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ABSTRACT

As an effective programmable DNA targeting tool,
CRISPR–Cas9 system has been adopted in varieties
of biotechnological applications. However, the off-
target effects, derived from the tolerance towards
guide-target mismatches, are regarded as the major
problems in engineering CRISPR systems. To under-
stand this, we constructed two sgRNA libraries car-
rying saturated single- and double-nucleotide mis-
matches in living bacteria cells, and profiled the com-
prehensive landscape of in vivo binding affinity of
dCas9 toward DNA target guided by each individual
sgRNA with particular mismatches. We observed a
synergistic effect in seed, where combinatorial dou-
ble mutations caused more severe activity loss com-
pared with the two corresponding single mutations.
Moreover, we found that a particular mismatch type,
dDrG (D = A, T, G), only showed moderate impair-
ment on binding. To quantitatively understand the
causal relationship between mismatch and binding
behaviour of dCas9, we further established a bio-
physical model, and found that the thermodynamic
properties of base-pairing coupled with strand in-
vasion process, to a large extent, can account for
the observed mismatch-activity landscape. Finally,
we repurposed this model, together with a convolu-
tional neural network constructed based on the same
mechanism, as a predictive tool to guide the rational
design of sgRNA in bacterial CRISPR interference.

INTRODUCTION

CRISPR–Cas9 system and its derivatives are recently
adopted as versatile DNA targeting tools in a pro-
grammable manner and thus widely used in genome edit-

ing (1,2), target mutagenesis (3–5), genetic screening (6–
8), chromosome painting (9,10), synthetic circuit construc-
tion (11) and in vitro nucleic acid detection (12,13), etc. For
each application, the binding process is an essential step
that starts with PAM(NGG) recognition and the melting
of its nearby nucleotides (14), followed by strand invasion
which finally results in the formation of an R-loop structure
(15,16). However, binding to unexpected loci sometimes oc-
cur, leading to unpredictable results. This phenomenon, re-
ferred to as ‘off-targeting’, to a big extent, is due to the fact
that the binding process can bear several mismatches (2,17)
or bulges (18) between sgRNA and target DNA. The off-
target effects are regarded as the major problems in engi-
neering CRISPR systems.

Hitherto, various approaches have been designed to un-
derstand the target specificity of CRISPR–Cas9 system,
where most of them are focusing on the location of imper-
fect base-pairs. These results (2,17,19–21) showed that mis-
matches within PAM-proximal 7–12 bp seed region have a
severe impact on binding or cleavage. In contrast, the PAM-
distal region can tolerate multiple mismatches. However,
the lack of fine-grained quantitative profile in living cells
may hinder our in-depth understanding of this issue, since
binding efficiencies are influenced by intracellular condi-
tions (22). In terms of research on mechanisms, although
empirical conclusions or models (7,22–26) present a rough
overview of the binding behaviour, the systematic interpre-
tation of the whole process remains inadequate; as for ana-
lytical modeling, although many efforts have been made in
explaining off-target cleavage (27–30), the progress in off-
target binding lags behind (20,21). Considering the key dif-
ferences between cleavage and binding such as different mis-
match tolerance (31), we cannot take it for granted to use
models or principles established from cleavage data directly
in binding activity prediction. Thus, there is a critical need
to get a comprehensive landscape of binding properties in
vivo, and furthermore, to build a conceptual model based
on real biophysics process that can not only explain the re-
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sults, but also facilitate our understanding on the sequence-
determinants of CRISPR–Cas9 systems.

To address these issues, exhaustive mappings between the
sequence features and binding activities are required; and
any potential bias needs to be bypassed when quantifying
binding activities in a high-throughput manner to minimize
noise. For this purpose, we applied a pooled screening ap-
proach to assay the binding affinity of different sequences.
Endonuclease-deficient Streptococcus pyogenes Cas9 (dSp-
Cas9) was used in experiments to focus on the binding
property of Cas9 protein. In order to unbiasedly character-
ize the binding activity of dCas9 protein, we constructed
a counter-selection system that can couple binding affin-
ity with growth of bacterial cells. This system thus enables
us to quantify the guide-target mismatch effects on dCas9
binding affinity through a massively parallel approach by
measuring the abundance of each mutant with particular
mismatches in the library using next generation sequenc-
ing (NGS). Based on the derived dataset, we took com-
putational approaches to comprehensively interrogate the
impact of mismatch positions, types and combinations on
binding affinity. Moreover, the strand invasion process was
adopted as a framework to simulate the binding behavior of
dCas9, where the output of this dynamic system is largely
determined by the thermodynamic properties of perfect or
mismatched base pairing. This model, with a solid biophys-
ical foundation, achieves the state-of-the-art performances
via mapping the sequence features to binding activities and
can help design sgRNAs with tailored activities.

MATERIALS AND METHODS

DNA manipulations and reagents

Plasmid extraction and DNA purification were performed
using kits from Omega Bio-Tek. Restriction enzyme Fast-
Digest Eco31I (namely BsaI) was purchased from Thermo
Scientific. PCR reactions were carried out using KAPA
HiFi HotStart polymerase from KAPA Biosystems (NGS
library preparation) and Q5 High-Fidelity DNA poly-
merase from New England Biolabs (cloning). Plasmids were
constructed through Gibson assembly. Antibiotic concen-
trations for kanamycin, ampicillin and chloramphenicol
were 50, 100 and 7 mg/l, respectively. All strains and plas-
mids used in this work are listed in Supplementary Table
S1. All oligonucleotides were ordered from Taihe Biotech-
nology and Genewiz (Supplementary Table S2).

Cell growth conditions and strain construction

In all experiments, bacteria were grown in LB medium
or on LB agar plates. Selective agar plates were prepared
by adding 250 g/l filter-sterilized sucrose stock solution to
autoclaved sodium chloride-free LB broth (1.8% agar) to
a final concentration of 5 g/l. Cells were normally grown
at 37◦C while the counter-selection against sacB-expressed
strains was carried out at 30◦C. Molecular cloning was
performed with Escherichia coli DH10B (BioMed) as the
host. E. coli K12 MG1655 was obtained from the ATCC
(700926). The host E. coli strain MCm which used in the
screening was constructed from previous work by inte-
grating a chloramphenicol expression cassette cloned from

pKM154 (Addgene plasmid #13036) into the smf locus of
wild-type E. coli K12 MG1655 (8). Escherichia coli s17-1
sfGFP (superfolder GFP) was a kind gift of the George
Guoqiang Chen laboratory at Tsinghua University (32).

