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Abstract

Temperature varies on a daily and seasonal scale and thermal fluctuations are predicted to

become even more pronounced under future climate changes. Studies suggest that plastic

responses are crucial for species’ ability to cope with thermal stress including variability in

temperature, but most often laboratory studies on thermal adaptation in plant and ectotherm

organisms are performed at constant temperatures and few species included. Recent stud-

ies using fluctuating thermal regimes find that thermal performance is affected by both tem-

perature mean and fluctuations, and that plastic responses likely will differ between species

according to life strategy and selective past. Here we investigate how acclimation to fluctuat-

ing or constant temperature regimes, but with the same mean temperature, impact on heat

stress tolerance across a plant (Arabidopsis thaliana) and two arthropod species (Orches-

ella cincta and Drosophila melanogaster) inhabiting widely different thermal microhabitats

and with varying capability for behavioral stress avoidance. Moreover, we investigate the

underlying metabolic responses of acclimation using NMR metabolomics. We find increased

heat tolerance for D. melanogaster and A. thaliana exposed to fluctuating acclimation tem-

peratures, but not for O. cincta. The response was most pronounced for A. thaliana, which

also showed a stronger metabolome response to thermal fluctuations than both arthropods.

Generally, sugars were more abundant across A. thaliana and D. melanogaster when

exposed to fluctuating compared to constant temperature, whereas amino acids were less

abundant. This pattern was not evident for O. cincta, and generally we do not find much evi-

dence for similar metabolomics responses to fluctuating temperature acclimation across

species. Differences between the investigated species’ ecology and different ability to

behaviorally thermoregulate may have shaped their physiological responses to thermal

fluctuations.
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Introduction

The natural environment is constantly changing and abiotic factors fluctuate continuously on

various spatial and temporal scales. These changes can pose stress on organisms [1, 2] and

especially extreme temperatures are important physical factors that affect the abundance and

distribution of species [3–6]. To survive and reproduce in fluctuating and periodically stressful

environments individuals and populations need to adjust their physiology, morphology or

behavior to mitigate adverse effects on fitness. This can occur via phenotypic changes within

the lifetime of an individual, cross-generational epigenetic responses, or evolutionary adapta-

tions across generations [4, 7]. Most laboratory studies on physiological and evolutionary

adaptation to various thermal conditions on plant and animal ectotherm species have used

constant temperatures [2, 8]. However, under natural conditions temperatures are rarely con-

stant and even less so in the face of climate change causing increased variability and decreased

predictability of temperatures [9, 10]. Recent studies on Drosophila [11–17] and various other

invertebrate species [18–23] have shown that thermal variability can have significant impacts

on thermal performance and that conclusions drawn on the basis of studies in constant tem-

perature environments does not always hold under variable thermal conditions. The impact of

thermal fluctuations on stress resistance has been attributed to the convex shape of the perfor-

mance curve. Temperature fluctuations will create a disproportionate increase or decrease in

performance because the curve accelerates slowly from the lower extreme, gets steeper towards

optimum performance, and decelerates rapidly when approximating the upper extreme. The

acclimation effect will thus depend on the mean temperature and amplitude of fluctuations

used in the study, a relationship known as Jensen’s inequality [1, 24, 25]. However, the empiri-

cal support for the theory has been inconsistent and likely depends on the past selective pres-

sures on species and traits and the nature of thermal regimes applied [12, 26].

A common expectation for studies examining the effect of thermal variability on heat and

cold stress resistance is that temporal variability in habitat temperatures will select for high lev-

els of plasticity in thermal tolerance traits compared to stable thermal environments [27–30].

This is expected if the environmental cues for temperature changes are reliable [31, 32; but see

33], the heterogeneity occurs at a timescale relevant for the lifespan of the organism, and

genetic variation for plasticity is present [32–36]. However, findings on the relationship

between the latitudinal origin of populations and the level of plasticity in thermal tolerance are

generally contrasting for both arthropod and plant species. Some studies find no relationship

between latitude and plasticity for animal ectotherm species [16, 17, 37–39] and plants [40].

