 
dementia patients, while light color indicated healthy controls. Grey dots indicated the subjects who had a greater 
than 5% chance of being assigned to different subtype labels in 1000 random 90% subsampling trials. B-E 
Connectivity differences of dementia in each subtype compared to all healthy control subjects. Wilcoxon rank-sum 
test was used to detect such differences. The top 50 (absolute) significant abnormal FCs of the first and second 
subtypes are visualized in panels B and C. Hyperconnections were represented in red, indicating that the FCs of 
healthy controls were larger than those in dementia patients for a subtype. Hypoconnections are represented in blue, 
indicating that FCs of healthy controls were smaller than those in dementia patients for a subtype. Node size 
indicated the node strength calculated from the sum of the absolute w value of linked FC. D, E Network-level FCs 
differences of dementia in subtype 1 and subtype 2, grouping from all ROI-level FCs significantly differed to HC. 

 

We further observed significant differences in the severity of NPS among dementia patients 

across the three subtypes, particularly in the hallucination, anxiety, and apathy domains (Table S5 and 

Figure S9). In addition, the anxiety, behavioral subsyndromes, and total NPS scores were significantly 

different between these subtypes. The patients in subtypes 1 and 2 exhibited more severe total NPS 

symptoms and subsyndromes compared to subtype 3 (Figures S9D-F). Moreover, functional impairment, 

as assessed by the FAQ and CDR, was more severe in patients of subtypes 1 and 2 in domains such as 
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orientation, paying attention, and working on hobbies, in comparison to subtype 3 (Figure S9G, H, I). 

Notably, the presence of hallucination, anxiety, and apathy symptoms, as well as the two distinct 

neuropsychiatric subsyndromes, served as distinguishing factors between dementias in subtypes 1 and 2. 

To further verify the uniqueness of the subtypes defined from NPS-linked FC latent features, we 

performed clustering directly using the NPI scores and compared the resulting clusters. As depicted in 

Figures S10A, B and C, two clusters were identified, which differed from the clusters derived using NPS-

linked FC latent features (Figure S10D, with 41% of subjects assigned to consistent clusters). In these 

subtypes, the detected abnormal FCs in dementia were significantly decreased (Figure S8 and S10E, F). 

Additionally, functional disability, as evaluated by FAQ, was further enhanced and the differences in NPS 

symptoms were decreased (Tables S5 and S6), compared to the subtypes defined from FC-NPS linked 

latent features. In short, the NPS-FC linked features have an advantage in detecting the abnormal FCs and 

NPS difference compared to the neuropsychiatric symptoms. 

Longitudinal changes of characteristic phenotypes of dementia in three subtypes 

Besides the baseline characteristic phenotypical difference, we revealed the longitudinal 

progression of dysfunction across various domains for different subtypes of dementia. Using a linear 

mixed-effects model to predict developmental trajectories of CDR, we observed different decline 

tendencies over time in orientation, hobbies maintenance, and general cognitive impairment for all three 

subtypes, as shown in Figure S11 A-E. Furthermore, we examined the longitudinal progression of 

cognitive functional change in animal naming, digits writing, and dots connecting tests measured by the 

NAB. The results revealed that patients in subtypes 1 and 2 exhibited similar rates of decline, which were 

both worse than those in subtype 3, as illustrated in Figure S11 I-K.  
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DISCUSSION 

Conducting sparse canonical correlation analysis between fMRI connectivity and NPS across 

subjects, we obtained two ten-fold cross-validated robust subsyndromes, behavioral and anxiety 

subsyndromes, in the NPS-FC correlated latent space. The behavioral and anxiety subsyndromes were 

associated with different connectivity patterns involving DMN, SMN and VIS as well as distinct 

characteristic phenotypes such as daily living disability. Then to comprehensively investigate the 

heterogeneity of dementia patients in relation to brain connectivity and NPS, we further divided all 

subjects into three subtypes based on the subsyndromes-linked FC latent features and analyzed the 

characteristic and neurobiological profiles of dementia patients within each subtype. Our results indicated 

significant differences in clinical measurements, baseline connectivity patterns, and longitudinal clinical 

progression among the three dementia subtypes. Notably, dementias in subtypes 1 and 2 exhibited more 

severe cognitive dysfunctions at baseline and a decline in cognitive abilities over time compared to 

healthy controls, while subtype 3 displayed similar brain and cognitive phenotypes to healthy controls. 