Plasmid construction

The Cas9 expressing plasmid pCas9-J23109, dCas9 express-
ing plasmid pdCas9-J23109, pdCas9-J23111 and pdCas9-
J23113 were constructed from previous work (8). The vec-
tor for sgRNA expression used in the transformation as-
say was derived from pTargetF (Addgene plasmid #62226).
As for the counter-selection system, in order to flexibly re-
construct the system for different sgRNAs, we built two
plasmids in advance, terms pTar-sacB and pTest-pMB1.
First, pTar-sacB was digested with BsaI to get the back-
bone; while the insert fragment was amplified using pTest-
pMB1 as the template with the sgRNA expressing region
embedded in forward primer, and the target DNA region
in reverse primer. Hence, the sgRNA and DNA target can
be easily customized and the plasmid pN20test, which was
finally used in screening, was assembled from these frag-
ments (Supplementary Figure S1). To optimize the sensi-
tivity of the counter-selection system, we modulated the
expression strength of sacB by three different iGEM An-
derson promoters (J23105, J23113, and J23114). We in-
serted the target of sgRNA r0 (TACACTTGAACTACCG
CGAG) into the upstream of –35 region of these three pro-
moters, respectively. As a result, three plasmids were con-
structed, pN20test-J23105/113/114-r0-exp. Similarly, we
constructed three negative control plasmids, pN20test-
J23105/113/114-r0-NC by replacing the r0 sgRNA cassette
with one N20 sequence that cannot recognize the r0 tar-
get upstream of sacB promoter. We transformed them into
MCm/pdCas9-J23111 and subsequently incubated them
on a selective agar plate overnight to check the performance
of these selection systems. Finally, J23114 was chosen as it
exhibited robust difference in terms of colony growth be-
tween r0 and negative control plasmid, suggesting this par-
ticular level of sacB expression can efficiently discriminate
sgRNAs with different binding activities (Supplementary
Figure S2).

Verification of the system’s ability to identify mismatched
sgRNAs with altered binding activity

To further test whether the synthetic circuit can effec-
tively distinguish sgRNAs that lead to different binding
activities of CRISPR–dCas9 system, we replaced sacB
open reading frame in pN20Test-114sacB with mcherry,
and introduced mutations into sgRNA r0. Six plas-
mids pN20test-114mcherry-r0-m1/2/3/4/5/6 (Supplemen-
tary Figure S3A) were thus constructed. We assumed that
if the system is robust, sgRNAs with six different substitu-
tions, due to their different binding affinities to the target
region upstream of mcherry promoter, should result in a va-
riety of expression levels of mcherry. The results showed that
different mismatched sgRNAs indeed led to altering expres-
sion levels of mCherry (Supplementary Figure S3B). Fur-
ther validation of this mechanism was carried out by replac-
ing the promoter of dCas9 with J23109 and J23113, which
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have lower strength. As expected, we observed higher fluo-
rescence intensity from mCherry expression, derived from
the decrease in dCas9 expression (Supplementary Figure
S3B). Meanwhile, it could also be found that the decrease in
dCas9 expression would lead to a reduced resolution to dis-
tinguish different mismatched sgRNAs. Thus J23111 was
applied for dCas9 expression in subsequent work.

Quantification of mismatch effects on binding activity using
transformation assay

To mimic the real screen experiment in prior, we further ap-
plied a transformation assay to quantify the mismatch ef-
fects based on the sacB counter-selection system. The sin-
gle colony–derived overnight seed cultures of host strains
Mcm/pdCas9-J23111 was grown in LB broth at 37◦C un-
til an OD600 of 0.6 was reached. Cells were collected by
centrifugation at 8000 × g for 5 min at 4◦C, washed five
times in ice-cold sterile water with the same condition and
finally resuspended in 15% (v/v) glycerol (one-sixteenth the
volume of the original culture). We then transformed plas-
mids carrying wildtype, mismatched or negative control
sgRNAs (pN20test-114sacB-r0/r349-exp/m3/NC, Supple-
mentary Figure S4A) into the prepared competent cells
(MCm/pdCas9-J23111) via Eppendorf 2510 Electropora-
tor using the optimized parameter setting (1800 V, 50 ng
plasmids/100 �l competent cells). The transformed cells
were incubated in sodium chloride-free LB broth (four
times the volume of the competent cells) for 1 h at 30◦C for
recovery. We then streaked each sample onto 90 mm sodium
chloride-free LB agar plates (with kanamycin and ampi-
cillin) with (selective) or without (control) 5 g/l of sucrose,
three biological replicates were made for each sgRNA. As
different expression levels of sacB would result in varying
degrees of cytotoxicity, the survival rate defined as Equa-
tion (1) could measure the mismatch effects on binding.

Survival rat edCas9 = CFUselective

CFUcontrol
(1)

As a result, different sgRNAs showed varying survival
rates, which proved the system’s ability of quantification of
mismatch effects (Supplementary Figure S4B).

Construction of mismatched sgRNA libraries

We synthesized two mismatched oligo libraries based
on sgRNA r0 (TACACTTGAACTACCGCGAG) and
sgRNA r349 (AGTGTCATTGTTGAATTCTA). For each
library, during each step of solid phase DNA synthesis for
the 20 nucleotides belonging to the N20 region in sgRNA,
a mixture consisted of 90% of the correct nucleotide and
10% of others (3.3% of each) were added, resulting in oli-
gos with 10% single-mutation-rate at each position of N20.
Hence the number of mismatches would follow a binomial
distribution B(20, 0.90) (Supplementary Figure S5), and the
library mainly consisted of single or double mismatched
sgRNAs. Each of the oligomers was flanked by two BsaI
sites used for further cloning via Golden Gate assembly.
The oligo library was amplified by a PCR reaction and
the products were inserted into the BsaI-digested pN20test-
ran0/349–114sacB-preLib as the backbone vector (Supple-

mentary Figure S6); the assembled plasmid libraries were
then transformed in DH10B chemically competent cells,
leading to 200 000 CFUs for each library, ∼100-fold cover-
age for all possible single- or double-mismatched sgRNAs.
We further confirmed the quality of the library by Sanger
sequencing of 10 colonies picked from the agar plate after
transformation, all of them perfectly mapped back to can-
didate sequences of the libraries. The plasmids for each li-
brary was then extracted and used in subsequent screening
experiments. We referred these two libraries as r0 and r349
mismatched plasmid libraries thereafter.