Other studies have found such an association for cold [41, 42] and heat tolerance [43, 44] in

animals and for cold [45], and heat tolerance [46] in plants. Only few studies have examined

geographic clines in thermal tolerance for plant species, but studies find associations between

latitude and plasticity of other fitness-related traits, which suggest that climatic variability has a

strong effect on plasticity in plants [47–51]. Despite only few studies finding a strong associa-

tion between plasticity and temperature variability, there is a trend for broader thermal range

with latitude that might be linked to differences in plasticity levels (Reviewed by Addo-Bediako

et al. [52]; Angilletta [53]; Sunday et al. [54]; see also [16, 55]; but see [37]). Yet, most studies

find that this is caused by differences in inherent lower lethal limits, whereas upper thermal

limits show little differentiation with latitude [38, 53, 56, 57; but see 58].

The discrepancies between findings on plasticity of thermal tolerance and thermal range

(especially upper thermal limits) in different populations and species have been attributed to

differences in the availability of microhabitats in terrestrial environments, and the capabilities

for behavioral thermoregulation between e.g. plants and animal ectotherm species, and differ-

ent life stages [54]. For instance, a stable microhabitat such as the soil environment will be
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buffered from large fluctuations in temperature and lower levels of plasticity may therefore be

expected in soil living organisms such as collembolans [59, 60]. Despite this expectation, it has

been demonstrated that differences in plasticity exists between local populations and different

species [41, 43, 60, 61]. However, inducible heat tolerance caused by plasticity in the springtail

Orchesella cincta is much slower compared to species such as D. melanogaster, which is likely

due to the daily thermal fluctuations experienced by each species [59, 62].

In addition to microclimates, thermoregulatory behavior also reduces the temperature vari-

ation experienced by some invertebrates because they actively seek shade, bask in the sun, or

move between sun and shade [63, 64]. The capacity for behavioral thermoregulation will

depend on the mobility of the species as shown for different life-stages of invertebrates that dif-

fer in mobility levels and plastic responses in thermal limits [65–67]. For instance, for D. mela-
nogaster the relatively immobile larval and pupal stages show much higher plastic change in

survival to heat stress after heat hardening treatments compared to the mobile adult stage [68].

These findings suggest that mobility levels are important determinants of plasticity in nature

and that plasticity becomes less important as adults gain the ability to avoid high temperatures.

Likewise, plants have limited capability of thermoregulatory behavior on a short time scale

(though some regulation occurs e.g. via changes in leaf and flower orientation and leaf rolling)

and this can explain why plant studies generally find stronger associations between plasticity

levels and latitude compared to studies on ectotherms [69, 70].

The sessile life strategy of plants might thus promote selection on alternative morphologi-

cal, physiological, or biochemical mechanisms of stress avoidance and mitigation [49, 71–73].

Some core cellular stress responses that have been identified and functions across most taxa

and environments, include molecular chaperone activity, changes in membrane lipid composi-

tion, altered energy metabolism, and build-up of cryoprotectants/osmoprotectants (Reviewed

by Feder & Hofmann [74]; Hazel [75]; Kültz [76]). The importance of these mechanisms dur-

ing thermal fluctuations is however poorly understood [1]. A valuable tool for understanding

mechanisms underlying acclimation processes in plants and animals is metabolomics which

provide an integrated measure of regulatory processes at the different molecular levels com-

bined with external environmental influences [77, 78]. All of these processes are reflected in

the metabolome, which is closely linked to the observed functional phenotype. Thus, the meta-

bolome might constitute a reliable predictor of organismal phenotypes and provide novel

insight into the underpinnings of complex traits such as responses to thermal fluctuations [79,

80].

Here, we investigate tolerance to heat stress in the arthropods D. melanogaster and O.

cincta, and the plant Arabidopsis thaliana. We acclimated the three species at a constant and

fluctuating temperature regime both with a mean of 20.4˚C. We hypothesize that individuals

exposed to thermal fluctuations will have higher heat tolerance compared to those exposed to

constant thermal acclimation conditions prior to testing due to Jensen’s inequality. We further

expect that the plastic response in heat tolerance to thermal fluctuations will differ between

species because they inhabit thermally distinct environmental niches and have varying levels

of mobility. Thus we anticipate a strong plastic response to thermal fluctuations in the immo-

bile plant A. thaliana; a moderate response in the vinegar flies, D. melanogaster, where the

adult life-stage is readily mobile but occupying temperature variable environments especially

in immobile egg and pupae stages; and lowest response in collembolans, O. cincta, that occupy

a buffered soil environment. We further investigate the metabolomic consequences of expo-

sure to respectively constant and fluctuating temperatures using NMR metabolomics hypothe-

sizing that both shared and distinct responses to thermal fluctuations are observed across the

three species.
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Materials and methods

Ethics

No endangered or protected species were included in the present study. The collembolans

were collected in a public park with no specific permission required for collection and flies

were collected at a private farm with permission from the land owner.