These findings underscore the potential for further research in developing more precisely targeted 

interventions tailored to the unique cognitive impairment and dysfunction observed in dementia of 

different subtypes. 

NPS subsyndromes and linked functional connectivity patterns 
In our study, we found that the behavioral and the anxiety subsyndromes exhibited opposite 

associations with various clinical measurements such as the MMSE total score and sum of boxes of CDR 

in opposite directions. Notably, the overall pattern indicated the behavioral subsyndrome positively 

correlated with better cognitive performance, while the anxiety subsyndrome was positively associated 

with impaired cognitive performance. This may be due to the fact that, although these two subsyndromes 

were primarily dominated by different NPS, they partially overlapped in capturing neurobehavioral 

dimensions in an inverse manner. Specifically, the behavioral subsyndrome was negatively correlated 

with delusion and depression while the anxiety subsyndrome was positively correlated with hallucination 
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and anxiety as shown in Figures 2B and 3B. Previous research has reported strong positive correlations 

between depression and anxiety (43), as well as between delusions and hallucinations (44). In addition, 

both subsyndromes were highly correlated with between-network connections involving VIS-SMN, 

DMN-SMN and DMN-VIS (Figures 2D and 3D). These findings are in line with studies that have 

demonstrated the presence of hallucinations and delusions in AD patients, which are associated with 

atrophy and decreased glucose metabolism of the visual network (45). Moreover, patients with AD or 

Parkinson’s disease have high metabolic activity in brain regions involving DMN and SMN, which 

positively correlates with anxiety and depression symptoms (46). Our current results, along with these 

previously reported findings, offer an explanation for the divergent relationship between the two 

subsyndromes and various cognition impairment measurements. Furthermore, these overlapping neuro-

circuits and NPS symptoms captured by our subsyndromes align with the conceptual model, suggesting 

that cognitive impairment, accompanied by delusion, hallucination, anxiety and depression symptoms, is 

intricately related to DMN circuitry and atrophy of SMN and DMN (47). 

Interestingly, our results revealed that the behavioral subsyndrome specifically captured variance 

in instrumental activities of daily living involving business affairs and driving function deficits. Patients 

requiring assistance in these activities had significantly lower behavioral subsyndrome scores. Such 

disabilities are known to be highly effective in discriminating between healthy individuals and those with 

mild dementia (48, 49). In addition, we found a significant correlation between the behavioral 

subsyndrome and connectivity within SMN network, which plays a key role in decision-making and 

driving ability (50, 51). This suggests that the behavioral subsyndrome might serve as a more sensitive 

psychopathological dimension in detecting mild cognitive functional impairment during the transition 

from healthy state to disease by specifically capturing decision-making deficits reflected by driving 

disability and SMN dysfunctions. 

Furthermore, our study indicated a negative correlation between the anxiety subsyndrome and the 

fluency animal test as well as the delayed logical memory scores. This subsyndrome was primarily 
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characterized by connections between DMN and VAN and connections within VIS. Previous studies have 

highlighted that verbal category fluency scores are correlated with the white matter hyperintensities in the 

frontal lobe (part of DMN) of dementia patients and activation of the bilateral lingual gyrus (part of VIS) 

in healthy controls (52, 53). Moreover, the decline in episodic memory performance as evaluated by the 

logical memory test has been related to altered DMN connectivity in patients with cognitive impairment 

(54). In line with these findings, the anxiety subsyndrome might be the psychopathological dimension 

that more specifically captured dysfunction in episodic memory and language processing, distinguishing 

it from the behavioral subsyndrome.    

Three dementia subtypes 
Most of the existing studies on dementia subtypes have primarily focused on single modality 

including psychological or structural imaging or genetics data (55, 56). Remarkably, both abnormal 

functional connectome and neuropsychiatric symptoms have been identified as biomarkers for early 

dementia detection (57-59). But no prior studies have used neuropsychiatric symptom-linked connectivity 

features to uncover subtypes. In our study, we defined subtypes based on NPS-related FC latent features, 

which demonstrated considerable potential in disentangling the heterogeneity of neuropsychiatric and 

neurobiological information related to cognitive dysfunction of early dementia.   