Screening experiments

The schematic illustration of the sgRNA activity screen-
ing experiments is shown as Figure 1A. The competent
cells were prepared as described above (quantification of
mismatch effects on binding activity). The library plas-
mids were then transformed by electroporation into the pre-
pared competent cells (MCm/pdCas9-J23111), which was
performed via Eppendorf 2510 Electroporator using the
optimized parameter setting (1800 V, 50 ng plasmids/100
�l competent cells). Two biological replicates were made
for each host strain by independent transformations. To
achieve proper coverage for each sgRNA library, we pre-
pared 19 transformations for each replicate, yielding totally
of four working samples for the two libraries with two repli-
cates each.

The transformed cells were incubated in sodium chloride-
free LB broth (four times the volume of the competent cells)
for 1 h at 30◦C for recovery. We then streaked each sample
onto twenty 150 mm sodium chloride-free LB agar plates
(with kanamycin and ampicillin) with (selective) or with-
out (control) 5 g/l of sucrose. Via measuring the transfor-
mation efficiency in prior, we made sure that no more than
5000 bacterial cells that were successfully transformed on
each plate, with a density of around 25 colonies/cm2 and
an average distance of ∼2.5 mm between two colonies. Af-
ter overnight incubation at 30◦C, we added 4 ml of sodium
chloride-free LB broth on each plate and scraped cells off
using spreaders. The cell suspension from the same replicate
would be collected and mixed together. We then took 5 ml
of each cell suspension to extract plasmids for NGS library
preparation. We note that such well-controlled density of
colonies on selective plate and growth at only 30◦C prevent
the overgrowth of colonies that inhibiting the resolution of
screen.

Preparation of NGS library and sequencing

The purified plasmids were used as templates for PCR to
amplify the N20 region of the mismatched sgRNA libraries
(50 �l × 4 reactions per library; 50 ng template per reaction;
pF/R mismatch primers (Supplementary Table S2); KAPA
HiFi HotStart polymerase (KAPA Biosystems); 95◦C 3
min, 25 cycles [98◦C, 20 s; 67.5◦C, 15 s; 72◦C, 30 s], 72◦C for
1 min. The sequencing library was prepared following the
manufacturer’s protocol (TruSeq DNA Nano Library Prep
Kit for Illumina). Sequencing for the mismatched sgRNA
library was carried out using a 2 × 150 paired-end configu-
ration and ∼30 million reads were collected for each library.
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Figure 1. Pooled screening experiments produce high-quality data for binding activities. (A) Schematic diagram of high-throughput profiling of dCas9’s
binding activities mediated by mismatched sgRNAs. Two comprehensive single- and double-mismatched libraries were constructed based on a sacB-based
counter-selection system in E. coli. For each library, each individual mismatched sgRNA would guide dCas9 protein to block the expression of sacB by
targeting to an N20NGG cassette upstream –35 box in promoter, leading to a decline in sacB expression; after growth on selective condition (sucrose),
the cells harbouring the library would possess varying growth rates (colony number and size), which were quantified via NGS. The profile of read count
number was used to decipher the binding behaviour of CRISPR-Cas9 system. The raw data revealed strong correlations between biological replicates for
(B) library r0 (n = 1705, Pearson correlation coefficient = 0.906) and (C) library r349 (n = 1719, Pearson correlation coefficient = 0.956).

Illumina HiSeq x10 by the PE150 technique was applied for
sequencing (GeneWiz Inc.).

NGS data processing

There are totally 10 raw datasets (two replicates for each of
the two libraries with two different conditions, r0-selective,
r0-control, r349-selective, r349-control; and two plasmid
libraries before selection, r0/349-pre) were collected via
NGS. After production of clean data by de-multiplexing
and removing adaptor regions, pairs of paired-end data
were merged by FLASH script and those reads without
detected pairs were removed. Python scripts generated in
house were then used to search for the ‘TAGTN20GTTT’
28-mer in the sequencing reads (and the reverse complemen-
tary sequence), and those carrying mutations within the up-
stream (TAGT) or downstream (GTTT) flanking regions (4
bp each) were removed. The read counts were then adjusted
using (Equation 2) (n = number of sequencing libraries) to
normalize the different sequencing depths of each library.
Finally, sgRNAs with <20 read counts in the plasmid li-
brary (r0/r349-pre) were removed to increase statistical ro-

bustness.

Normalization factori =
∑n

i=1 Read counti

n × Read counti
(2)

The fitness of each sgRNA was calculated as Equation
(3) by comparing its read count between selective condition
and control condition (33), which was then normalized by
wild type sequence (Equation 4). Here, log2 transformation
was used to weaken the effect of extreme values (such as
two mismatches in seed region) and thus enhance the reso-
lution of subsequent modeling to elucidate the contribution
of members with only moderate effect (such as only one mis-
match in distal region from PAM).

Fitnessi = log2
Read counti, selective

Read counti, control
(3)

Binding activityi = Fitnessi − FitnessWT (4)

Subsequently, the binding activities for each sgRNA in
the two biological replicates were averaged as the arithmetic
mean.
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Regression analysis

After NGS data processing, we collected 1761 entries of
binding activity data for library r0, and 1768 for library
r349. Those data were first filtered to create high-quality
datasets for regression analysis. To ensure the quality of
data, we eliminated those data with low consistency be-
tween replicates. In detail, if the difference of binding activ-
ities between two biological replicates was >3, the related
data would be removed from the dataset. After this filter
step, 1705 sgRNAs remain for library r0 and 1719 sgR-
NAs remain for library r349, excluding 0.3% and 2.4% of
data, respectively. We then followed a featurization proto-
col to encode the sgRNA sequences. One-hot encoding was
applied here to transform the sequences into 32D vectors.
Among these dimensions, 20 of them represent the possible
positions of mismatch occurred (MT1∼20), while the other
12 represent all kinds of mismatch types (dArA, dArC,
dArG, dTrU, dTrC, dTrG, dCrA, dCrU, dCrC, dGrA,
dGrU, dGrG).

We used L1-regularized linear regression (Lasso) in our
experiments to interpret the results. The training dataset
(80% of all raw data) was used for hyperparameter tun-
ing to optimize the performance of the model by five-fold
cross-validation. After obtaining the optimized hyperpa-
rameter, we trained the model again using the whole train-
ing dataset, the remaining 20% held-out data was used
to test the generalization ability of the trained model. All
these approaches were performed using scikit-learn pack-
age (1.17.4) in Python.