Species and populations used for experiments

The experiment was performed in two independent experimental runs with sampling for

NMR metabolomics in the second run. The chosen species represent distinct life strategies and

microhabitats.

Drosophila melanogaster. Flies used in the study were from a population of D. melanoga-
ster that was set up in 2010 using the offspring of 589 inseminated females caught at Karens-

minde fruit farm in Odder, Denmark (for further details see [81]). The population was

maintained in the laboratory for ca. 220 generations at a population size >1000 individuals

prior to performing the experiments reported here. The flies were held in plastic bottles con-

taining 50 mL agar-sugar-yeast-oatmeal standard Drosophila medium [82] at a density of

approximately 200 flies per bottles and maintained at 19˚C in a 12:12 h light/dark regime.

Experimental flies were produced by density-controlled egg laying in 10 bottles of 200 flies for

6 hours. Newly eclosed flies were transferred to bottles with fresh media within 12 hours of

eclosion. One day prior to acclimation start the flies were sexed under light CO2 anesthesia

(<5 min) and 180 groups of 10–12 males (only male flies were used for the experiments) were

placed in 35 mL vials containing 7 mL standard Drosophila medium. Flies were 5–6 days of

age at acclimation start for both experimental runs. During acclimation, fresh media was pro-

vided every other day.

Orchesella cincta. Collembolans used in the experiment originated from a population col-

lected in Siena, Italy, in 2016 and thereafter maintained at 20˚C, 70% RH and a photoperiod of

12:12 hour light: dark regime for ca. 15 generations (for details see [40]). During acclimation,

10–13 collembolans of unknown sex were held in 180 replicate petri dishes (55 mm) contain-

ing a water-saturated plaster-of-paris: charcoal (9:1) medium and an algae-covered twig was

provided as food source. A few drops of water were added to each petri dish every day to pre-

vent desiccation stress and fresh food was provided every other day. Collembolans used for the

experiment were 8 weeks old at acclimation start in the first experimental run and 10 weeks

old at the second run. Heat tolerance in O. cincta within this age-span has been shown not to

differ [83].

Arabidopsis thaliana. A. thaliana seeds used in the study were from the Columbia-0

(Col-0) accession. Seeds were surface sterilized in 70% (v/v) ethanol for 10 min and then

briefly mixed with 100% (v/v) ethanol before drying on a piece of sterile filter paper. Surface-

sterilized seeds were stratified in sterile water at 4˚C for three days prior to plating on 55 mm

petri dishes containing 1x Murashige and Skoog (MS) basal growth medium (Duchefa), 0.5

gL-1 MES and 1.0% (w/v) agar at pH 5.7. Seeds were plated at a density of 24 seeds per plate on

180 replicate plates. Plates were sealed with Micropore tape and placed horizontally in a

growth room at 20˚C with an 16 h day length at 150 μmol m-2 s-1 for three days to allow seed-

lings to emerge, after which the acclimation treatments were initiated.

Thermal acclimation regimes

A constant and a fluctuating thermal regime with equal mean temperature and a photoperiod

of 16:8 h light/dark and a light intensity of 150 μmol m-2 s-1 that resemble Danish summer
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conditions were generated in two programmable Plant Growth Chambers (Snijders Micro-

clima MC1750E). These long-day conditions were used to meet the requirements for plant

growth and animals were kept under the same conditions to ensure comparable results. The

constant regime retained a temperature of 20.4± 0.2˚C throughout the day and night. The fluc-

tuating thermal regime varied predictably and diurnally around the mean temperature 20.4˚C,

reaching a minimum temperature of 13.2± 0.1˚C, at rate of 0.04˚C min-1, early in the morning,

and a maximum temperature of 26.9± 0.1˚C, at a rate of 0.06˚C min-1, in the afternoon (see

Fig 1).