We observed shared connectivity differences in dementia of subtypes 1 and 2, compared to 

healthy controls, including connections within VIS and connections between VIS and SMN, between FPC 

and SMN, and between DMN and VAN. These network abnormalities were associated with deficits in 

social conduct, emotional processing and episodic memory retrieval. Consequently, dementia patients in 

subtypes 1 and 2 performed poorer in orientation and game, hobby maintenance than those in subtype 3 

and healthy controls. Additionally, cognitive dysfunction deteriorated more rapidly in subtypes 1 and 2. 

Dysfunctions in brain networks such as DMN, FPC, SMN, and VAN have been associated with cognitive 

and behavioral abnormalities in various dementia types including Alzheimer’s disease, frontotemporal 

dementia and dementia with Lewy bodies (14, 60). Thus, these shared FC dysfunctions and cognitive 
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abnormalities observed across our two dementia subtypes and the traditional dementia subtypes might be 

a common cognitive impairment-related neuropathological mechanism.     

Remarkably, at baseline, dementia in subtype 2 had more severe symptoms of hallucination and 

anxiety than those in subtype 1. Increased severity of hallucination might be explained by notable 

differences of connectivity within VIS and between VIS and SMN, both observed in subtype 2, as 

hallucinations have been linked to pathological changes in the visual network (61). This visual 

dysfunction may contribute to other emotional control-related neuropsychiatric symptoms such as anxiety 

and apathy (61, 62). The enhanced difference of FCs involving DMN in subtype 2 compared to subtype 1, 

known for its role in emotion regulation may explain this contribution. Moreover, as age increased, 

dementia in subtype 2 showed more severe cognitive and behavioral dysfunction than dementia in 

subtype 1, assessed by CDR, NPS and NAB items. Previous research has suggested that visual 

impairment increases the risk of cognitive impairment and incident dementia (63). Based on our findings, 

it is plausible that the more severe hallucination of subtype 2 could be associated with the progression to 

dementia-related cognitive impairment, but more studies are needed to confirm the interaction between 

these factors and to explore the underlying mechanism supporting this hypothesis.    

The dementia patient in subtype 3 was found to be similar to the healthy control group, with no 

significant difference in brain connectivity and presenting less severe NPS, subsyndromes, total score, 

and cognitive dysfunction in paying attention and orientation compared to subtypes 1 and 2. This aligns 

with the previous finding that some patients with brain disorders do not exhibit biological abnormalities 

and functional deficits compared to healthy controls (64). The presence of such heterogeneity in dementia 

underscores the importance for clinicians and researchers to consider these variations when developing 

more precise diagnostic tools and targeted interventions that align with the unique cognitive profiles and 

underlying neuropathological mechanisms of dementia patients. 

There are also some limitations and potential extensions to be considered. First, other biological 

information such as genomics and proteome sequence also contribute to the heterogeneity of dementia. 
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Future studies could explore these factors to gain a more comprehensive understanding of dementia 

subtypes and their underlying mechanisms. Second, the generalizability of the subsyndrome and subtypes 

defined in our study should be further validated in large and matched datasets. This validation would 

confirm whether the identified subsyndromes and subtypes accurately represent the broader dementia 

population and can be reliably applied in clinical settings. Third, the present study focused on the baseline 

participants for seeking subsyndrome and subtypes. Incorporating longitudinal imaging and clinical data 

in future research would provide a deeper understanding of the progressive nature of dementia and the 

interplay between brain-psychopathology dimensions over time.  

These caveats notwithstanding, our study offers important insights into the heterogeneity of 

dementia under a data-driven analytical framework. We identified behavioral and anxiety subsyndromes 

that capture critical distinctions shared between brain circuits and NPS in dementia. Specifically, the 

behavioral subsyndrome linked-FC latent features were specifically and negatively associated with 

dysfunction in daily activities related to taxes affairs while the anxiety subsyndrome-linked FC latent 

features were specifically and positively linked to memory and language deficits. In addition, using these 

two subsyndromes, our extensive clustering analyses revealed three stable subtypes. The dementia 

patients in two subtypes exhibited significant differences in FC involving DMN, FPC, and SMN, which 

were associated with memory and emotional dysfunction both at baseline and in longitudinal progression. 

The third subtype resembled healthy controls in terms of cognitive function and functional connectivity. 