Transformation assay of mismatch effects on Cas9 cleavage
activities

The host strains E. coli K12 MG1655 carrying pdCas9-
J23109 or pCas9-J23109 were used to prepare competent
cells using the method described above (quantification of
mismatch effects on binding activity). Plasmids carrying the
sgRNA expression cassette (pTargetF) were transformed by
electroporation into the prepared competent cells express-
ing Cas9 or dCas9. The electroporation was performed via a
BTX Harvard apparatus ECM 630 High Throughput Elec-
troporation System using an optimized parameter setting
(2.1 kV, 1 k�, 25 �F). The transformed cells were incubated
in LB medium (four times the volume of the competent
cells) for 1 h at 37◦C for recovery. We streaked the resulting
culture onto the LB agar plates (with kanamycin and ampi-
cillin) automated by EasySpiral Pro (Interscience). The
colonies were counted after overnight cultivation. The sur-
vival rate for each sgRNA was calculated by comparing
the CFU of Cas9-expressing cells with the CFU of dCas9-
expressing cells. This ratio was further normalized by de-
termining the colony number after transformation with a
negative control sgRNA plasmid to minimize the impact
of differences in electroporation efficiency that were due to
competent cell preparation (Equation 5).

Survival rat eCas9 = CFUCas9/CFUCas9 NC

CFUdCas9/CFUdCas9 NC
(5)

Characterization of mismatch effects through cytometry

The host strain E. coli s17–1 sfGFP carrying pdCas9-
J23109 was used to prepare competent cells, after trans-
formation of sgRNA expression cassette (pTargetF), cells
were recovered and streaked on to LB agar plates (with
kanamycin and ampicillin). We then picked up two single
colonies from each sgRNA as two biological replicates and
cultivated them into 5 ml LB broth overnight. Subsequently,
Cultures were diluted to 1 ml pre-chilled PBS to make the
final OD600 ∼0.01. The fluorescence intensity distribution
was measured by S3e Cell Sorter (Bio-Rad). We took the
arithmetic mean of median fluorescence intensity for each
sgRNA in the two biological replicates to represent the ex-
pression level of sfGFP. The mismatch effect of each sgRNA
is calculated as Equation (6).

Mismatch effect = log10
fluorescence intensity

fluorescence intensityNC
(6)

Thermodynamic model

To account for the thermodynamic properties in R-loop for-
mation process, we have to calculate energy change in the
annealing process of sgRNA-complementary strand helix
and the melting process of DNA–DNA duplex simultane-
ously. However, it should be noted that the parameters re-
lated to RNA/DNA (34,35) helix from literature are de-
scribed for annealing process that starts at 5′ end of RNA
(Supplementary Figure S8B). As for the R-loop formation
process, the initial base-pair between sgRNA and the target
forms in 3′ end of sgRNA. Fortunately, as different initia-
tions have the same thermodynamic value for RNA/DNA
helix, we can reparameterize the process with parameters
that encode the opposite direction and then easily derive
that (Supplementary Figure S8B, C)

�G
(

5′ rArB 3′
3′ dAdB 5′

)
= �G

(
3′ rBrA 5′
5′ dBdA 3′

)
. (7)

Using the above formula, we can calculate the change in
Gibbs free energy of each state transition (Figure 5B, except
for the initial transition) via Equation (8).

�� Gi = �G
(

ri+1ri

d
′
i+1d

′
i

)
− �G

(
di+2di+1

d
′
i+2d

′
i+1

)
(i = 1, 2, . . . , 19) (8)

Then consider the energy compensation carried out by
dCas9 protein. The above energy change can be rewritten
as Equation (9).

�� Gi = �G
(

ri+1ri

d
′
i+1d

′
i

)
− �G

(
di+2di+1

d
′
i+2d

′
i+1

)
+ �G (compensation) (i = 1, 2, . . . , 19)

(9)

Suppose that the system is in equilibrium, the relation-
ship between the probabilities of adjacent states can be de-
noted as the Equation (10).

Pstatei+1

Pstatei

= exp
(

−��G i

RT

)
(10)

Where
20∑

i = 0

Pstatei = 1 (11)
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Furthermore, we defined the ground state as the dissoci-
ation state (State0), the free energy of each state relative to
the ground state can be calculated as Equations (12 and 13).
For clarity, we showed a comprehensive diagram of R-loop
formation process for sgRNA r0 in Supplementary Figure
S9.

� G0 = 0 (12)

� Gi+1 =
i∑

j=0

��G j (i = 0, 1, . . . , 19) (13)

From Equations (10 and 13), we can derive that

Pstatei =
i−1∏
j=0

exp
(

−��G j

RT

)
Pstate0 = exp

(
−

∑i−1
j=0 ��G j

RT

)

Pstate0 = exp
(

−�Gi

RT

)
Pstate0 (i = 1, . . . , 19) (14)

Finally, we can derive the probability of each state via
Equations (11 and 14), which is shown as Equation (15).

Pstatei = Pstatei∑20
i=0 Pstatei

= exp
(−�Gi

RT

)
∑20

i=0 exp
(−�Gi

RT

) (i = 0, 1, . . . , 19) (15)

There is no doubt that the binding activity is negatively
related to the probability of dissociation (Pstate0 ). However,
due to the lack of thermodynamic parameters for the initial
transition (��G0), we took an approximation that ignored
the initial state, which is shown as Equation (16).

Pstatei ≈ Pstatei∑20
i = 1 Pstatei

= exp
(−�Gi

RT

)
∑20

i=1 exp
(−�Gi

RT

)

= exp
(−�Gi −��G0

RT

)
∑20

i = 1 exp
(−�Gi −��G0

RT

) =
exp

(
−�G

′
1

RT

)
∑20

i=1 exp
(
−�G

′
i

RT

)
(16)

where

� G
′
1 = 0 (17)

� G
′
i+1 =

i∑
j=1

��G j (i = 1, . . . , 19) (18)

The probability of dissociation would be proportional to
the probability of the State1.

Pdissociation∗ ∝
exp

(
−�G

′
1

RT

)
∑20

i = 1 exp
(
−�G

′
i

RT

) (19)

Equation (19) was applied in this work to calculate the
probability of dissociation. We note that since the currently
available parameters for mismatched base-pairs between
DNA and RNA are incomplete, we can only calculate for

mismatch types of dArA, dTrU, dCrC and dGrG (35), and
positions of mismatches cannot be adjacent.

To determine the compensation term accounting for the
interaction between dCas9 and nucleotides, we performed
a grid-search approach using the Spearman correlation co-
efficient between binding activities and probabilities as the
objective function. Finally, –3000 J/mol/base was selected
as the energy compensation.