Exposure to the acclimation treatments (constant or fluctuating) were started by relocating

90 replicate petri dishes (A. thaliana and O. cincta) and vials (D. melanogaster) for each species

randomly to the two acclimation treatments. The temperatures in the constant and fluctuating

regimes were 20.4 and 24.3˚C, respectively, at acclimation start for all organisms in the first

experimental run, and 20.4˚C in both regimes in the second run (Fig 1). Differences in start

temperature in the two regimes in run 1 (which was not intended) were considered negligible

due to the long acclimation exposure periods. The replicate petri dishes and vials were reshuf-

fled in a randomized manner inside the chambers once a day during the acclimation period to

minimize slight internal differences in temperatures and light that individual replicates may

have been exposed to in the chambers. Flies and collembolans were acclimated for 7 days, and

seedlings for 6 days before assessment of their heat tolerance and freezing of individuals for

NMR (from second experimental run).

Heat tolerance

Heat tolerance was tested using a heat mortality assay exposing the organisms to 7–8 species

specific temperatures ranging from non-lethal to lethal: D. melanogaster were exposed to 35,

36, 37, 38, 39, 40, 41˚C; O. cincta to 35, 36, 37, 38, 39, 40, 41, 42˚C; A. thaliana to 37, 39, 41, 43,

44, 45, 47, 49˚C. The species-specific test temperatures were based on pilot tests (results not

shown). Thermal incubators were used to generate the different test temperatures and the tests

were conducted at midday when the temperature in both thermal regimes was ~20.4˚C. This

was done to minimize effects of different temperatures and daily rhythm on heat tolerance.

Fig 1. Thermal acclimation regimes. Section of the recorded temperatures in the constant (grey) and fluctuating

(black) thermal regimes from the second experimental run. The constant thermal regime maintained a temperature of

20.4± 0.2˚C and the fluctuating regime cycled around the mean temperature in intervals of 13.2–26.9˚C. Adult flies,

collembolans and plant seedlings were acclimated to each acclimation regime for 6–7 days. The experiment was

performed twice and the dotted and dashed lines represent the temperature at the initiation of acclimation treatments

in the first and second experimental run, respectively.

https://doi.org/10.1371/journal.pone.0237201.g001
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For flies and collembolans, 10 randomly chosen replicates of 10 individuals from each acclima-

tion treatment were exposed to each stress temperature for 1 hour. During the tests the flies

were kept in plastic vials containing 7 mL standard Drosophila medium and collembolans

were kept on Plaster-of-Paris medium. Following exposure to heat stress, D. melanogaster and

O. cincta recovered for 1 hour at 20.4˚C and subsequently the mortality was scored as the

number of dead individuals out of the total number of individuals in each replicate. For A.

thaliana, 10 randomly chosen replicate plates with ~24 seedlings from each acclimation treat-

ment were likewise exposed to each of the chosen test temperatures for 1 hour and then

returned to the growth chamber at a constant temperature of 20.4˚C. The seedlings were kept

in the petri dishes containing (MS) medium during the test and recovery period. Thermal

damages in plants build up slowly when exposed to moderately high temperatures and to

ensure that we had accounted for the total mortality caused by thermal stress the number of

viable seedlings was quantified after 7 days of recovery. Seedlings that were still green and pro-

duced new leaves were scored as survivors.

NMR

In the second experimental run, we repeated the experimental design and stress tests described

above, but prior to stress tests randomly chosen samples of arthropods and plants from each

acclimation treatment were snap-frozen in liquid nitrogen for later NMR metabolomic analy-

sis. Metabolites were extracted from 6 replicates of 10 male flies and 6 replicates of 10 non-

sexed collembolans from each acclimation treatment using the same protocol as described by

Ørsted et al. [84] and from 5 replicates of 24 seedlings from each acclimation treatment for A.

thaliana. In short, whole-body tissues from each sample were mechanically homogenized in 1

mL of Acetonitrile solution (50%, 50% ddH2O) using sterile glass beads and a homogenizer

(FastPrep-24TM—MP Biomedicals) for 2 x 35 sec at 3800 rpm. The plant samples were further

sonicated for 15 minutes at room temperature prior to the proceeding steps. All samples were

cooled on ice, centrifuged at 14,000 rpm for 10 min at 4˚C. The supernatant was transferred to

new tubes, snap frozen, lyophilized, and stored at -80˚C until NMR analysis.