Overall, our study provides a unique perspective on the complex heterogeneity of dementias and 

underlying neurobiological mechanisms, which may ultimately inform the development of more targeted 

interventions and diagnostic tools for patients in different subtypes. 
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Supplementary Materials 
Supplementary results 
Figure S1. Correlation between pairs of neuropsychiatric symptoms. Only the significant correlations 

(p<0.05) were texted in the figure.
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Figure S2. Hyperparameters selection in our study. A Variance explained by the principal components 

of NPS. B Average correlation of transformed pairwise canonical variates of ten-fold cross validation, 

with varying numbers of principal components of NPS and different L1 regularization parameters of 

connectivity features in sCCA. C Covariance explained by the canonical variates derived from sCCA 

between functional connectivity features and the first seven principal components of NPS. 
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Figure S3. Significant correlations (after FDR correction) between FCs and the first and second 

sCCA transformed FC variates. Red color indicates positive correlation and blue color indicates 

negative correlation. (A) Correlation between FCs and the behavioral subsyndrome-linked FC latent 

features. (B) Correlation between FCs and the anxiety subsyndrome-linked FC latent features.  
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Figure S4. Tukey’s honest significance (HSD) test results for the behavioral (A-F) and anxiety (G-

L) subsyndromes across groups with different CDR and its subscale scores. All p values were FDR 

corrected. (NS: p > 0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001). The HSD test 

was not conducted for the personal care subscale as it was a binary categorical variable.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547427doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.02.547427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S5. Tukey’s honest significance (HSD) test of the first (A-E) and second (F-I) canonical 

variates across groups with different functional assessment items. Pairwise difference analysis using 

HSD was conducted only for the items that showed significant differences in canonical variates across all 

groups, as determined by Kruskal-Wallis analysis. All p values were FDR corrected. (NS: p > 0.05; *: p 

≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001).  
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Figure S6. Cluster evaluation analyses of K-means clustering. We repeated K-means cluster 1000 

times, with 90% random subsampling of all subjects. When cluster number (k) was 3, A the Calinski-

Harabasz score and B Silhouette score, were maximized. C The stability coefficient, represented as the 

ratio of the same cluster label assigned to each subject across 1000 subsamplings, was calculated. The 

stability coefficients of different cluster numbers were plotted. D When k = 3, the stability coefficients of 

subjects in different subtypes were computed.  
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Figure S7. Cluster evaluation analyses of hierarchical clustering. A The visualization of hierarchical 

cluster result, when k = 3. We then repeated hierarchical clustering 1000 times, with 90% random 

subsampling of all subjects. When cluster number (k) was 3, B the Calinski-Harabasz score and C 

Silhouette score, were maximized. D To assess stability of the cluster analysis when cluster number was 

3, the stability coefficient of different subtypes was computed as the ratio of the same cluster label 

assigned to subjects in each subtype across the 1000 subsamplings.   
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Figure S8. Differences of FCs between dementia of subtype 1 (A) and subtype 2 (B), compared to all 

healthy control subjects. The differences were detected using the Wilcoxon rank sum test and the 

significance of differences was corrected by FDR. 
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Figure S9. Dunn’s multiple comparison results of all ordinal clinical measurements, which were 

significantly different across three dementia subtypes. All p values were FDR corrected. (NS: p > 

0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001).  
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Figure S10. Clustering on NPS scores only. A Calinski-Harabasz score, B Silhouette score and C 

stability coefficient of different cluster numbers. D Confusion matrix comparing subtype labels obtained 

from clustering NPS scores only (x-axis) to clustering based on the NPS-linked FC latent scores (y-axis). 

The accuracy is 0.41. E Differences of FCs in dementia of subtype 1, compared to all healthy controls. F 

Difference of FCs in dementia of subtype 2, compared to all healthy controls. The differences were 

detected using the Wilcoxon rank sum test, and the significance of difference was corrected by FDR. 
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Figure S11. Differences in longitudinal change of various clinical scores among dementia in 

subtypes. Linear mixed effect models were employed to examine the difference in the longitudinal 

progression of clinical scores of dementia across subtypes. Only the clinical scores that exhibited 

significant differences in their longitudinal trajectories among the three dementia subtypes are presented. 
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Table S1. Summary the correlation between the third to seventh sCCA transformed connectivity 

latent scores and NPS latent scores. All p values were FDR corrected. 