Construction of the convolutional neural network

The convolutional neural network (CNN) we designed is
based on the thermodynamic model, and its structure is
shown as Figure 6A. The first layer of the CNN is used
to extract sequence features. As shown in Equation (9), the
change in free energy of each state transition (except for the
initial transition) is related to 7 bases. Among these bases,
two Watson-Crick base-pairs must exist (di+1 with d

′
i+1, di+2

with d
′
i+2). Therefore, there are total 1024 (45) possible com-

binations of nearest neighbors. These nearest neighbors are
transformed through one-hot encoding and served as con-
volutional kernels to extract sequence features. It should be
noted that if the data is the same as the kernel, the prod-
uct of them would be 6, otherwise would less than 6 (Sup-
plementary Figure S12). The convolution results are sub-
tracted by 5 and then activated via rectified linear units
(ReLU, Equation 20), resulting in one-hot encoded combi-
nations of nearest neighbors. As for the initial transition,
there are 16 possible kernels, the convolution results were
subtracted by 2 and activated through RuLU.

ReLU (x) = max (x, 0) (20)

The rest layers of the CNN are used to interpret the se-
quence features into thermodynamic properties. The ther-
modynamic parameters are treated as trainable parameters
in convolutional kernels, which are used to convolve with
the results of the previous step, generating the change in
Gibbs free energy of each transition. To realize Equations
(13 and 15), the results are taken into a cumulative sum
function (Equation 21) and then transformed into a prob-
ability distribution through a softmax function (Equation
22).

cumsum (��G)i = � G i =
i∑

j=0

��G j

× (i = 0, . . . , 19) (21)

softmax (�G)i = PStatei = exp
(−�G i

RT

)
∑20

i=0 exp
(−�G i

RT

)
× (i = 0, 1, . . . , 19) (22)

The output binding activity is defined as Equation (23).

Binding activity = w · log PState0 + b (23)

Therefore, this approach can encode sequences into bind-
ing activities using the same calculation method as the ther-
modynamic model. Also, we randomly split the data into



Nucleic Acids Research, 2021, Vol. 49, No. 3 1269

80% of training dataset and 20% of test dataset to evalu-
ate the performance of CNN. This network was built using
Tensorflow (r2.0) in Python.

RESULTS

Profiling the landscape of mismatch effect via high-
throughput screening

In order to unbiasedly interrogate the impact of mismatch
on the binding activity of dCas9 protein, we constructed
a counter-selection system that can couple binding affin-
ity with growth of bacterial cells. With this system, we can
quantify such effect via measuring the abundance of each
mutant carrying particular mismatches in the library by
NGS before and after selection. This genetic circuit includes
(i) a constitutive promoter with an upstream N20NGG
proximal to its –35 box, which serves as the target DNA
and (ii) a sacB gene driven by this promoter whose expres-
sion is lethal to E. coli in the presence of sucrose (36). Hence,
when the promoter is blocked by a dCas9–sgRNA complex
with high activity, there would be a decline in the expression
of sacB, leading to a robust growth under selective condi-
tion. In contrast, mismatches severely impairing the bind-
ing affinity results in normal expression of sacB and subse-
quent cell death. In this system, the binding sites for dCas9
can be flexibly switched and located at the same position
from the target promoter (Supplementary Figure S1). This
design bypasses the potential bias compared with targeting
to a series of different sites in promoter or coding region,
where context such as distance from transcriptional start
site matters in determining CRISPRi activity (37). To more
exhaustedly explore the sequence space, we prepared two
mismatched libraries derived from two different sgRNAs,
hereafter we named them as r0 (TACACTTGAACTAC
CGCGAG) and r349 (AGTGTCATTGTTGAATTCTA).
These two sequences were randomly generated and have
no off-target hit in E. coli genome via previous criteria
(8). Each library contained saturated single and double nu-
cleotide mismatches towards relevant DNA target. Besides,
we also verified that the counter-selection systems could re-
solve the mismatch effects on dCas9 binding activities (see
Methods). After construction of plasmid libraries, we trans-
formed them by electroporation into an E. coli strain consti-
tutively expressing dCas9 protein. The transformants were
divided into aliquots and spread on LB agar plates with (se-
lective condition) or without (control condition) 5 g/l su-
crose. After incubation overnight at 30◦C, we collected cells
from plates and extracted plasmids. The sgRNA coding re-
gions of each mutant were PCR amplified and then quan-
tified through NGS. The abundance change relative to wild
type sgRNA was applied to characterize the binding activity
of each sequence (see Materials and Methods, Figure 1A).

After obtaining the sequencing results, we firstly per-
formed pretreatment to filter low-quality entries (see Meth-
ods). As a result, there were 1705 sgRNAs left for library r0,
covering all single mutants and 96.2% of all possible dou-
ble mutants; as for library r349, 1719 remaining sequences
included all single mutants and 97.0% of possible double
mutants. The Pearson correlation coefficient between bio-
logical replicates (0.91 for r0, 0.96 for r349) indicated the

reliability of these experiments. Therefore, we got two ex-
haustive maps of binding activities of single- and double-
mutants with high-quality through this experimental frame-
work (Figure 1B, C).

Mismatches in seed region have synergetic effects

The results suggest that (Figure 2B, C) mismatches in PAM-
proximal region (seed region) would lead to manifest de-
clines in binding activities, which was consistent with pre-
vious studies (2,17,19–21) as seed region serves as a nucle-
ation site for R-loop formation (15). In contrast, the mis-
matches in PAM-distal region only had moderate impact on
dCas9 binding. Additionally, we noticed that in seed region,
double mutants exhibited apparently lower binding affini-
ties than the sum of effects of two relevant single mutants
(Figure 2D, E), suggesting the synergistic effects between
mismatches in seed region. This phenomenon was also ob-
served in an in vitro profiling of dCas9 binding behaviour
at longer time scales (21). In contrast, we observed strictly
additive effects out of seed region. These results indicated
that the binding activity of CRISPR–dCas9 system could be
quantitatively customized via inserting mutation(s) in seed
to amplify differences; or adding mismatches out of seed re-
gion so as to linearly decrease the binding activity.