NMR measurements were performed at 25˚C on a Bruker Avance III HD 800 spectrometer

(Bruker Biospin, Rheinstetten, Germany), operating at a 1H frequency of 799.87 MHz, and

equipped with a 3 mm TCI cold probe. 1H NMR spectra were acquired using a standard NOE-

SYPR1D experiment with a 100 ms delay. A total of 128 transients of 32 K data points span-

ning a spectral width of 20 ppm were collected. The spectra were processed using Topspin

(Bruker Biospin, Rheinstetten, Germany). An exponential line-broadening of 0.3 Hz was

applied to the free-induction decay prior to Fourier transformation. All spectra were refer-

enced to the DSS signal at 0 ppm, manually phased and baseline corrected. The spectra were

aligned using icoshift [85]. The region around the residual water signal (4.87–4. 70 ppm) was

removed in order for the water signal not to interfere with the analysis. The high- and low-

field ends of the spectrum, where no signals except the reference signal from DSS appear, were

also removed (i.e., leaving data between 9.7 and 0.7 ppm).

Data analysis

Thermal tolerance. We fitted a generalized linear model with a binomial link function on

survival proportions for each species. This allowed us to look for batch effects between

repeated experiments. A likelihood ratio test (LRT) was used to compare a model containing

an interaction term between temperature and experimental run with a reduced model omit-

ting this term. All LRTs were significant which indicated significant effects of experimental

run and the data was treated as two independent experiments for the rest of the analysis.
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For every heat exposure temperature, survival was calculated as the number of survivors

over total number of individuals for each replicate. The Lethal median Temperature (LT50) for

each acclimation treatment was found by logistic regression on survival proportions for each

stress temperature using the drc-package in R [86]. Significant differences in LT50 for each spe-

cies were found by comparing confidence intervals of LT50 estimates and by chi-square LRT

on a model incorporating differences in LT50 between the two thermal regimes and a model

assuming common LT50 for both.

NMR data. Multivariate analyses were performed on spectral data that was normalized by

probabilistic quotient area normalization [87] to suppress separation caused by variation in

sample volumes, and pareto-scaled to reduce variance caused by metabolite differences.

Principal component analysis (PCA) was used to differentiate metabolite content between

species and thermal acclimation treatment. PCA analyses were run on the normalized and

scaled spectral data in R using the built-in R function prcomp(). The analysis was run on the

complete metabolite spectra dataset and on subsets containing individual species data. Signifi-

cant effects of species and acclimation regime were tested on PCA scores using MANOVA in

R [88].

Metabolome differences caused by thermal acclimation regime were further assessed

using Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS-DA) on the

data combined for all species and for individual species. Validation scores for the OPLS-DA

models were calculated by 7-fold cross-validation. The analysis is regression-based and

seeks to correlate sample variation with a response vector that contains sample information

(acclimation treatment) while finding uncorrelated variation (orthogonal components) that

are systematic in the data. This analysis is useful when the effects of interest are masked by

variables that have larger influences on the sample variation, e.g. species metabolome varia-

tion [89, 90]. OPLS-DA was carried out using the SIMCA16 software (Umetrics, Malmö,

Sweden).

In order to identify the significant changes in metabolite concentrations when going from

constant to fluctuating acclimation regimes the OPLS-DA loadings (amplitude and correla-

tion) were plotted for all models. The correlations were calculated after removing the variation

explained by the orthogonal components. The threshold for significant change in metabolites

between acclimation treatments were P< 0.05 after correction for multiple testing for 50

metabolites. Relative changes in metabolite concentrations in organisms acclimated to the two

thermal regimes were calculated for every significant metabolite as the difference in concentra-

tion in individuals from the constant and the fluctuating acclimation treatments divided by

the median concentration in individuals from the constant acclimation regime.