Canonical variates index r p ppermute 

3rd  -0.174 0.020 0.974 

4th  -0.013 0.859 0.583 

5th  0.072  0.337 0.459 

6th  0.161 0.033 0.201 

7th  -0.006 0.941 0.583 
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Table S2. Associations between FC latent scores and demographic information. Two-sample t-test 

and Pearson correlation were applied. All p values were FDR corrected. (NS: p > 0.05; *: p ≤ 0.05; **: p 

≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001) 

 Behavioral subsyndrome Anxiety subsyndrome 

 r/t pfdr r/t pfdr 

Age -0.351 **** 0.186 * 

Sex 0.893 NS 10.90 ** 

Education -0.087 NS 0.036 NS 
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Table S3. Association between FC latent scores and the scores of various categorical clinical 

measurements and biomarkers. Statistical comparisons were performed using ANOVA and two-sample 

t-test. All p values were FDR corrected. (NS: p > 0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: 

p ≤ 0.0001) 

 Behavioral subsyndrome Anxiety subsyndrome 

 f/t pfdr f/t pfdr 

Personal Care 2.26 NS 2.08 NS 

Memory (CDR) 13.40 **** 13.50 **** 

Home & hobbies (CDR) 10.20 **** 7.38 *** 

Judgment & problem solving (CDR) 14.70 **** 7.94 *** 

Orientation (CDR) 9.74 **** 8.89 *** 

Community Affairs (CDR) 7.64 *** 7.44 *** 

Total (CDR) 12.70 **** 13.50 **** 

SOB (CDR) -0.274 *** 0.345 **** 

APOE 1.56 NS 2.18 NS 

Diagnosis Label 4.95 **** -4.41 **** 

Paying Bills (FAQ) 2.33 NS 10.2 **** 

Taxes and Business Affairs (FAQ) 5.27 ** 2.67 NS 

Shopping Alone (FAQ) 5.88 ** 5.20 * 

Games and Hobbies (FAQ) 4.65 NS 1.23 NS 

Using Stove (FAQ) 2.31 NS 1.42 NS 

Preparing a Balanced Meal (FAQ) 1.05 NS 2.07 NS 

Current Events (FAQ) 1.82 NS 2.89 NS 

Paying Attention (FAQ) 6.71 * 11.8 ** 

Remembering Dates (FAQ) 4.70 ** 4.60 ** 

Traveling and Driving (FAQ) 4.96 ** 2.83 NS 
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Table S4. Relationship between FC latent scores and the continuous clinical measurements was 

measured by using Pearson correlation. All p values were FDR corrected. (NS: p > 0.05; *: p ≤ 0.05; 

**: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001) 

 Behavioral subsyndrome Anxiety subsyndrome 

 r pfdr r pfdr 

MMSE 0.309 **** -0.304 **** 

Digit Span-Forward (NAB) 0.135 NS 0.002 NS 

Digit Span-Backward (NAB) 0.081 NS -0.087 NS 

Fluency-Animals (NAB) 0.129 NS -0.232 ** 

Fluency-Vegetable (NAB) 0.243 ** -0.255 *** 

Trail Making Test-A (NAB) -0.190 * 0.222 ** 

Trail Making Test-B (NAB) -0.189 NS 0.221 * 

WAIS-R Digit Symbol Coding (NAB) 0.224 ** -0.262 *** 

Logical Memory Immediate (NAB) 0.201 * -0.232 ** 

Logical Memory Delayed (NAB) 0.159 NS -0.226 ** 

Boston (NAB) 0.193 * -0.168 * 
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Table S5. Differences of various clinical measurements and demographic information across 

dementia in three subtypes defined from FC-NPS linked latent features. Kruskal–Wallis ANOVA 

and Chi-square were applied in statistic comparisons of ordinal and categorical variables respectively, 

unless corresponding variables of each group were equal. (NS: p > 0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: 

p ≤ 0.001; ****: p ≤ 0.0001) 

 f/χ2 p 

Age 3.69 NS 

Sex 4.06 NS 

Education 0.46 NS 

Delusion (NPS) 3.77 NS 

Hallucination (NPS) 7.93 * 

Agitation (NPS) 0.48 NS 

Depression (NPS) 5.74 NS 

Anxiety (NPS) 26.4 **** 

Euphoria (NPS) 4.66 NS 

Apathy (NPS) 8.63 ** 

Disinhibition (NPS) 3.25 NS 

Irritability (NPS) 1.04 NS 

Aberrant Motor Behavior (NPS) 1.21 NS 

Nighttime Behavior Disturbances (NPS) 4.55 NS 

Appetite Abnormalities (NPS) 1.11 NS 

Behavioral subsyndrome (NPS) 5.43 NS 

Anxiety subsyndrome (NPS) 10.6 ** 

Total (NPS) 25.8 **** 

APOE 6.88 NS 

Personal Care (CDR) 2.63 NS 

Memory (CDR) 5.45 NS 

Home & hobbies (CDR) 3.30 NS 

Judgment & problem solving (CDR) 3.08 NS 

Orientation (CDR) 6.62 * 

Community Affairs (CDR) 3.23 NS 

Total (CDR) 2.88 NS 
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SOB (CDR) 5.83 NS 