Mismatch type of dDrG (D = A, T, G) only has moderate
effect on binding activity

Besides the positions of mismatches, what is still exclusive
in this field is a comprehensive insight about how mismatch
types affect binding activities. To discriminate the effects
of mismatch positions and mismatch types, we adopted a
regression approach, where the coefficient of each variable
after fitting can be used to quantify the impact of the rele-
vant terms on binding affinity, such as mismatch types (Fig-
ure 3A). We encoded each sgRNA sequence as a 32D vec-
tor (see Methods). L1-regularized linear regression (Lasso)
was applied to fit the data. To avoid overfitting, we ran-
domly split dataset into two subgroups with 80% of data
were used as training dataset to optimize the hyperparame-
ter through 5-fold validation as well as train the model pa-
rameters. The remaining 20% were used as test dataset to
check the generalization capacity of the model. The perfor-
mances in test dataset (r0: r2 = 0.63, r349: r2 = 0.65, Figure
3B, C) indicated that the model has reasonable generaliza-
tion capacity and captures biological signals. We then anal-
ysed the features’ contributions to sgRNA activities (Fig-
ure 3D, E). Among the coefficients of 12 different mismatch
types, we found dDrG (D = A, T, G) exhibited less impair-
ment on binding than others. Importantly, this effect can be
observed in both models trained from two different datasets
(Figure 3D, E). To ensure that this discovery was not cor-
related to the sequence context, we further used the combi-
nations of mismatch sites and mismatch types to extract se-
quence features, the same training scheme was applied and
the results also showed that dDrG was more tolerable com-
pared to other types of mismatch (Supplementary Figure
S7). Furthermore, we found this observation was consis-
tent with the thermodynamic stabilities of mismatched nu-
cleotides between DNA and RNA (35), and was also partly
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Figure 2. Comprehensive profiling of binding activities of CRISPR-dCas9 system mediated by mismatched sgRNAs. (A) Zoom in on one particular mutant
with double mismatches in the heatmap, the outer character represents nucleotide in wild-type sgRNA which complementary to the target, the inner bases
are possible mutations. (B) Binding activity score for single- (the first row and column, ‘SM’ stands for single mutant) and double- (other rows and columns)
mutants across replicates (above and below the diagonal) for library r0 and (C) library r349. The bar on the right of each panel shows the color-encoding
of the activity score. (D) Epistasis for double mutants for library r0 and (E) library r349, these values were calculated by subtracting activity scores of
two corresponding single mutants from double mutants (Epistasis = Activityi,j – (Activityi + Activityj)). Positions exhibiting strong synergetic effect are
highlighted by the red dashed frame. The bar on the right of each panel shows the color-encoding of the epistasis effect.

discovered in previous study (17). Moreover, a structural
study (15,38) also found a base-specific interaction between
Arg71 and guanine in PAM-proximal region of sgRNA.
Thus, it’s reasonable to infer that dDrG was more tolera-
ble than other types of mismatch.

To validate whether dDrG impairs binding activity
to a less extent, we additionally measured mismatch ef-
fects via testing gene expression repressed by different
dCas9–sgRNAs using cytometry (see Method). Using a
chromosome-integrated sfGFP as the marker, we chose two
sgRNAs targeting its non-template strand in ORF region

(sgRNA1, sgRNA2) as well as 1 sgRNA targeting its pro-
moter (sgRNA3); derived from these 3 sgRNAs, we con-
structed mutant sgRNAs covering saturated single substi-
tutions in PAM-proximal 10 bp region of these sequences to
minimize the effect of mismatch position (Figure 4A). As a
result, dDrG showed stronger fluorescence signals than (or
equal to) others, consistent with the hypothesis that dCas9
binding is less sensitive to dDrG mismatch (Figure 4B).
Furthermore, we checked whether this phenomenon would
extend to Cas9 cleavage activities. To this end, based on the
fact that Cas9 induced DNA double strand break is lethal to
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Figure 3. Regression approach demonstrates the effect of mismatch types on binding. (A) Schematic diagram of the computational process. 32 features
including 20 for mutation sites and 12 for mutation types were extracted for each sgRNA. Data were random split into training dataset containing 80% of
raw data and test data set containing the rest 20% of data. Lasso regression was used here to interpret the relationship between features and activities. The
hyperparameter was optimized through 5-fold cross-validation, after that, the whole training dataset was used to train model parameters. Finally, the test
dataset was used to evaluate the generalization capacity of the model. The model performance in test dataset showed a good generalization capacity for
both (B) library r0 (n = 341, r2 = 0.63) and (C) library r349 (n = 344, r2 = 0.65). (D, E) Coefficients of features that contribute to the prediction power of
the Lasso regression for (D) library r0 and (E) library r349.

bacteria, we carried out a transformation assay to measure
the cleavage activities for mismatched sgRNAs via quan-
tifying CFUs (see Methods). We chose 3 sgRNAs target-
ing E. coli genome (mocA-262, artP-627, araE-1205) which
showed high activities in our previous study (39). Based on
these sequences, we constructed several mutants with sin-
gle mismatch by substituting some nucleotides in seed (Fig-

ure 4C). The results also revealed that dDrG had less im-
pact on Cas9 cleavage activity compared to other mismatch
types (Figure 4D). Overall, these results suggested that the
mismatch type of dDrG generally has moderate effect on
CRISPR-Cas9 systems, indicating that there may be a rela-
tionship between activities and thermodynamic properties
of nucleic acids.
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Figure 4. Mismatch type of dDrG exhibits less impairment on binding and cleavage. (A) Characterization of mismatch effects on dCas9 binding. Single
mutants were constructed based on three targets belonging to a chromosome-integrated sfGFP expression cassette. Mutant sgRNAs were constructed
carrying saturated single substitutions in PAM-proximal 10 bp region (shown in red). (B) Mismatch type of dDrG showed slightly lower impairment on
binding activity (see Method) than dVrA (P = 0.006, one-tailed t-test) and dHrC (P = 0.100). (C) Transformation assay of mismatch effects on Cas9
cleavage activities. Mutants with single mismatch were constructed based on three targets in E. coli genome by replacing several nucleotides in seed (shown
in red). (D) Mismatch type of dDrG showed slightly less impact on cleavage (see Method) than dVrA (P = 0.005) and dHrC (P = 0.018).