Results

Thermal fluctuations increase heat tolerance

Acclimation to the fluctuating compared to the constant thermal regime with equal mean tem-

perature consequently increased LT50 for A. thaliana and D. melanogaster in both experimen-

tal runs (Table 1, Fig 2). The heat tolerance of A. thaliana from the fluctuating thermal regime

was 0.5˚C higher in experimental run 1 and 0.9˚C in run 2 (Table 1, Fig 2). For D. melanoga-
ster these numbers were 0.3 and 0.2˚C in run 1 and 2, respectively. A significantly higher LT50

was also observed in O. cincta from the fluctuating thermal regime where individuals had a

0.3˚C higher LT50 in run 1 (Table 1, Fig 2). Generally, we observed higher heat tolerance for A.

thaliana than for both invertebrates, whereas only slightly higher heat tolerance was observed

in O. cincta compared to D. melanogaster (Table 1).
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Effect of thermal fluctuations on the metabolome

Principal component analysis (PCA) was performed on the combined and separate metabolite

spectra of D. melanogaster, O. cincta, and A. thaliana (Fig 3) to characterize the metabolite

response underlying acclimation to constant and fluctuating thermal regimes for all species.

The total variation between samples was explained by 33 principal components, however PC1

and PC2 accounted for most of this variation (64.3%, Fig 4 and S1 Fig). An inspection of the

PCA scores plotted for PC1 and PC2 shows a distinct separation of metabolites associated with

species and this was substantiated by a test for differential metabolite response on PCA scores

(MANOVA; p< .001). PC1 further separates clusters associated with thermal regime (Figs 4

and 5), but this effect was not significant (MANOVA; p = 0.113).

Because of large variation caused by species-specific metabolite differences, an OPLS-DA

was performed to focus the analysis towards differences in acclimation regime while diminish-

ing variation caused by species. The OPLS-DA model was composed of one predictive compo-

nent and three orthogonal components (S1 Table). Thermal regime accounted for merely 3%

of the total metabolite variation in the samples, but the predictive ability of the model to cor-

rectly group a sample into constant or fluctuating acclimation treatment based on the metabo-

lite content in the sample was significant (predictability Q2 = 0.6, S1 Table).

In addition, OPLS-DA models were performed on individual species (S1 Table). All models

were of good quality, i.e. Q2 scores > 0.5. For A. thaliana 60% of the total metabolite variation

was explained by the acclimation treatment, while the corresponding number was 18% for

both D. melanogaster and O. cincta (S1 Table).

The OPLS-DA loadings from each individual OPLS-DA model were used to identify metab-

olites that differed significantly between individuals acclimated to fluctuating and constant ther-

mal regimes (Figs 3 and 6). The analysis showed that the set of metabolites that was elevated or

suppressed differed for each species. Metabolite changes that were significantly associated with

the predictive component for A. thaliana included elevated levels of glucose and suppressed lev-

els of glutamine (gln), arginine (arg), and gamma-aminobutyric acid (GABA) (Figs 3D and 6).

Sucrose levels were elevated in D. melanogaster acclimated to thermal fluctuations and alanine

(Ala) levels were lowered (Figs 3C and 6). Lastly, O. cincta that was exposed to thermal fluctua-

tions had elevated levels of hydroxyphenyl ethanol and 3-hydroxybutyric acid (Figs 3B and 6).

Discussion

In this study we investigated the effect of thermal fluctuations on heat tolerance and the meta-

bolome in three taxonomically distant species. We found that individuals of A. thaliana and D.

Table 1. Lethal median temperatures. LT50 values (mean ± SE) for species acclimated to constant and fluctuating thermal regimes. Significant differences in LT50 for the

two acclimation treatments were found by chi-square test for each species.

Experimental run 1 LT50 (˚C) Chi-square test

Species Constant Fluctuating p-value χ2
(d.f)

Drosophila melanogaster 38.27 (±0.07) 38.56 (±0.07) 0.002 9.42(1)

Orchesella cincta 39.69 (±0.09) 39.94 (±0.08) 0.034 4.49(1)

Arabidopsis thaliana 44.79 (±0.05) 45.33 (±0.07) < .001 53.71(1)

Experimental run 2 LT50 (˚C) Chi-square test

Species Constant Fluctuating p-value χ2
(d.f)

Drosophila melanogaster 38.82 (±0.06) 39.01 (±0.06) 0.028 4.81(1)

Orchesella cincta 39.30 (±0.08) 39.38 (±0.08) 0.460 0.55(1)

Arabidopsis thaliana 43.75 (±0.05) 44.64 (±0.05) < .001 150.16(1)

https://doi.org/10.1371/journal.pone.0237201.t001
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melanogaster acclimated at fluctuating temperatures were more heat tolerant than individuals

acclimated to constant temperatures. This pattern was only observed for O. cincta in experi-

mental run 1 (Table 1, Fig 2). The increased heat tolerance of individuals from the fluctuating

temperature regime is in line with previous studies on Drosophila species exposed to predict-

able thermal fluctuations [11, 13, 23], but has to our knowledge not previously been shown for

plants or collembolan species.