MMSE 3.51 NS 

Digit Span-Forward (NAB) 3.20 NS 

Digit Span-Backward (NAB) 1.73 NS 

Fluency-Animals (NAB) 1.30 NS 

Fluency-Vegetable (NAB) 0.93 NS 

Trail Making Test-A (NAB) 3.70 NS 

Trail Making Test-B (NAB) 1.73 NS 

WAIS-R Digit Symbol Coding (NAB) 2.40 NS 

Logical Memory Immediate (NAB) 2.02 NS 

Logical Memory Delayed (NAB) 0.19 NS 

Boston (NAB) 0.18 NS 

Paying Bills (FAQ) 5.74 NS 

Taxes and Business Affairs (FAQ) 1.44 NS 

Shopping Alone (FAQ) 5.29 NS 

Games and Hobbies (FAQ) 6.52 * 

Using Stove (FAQ) 0.29 NS 

Preparing a Balanced Meal (FAQ) 4.01 NS 

Current Events (FAQ) 2.95 NS 

Paying Attention (FAQ) 6.36 * 

Remembering Dates (FAQ) 4.24 NS 

Traveling and Driving (FAQ) 5.43 NS 
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Table S6. Difference of various clinical measurements and demographic information across 

dementia in three subtypes defined from NPS. Kruskal–Wallis ANOVA and Chi-square were applied 

in the statistic comparisons of ordinal and categorical variables respectively, unless corresponding 

variables of each group were equal. (NS: p > 0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p 

≤ 0.0001) 

 f/χ2 p 

Age 0.09 NS 

Sex 5.89 NS 

Education 2.07 NS 

Delusion (NPS) 3.39 NS 

Hallucination (NPS) 1.43 NS 

Agitation (NPS) 3.87 NS 

Depression (NPS) 0.89 NS 

Anxiety (NPS) 4.97 NS 

Euphoria (NPS) 5.90 NS 

Apathy (NPS) 5.24 NS 

Disinhibition (NPS) 0.32 NS 

Irritability (NPS) 1.31 NS 

Aberrant Motor Behavior (NPS) 5.96 NS 

Nighttime Behavior Disturbances (NPS) 1.50 NS 

Appetite Abnormalities (NPS) 2.32 NS 

Behavioral subsyndrome (NPS) 3.07 NS 

Anxiety subsyndrome (NPS) 6.08 * 

Total (NPS) 3.46 NS 

APOE 3.89 NS 

Personal Care (CDR) 2.40 NS 

Memory (CDR) 1.36 NS 

Home & hobbies (CDR) 1.36 NS 

Judgment & problem solving (CDR) 0.96 NS 

Orientation (CDR) 1.72 NS 

Community Affairs (CDR) 2.26 NS 

Total (CDR) 1.37 NS 
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SOB (CDR) 1.62 NS 

MMSE 0.14 NS 

Digit Span-Forward (NAB) 3.63 NS 

Digit Span-Backward (NAB) 1.41 NS 

Fluency-Animals (NAB) 0.38 NS 

Fluency-Vegetable (NAB) 1.26 NS 

Trail Making Test-A (NAB) 0.13 NS 

Trail Making Test-B (NAB) 1.06 NS 

WAIS-R Digit Symbol Coding (NAB) 0.97 NS 

Logical Memory Immediate (NAB) 1.86 NS 

Logical Memory Delayed (NAB) 3.23 NS 

Boston (NAB) 0.82 NS 

Paying Bills (FAQ) 12.7 ** 

Taxes and Business Affairs (FAQ) 12.0 ** 

Shopping Alone (FAQ) 13.2 ** 

Games and Hobbies (FAQ) 14.8 *** 

Using Stove (FAQ) 8.66 * 

Preparing a Balanced Meal (FAQ) 5.46 NS 

Current Events (FAQ) 11.0 ** 

Paying Attention (FAQ) 12.7 ** 

Remembering Dates (FAQ) 16.5 *** 

Traveling and Driving (FAQ) 16.5 *** 
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