Binding activity is predicted by a model using independent
thermodynamic data of nucleic acids

Although the abovementioned linear models can effectively
predict the binding activities of protospacers in specific con-
texts, their generalization abilities were limited, which were
specifically reflected in the slightly different patterns when
training on different datasets (Figure 3D, E). Besides, the
linear models could not account for the causal relationship
between sequence and its binding behaviour either due to its
‘black box’ manner (40). To address these issues, we aimed
to construct a conceptual model based on real biophysics,
which is expected to be more general and basic. The ther-
modynamically more stable mismatch type of dDrG with
less effect on binding identified by the linear model inspired
us to focus on the thermodynamic features of nucleic acids.
Here, our aim is to develop a model that uses nucleotide
thermodynamics data from independent sources as much
as possible. In principle, this model can quantify the free
energy change during the strand invasion process in dCas9
binding for any sgRNA sequence of interest, the input of
the model; and the calculated free energy landscape can be
used to predict the binding activity of the given sgRNA, the
output of model.

In nucleic acid thermodynamics, the nearest neighbor ap-
proach was developed to predict the thermodynamic sta-
bility of secondary structures, where each parameter repre-
sents the thermodynamic impact of adding a distinct base-
pair to a double-stranded helix (41). We can use those pa-
rameters to calculate the thermodynamic stability of each
step of either annealing or melting process. In the process of

R-loop formation, these two procedures happen simultane-
ously (Figure 5B, Supplementary Figure S9). Thus, we can
calculate the overall free energy landscape during R-loop
formation using nearest neighbor approach. Suppose that
the system during R-loop formation is in thermodynamic
equilibrium, the total process can be treated as a Markov
chain (the process is thus regarded as reversible). Hence, the
probability of each state can be calculated de novo using the
overall free energy landscape derived from the thermody-
namic data of base pairing from independent sources. The
probability of exit of R-loop formation (dissociation) can
be regarded as reversely correlated with the binding activity
(Figure 5A, see Materials and Methods). This is the basic
framework of our model.

Besides, it should be noted that R-loop is formed inside
the dCas9 protein, thus interactions between dCas9 and nu-
cleotides should not be neglected. Previous structural evi-
dence also revealed that negatively charged sgRNA:DNA
heteroduplex is accommodated in a positively charged
groove (15). Additionally, non-bonding interactions includ-
ing hydrophobic interactions and hydrogen bonds also ex-
isted between Cas9 and nucleic acids (15). Indeed, in the ab-
sence of this compensation term describing the interaction
between dCas9 and nucleotide, the prediction of the model
can only give moderately consistent results compared with
the experimental dataset (Supplementary Figure S10). We
therefore added a compensation term in each state transi-
tion to represent those interactions between dCas9 and nu-
cleotides. This term was treated as a constant and optimized
through a grid-search approach (see Materials and Meth-
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Figure 5. Thermodynamic properties of base pairing coupled with the process of R-loop formation achieved high performances in explaining binding
activities. (A) Schematic diagram of the thermodynamic model. For a given sgRNA sequence, the free energy landscape during strand invasion is calculated
via the nearest neighbor approach, then the probability of each state can be derived via treating each state during strand invasion as a Markov chain
(see Methods). The unbound probability can thus be quantified and is reverse to the binding activity. (B) The model of strand invasion process. During
association, the melting between DNA:DNA and the base pairing between DNA:sgRNA happened simultaneously from PAM-proximal region and extend
to PAM-distal region; this process is also reversible. Each transition was considered in thermodynamic equilibrium, the probability of each state could be
calculated using thermodynamic parameters (see Methods). (C, D) The binding activities derived from experimental data were negatively correlated to the
probabilities of dissociation state (Pstate1, see Methods) for both (B) library r0 (n = 150, Spearman correlation coefficient = -0.64) and (C) library r349 (n
= 152, Spearman correlation coefficient = –0.71). (E, F) The in vitro mismatched sgRNA association rates were highly correlated to the probabilities of
dissociation state (Pstate1, see Materials and Methods) for (E) 10 nM dCas9, replicate 1 (n = 128, Pearson correlation coefficient = –0.79) and (F) 10 nM
dCas9, replicate 2 (n = 168, Pearson correlation coefficient = –0.75).
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ods), which was finally determined to be -3,000 J/mol/base.
This is the only parameter in the model that is trained from
our own data.

Using this compensation term and previously reported
thermodynamic data of base pairing (34,35,42), we calcu-
lated the probability of dissociation for each calculable se-
quence. Thus, this model derives the binding activity of the
dCas9 protein exclusively from the thermodynamic prop-
erty of base (un)pairing and interaction energy between
dCas9 and nucleotides during strand invasion. The results
showed that there were strong correlations between the ac-
tivity scores measured experimentally and the derived prob-
abilities for both single mutants and double mutants in li-
brary r0 (Spearman correlation coefficient = –0.64, Fig-
ure 5C) and r349 (Spearman correlation coefficient = –
0.71, Figure 5D). The generalization capacity of this model
was also confirmed by other datasets. The probabilities
of dissociations derived from the model were highly cor-
related to the association rates (kon) of mismatched sgR-
NAs measured in vitro (21) (Figure 5E, F, Pearson cor-
relation coefficient = –0.79, –0.75, respectively), even for
triple (or more) mismatches. Our model can also account
for another dataset measuring the binding activities of mis-
matched sgRNA in vivo (40) (Supplementary Figure S11,
Pearson correlation coefficient = 0.51), whereas a higher
variance may be due to the noise brought from their experi-
ment and data pre-treatment (see Supplementary note 1 for
detailed discussions). It is noteworthy that, to the best of
our knowledge, this biophysical model achieved the state-
of-the-art performances in explaining binding behaviours
using the thermodynamic parameters (34,35,42) from inde-
pendent sources. This model hence demonstrated that nu-
cleotide thermodynamics can account for the observed mis-
match effects on dCas9 binding to a big extent. As this
framework is rooted deeply in the real biophysics process
during the interaction between Cas protein and nucleotide,
it has potential to be adopted to understand the activity
of other CRISPR systems at molecular level. This model
was further applied to design sgRNAs with tailored ac-
tivities at website: http://www.thu-big.com/sgRNA design/
Quantitative CRISPRi Design/.

We note that the currently available dataset of thermody-
namic properties for mismatched base pairs between DNA
and RNA is incomplete. This directly leads to the fact that
we can only simulate a small fraction (∼9.2%) of all mutants
whose mismatches have available thermodynamics data. In
order to overcome this drawback, we proposed that the un-
available thermodynamic stabilities for DNA::RNA mis-
matches can be regarded as trainable parameters in the
model. In this line, we can extend the abovementioned com-
putational framework to theoretically all mismatches in
sgRNAs. Hence, we designed a convolutional neural net-
work that possessed the same calculation method as the
thermodynamic model described above, but treated these
thermodynamic parameters as trainable variables and ac-
tivity scores as targets (see Materials and Methods, Figure
6A). We used the mean squared error as the loss function
and updated parameters through backpropagation. As a re-
sult, this network also achieved good performances in two
datasets (Figure 6B, C). Critically, the trained parameters
were correlated with the experimentally determined near-

est neighbor parameters (34,35,42) (Supplementary Fig-
ure S13). This result supports our hypothesis that the mis-
matched sgRNA activity dataset contains rich informa-
tion about the thermodynamic stability of DNA::RNA base
(un)pairing, and reversely, the binding activity of CRISPR-
dCas9 system was determined by thermodynamic features
of the sequence.

DISCUSSION

In this work, we developed a pooled screening approach
that can massively profile the dCas9 binding activities. Be-
sides the synergetic effect in the seed region, we also found
that the effect of multiple mismatches out of the seed region
is almost additive; and this simple principle can guide the
effort to rationally design gRNAs with attenuated activities
quantitatively. Furthermore, inspired by that the relatively
stable mismatch type of dDrG only showed a moderate im-
pairment on dCas9 binding, we realized that both mismatch
position and type, while the later one is less addressed in pre-
vious works, needs to be considered systematically in a gen-
eral framework to quantitatively predict the effect of mis-
match on binding activity. Hence, we constructed a ther-
modynamic model that can effectively predict the binding
affinities by taking literature reported nearest neighbor pa-
rameters (34,35,42) of nucleotide thermodynamics into the
process of strand invasion. Different from models on cleav-
age activities (27–30), our model regards binding (strand in-
vasion) as a reversible process and focus on the probability
of unbound state, whereas those models considering cleav-
age assume a critical irreversible cleavage step after the gat-
ing nucleotide is reached (27–30). Thus, in our model, it is
the overall free energy landscape, consisting of every possi-
ble intermediate state during strand invasion, together de-
termines the probability of the unbinding state (see Meth-
ods). Furthermore, to deal with the inadequate thermo-
dynamic parameters of DNA/RNA mismatches, we built
a convolutional neural network based on the thermody-
namic model that also leads to good performances in activ-
ity prediction. In conclusion, this work can help to mechan-
ically understand the sequence-determinants of CRISPR-
dCas9 system at the molecular level, on the other hand, can
guide quantitatively designing of CRISPR–dCas9 system
with tailored activity.

The synergetic effects in seed identified here probably
roots in the energy compensation carried out by dCas9 pro-
tein along with the strand invasion process. During binding,
the energy compensation enables this system going through
one mismatch in the PAM-proximal region. While for two
mismatches in seed, the energy barrier cannot be adequately
compensated thus block the strand invasion at the very be-
ginning, resulting in a bigger chance for dCas9 to leave the
current DNA target. Here, the effect of multiple mismatches
can be amplified, giving rise to the synergetic effect. More-
over, if the mismatches are out of the seed region, as sgRNA
has already comes to the end of the strand invasion process.
Multiple mismatches here, together with the decreasing free
energy during the early stage of strand invasion, resulting in
a local energy minimum right before these mismatches; and
thus render them exhibit less capacity to repel the dCas9
protein. On the other hand, there is also evidence show-

http://www.thu-big.com/sgRNA_design/Quantitative_CRISPRi_Design/
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Figure 6. Convolutional neural network based on the thermodynamic model can well fit to experimental data. (A) Structure of the convolutional neural
network, in which thermodynamic parameters were treated as trainable variables. Through this network, the one-hot encoded sequences can be transformed
into binding activity by calculating probabilities of dissociation. Parameters were updated through backpropagation using mean squared error as the loss
function. (B, C) Data were randomly split into training dataset containing 80% of raw data and test data set containing the rest 20% of data. The network
achieved good performances in fitting test dataset for both (B) library r0 (n = 341, r2 = 0.61) and (C) library r349 (n = 344, r2 = 0.56).

ing that attenuating the interactions between Cas9 and nu-
cleic acids, which results in less energy compensation during
strand invasion, could improve the specificity (25,43,44).

One potential point to further improve this model is the
energy compensation term related to the interaction be-
tween dCas9 and nucleotide substrates during strand inva-
sion. Regarding the energy compensation as a constant in
this work is straightforward, but may be not such meticu-
lous since the interactions between dCas9 and nucleotides
should vary across the strand invasion process, even for
the same nucleotides at different sites. We propose that this
problem can also be fixed by the CNN approach, via train-
ing these energy terms as convolution kernels, just like the
nearest neighbor parameters in the current model. Simi-
larly, this framework may enable us to quantitatively de-
termine other essential but unavailable thermodynamic pa-
rameters for CRISPR-dCas9 system using high-throughput
screening data, which allows predicting activities not only

for off-target sequences, but also for on-target sequences
in a ‘white-box’ manner. Crucially, a comprehensive ex-
ploration of sequence and mismatch space using unbiased
high-throughput screening is needed to support such data-
driven method. By this means, we can dramatically extend
the applicability of this framework to ultimately construct
general models for CRISPR/Cas system in future works.

In addition to elucidating the binding mechanism, the re-
sults of this work are also expected to lead to some use-
ful applications. A straightforward idea is to design sgR-
NAs for the prokaryotic microorganisms, in terms of either
sgRNA (library) without any potential off-target, or tai-
lored designed sgRNA (library) with mismatches to carry
customized activities; both of which are important for large-
scale CRISPRi screen in bacteria to investigate the rela-
tion between gene function and its expression level (8,45–
48). In particular, we note that sgRNA library with ra-
tionally designed mismatches to carry customized knock-
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down activity, by acting as unique identities, can be easily
adopted into NGS-based high-throughput pooled screen,
enabling investigating phenotypic readout of tuning thou-
sands of bacterial genes in parallel (47,48). This is extremely
hard to do by simply modulating the expression level of
dCas9 by arrayed screen, when thousands of genes need to
be investigated. We believe such large-scale pooled screen
is paramount for bacterial functional genomics, in terms
of both understanding and engineering complex bacterial
genome and the genetic basis for the derived phenotype of
practical interest. Moreover, the synergetic effects in seed in-
dicated that the CRISPR-dCas9 system had the sensitivity
to detect single-nucleotide polymorphisms (SNPs), as the
binding activity could be quantitatively customized via in-
serting mutation(s) in seed to amplify differences. A similar
strategy was also applied in CRISPR-Cas13a system (49),
indicating that these synergetic effects might be a shared
characteristic among a wide range of CRISPR-Cas systems.
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