Fig 2. Survival proportions after heat exposure. Regression on survival proportions after exposure to heat stress at species-specific test temperatures for 1

hour for individuals acclimated to constant (black) and fluctuating (grey) thermal regimes. Panel A represents the first experimental run and panel B the

second run. Individual points are survival proportion for each replicate and 95% confidence bands around the regression.

https://doi.org/10.1371/journal.pone.0237201.g002
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Of the three species that we investigated we observed the most pronounced increase in heat

tolerance in response to thermal fluctuations for A. thaliana (Table 1, Fig 2). This finding sug-

gests that A. thaliana has a larger capacity to adjust its phenotype to environmental fluctua-

tions than D. melanogaster and O. cincta. Obviously we cannot make strong conclusions as to

whether this result reflects general differences in responses to thermal fluctuations across spe-

cies. However the observation agrees with studies on other plant species that have found strong

correlations between latitudinal temperature variability and plasticity of various fitness-related

traits, including photosynthetic rate, water-use efficiency, seed-output, leaf angles and number

of flowers [46, 49–51, 91]. Such association between latitudinal temperature variability and fit-

ness-related traits and heat tolerance has generally been much weaker for insects [16, 17, 37,

39, 92]. Although we cannot make any conclusions on why plants in general respond stronger

to thermal fluctuation based on our study, it could be speculated that plants have developed

stronger plastic responses as a consequence of their sessile lifestyle compared to invertebrates.

We only found small differences in the acclimation response to constant and fluctuating tem-

peratures for flies and an even weaker signal were observed for collembolans. Likewise, no sig-

nificant effect of acclimation treatment on the metabolomes was found in these two species

(Table 1 and Fig 4). This suggests a lower ability of these two species to induce a thermal plastic

response which may relate to the ability of the species to behaviorally evade stressors in nature

by e.g. seeking deeper into the soil column or escaping rapidly by flight or other types of

maneuvering to more favorable thermal conditions [43, 61, 93]. This is supported by findings

showing that sessile life stages of Drosophila are more plastic than adult stages [65, 66, 68].

However, studies generally find that collembolans show hardening responses to both cold and

Fig 3. Metabolite loading spectra. Metabolite loading spectra showing significant (colored peaks, p< 0.05) up- or downregulated metabolites in

individuals acclimated to fluctuating temperatures compared to constant temperature for A) layered spectrum for all organisms, B) O. cincta, C) D.

melanogaster, and D) A. thaliana.

https://doi.org/10.1371/journal.pone.0237201.g003
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heat exposure, but this response is slow and maybe not working at the timescale of daily tem-

perature fluctuations [41, 43, 59, 60].

The magnitude of the acclimation response observed in LT50 values was manifested in the

metabolome showing bigger differentiation for A. thaliana exposed to fluctuating and constant

temperatures compared to the arthropod species investigated (Figs 4 and 5, and S1 Table).

This is well in accordance with the idea that this plant species, due to its limited mobility, exert

a greater metabolite response to environmental fluctuations than invertebrates. Further, we

found that the set of metabolites that was elevated or suppressed in response to thermal

Fig 4. PCA scores plot. PCA on metabolite spectra from whole-body extract of D. melanogaster, O. cincta, and A.

thaliana acclimated to constant (filled circles) and fluctuating (open triangles) thermal regimes. PC1 and PC2 account

for 39.01% and 25.39% of the variance between samples, respectively.

https://doi.org/10.1371/journal.pone.0237201.g004

Fig 5. PCA scores for analysis on individual species. PCA scores plot for A. thaliana, O. cincta, and D. melanogaster
acclimated to constant (filled circles) or fluctuating (open triangles) thermal regimes. Ellipses represent 95% CI.

https://doi.org/10.1371/journal.pone.0237201.g005
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fluctuations for each species differed, but some of the affected metabolites shared some bio-

chemical properties. For instance, sugar levels were elevated in A. thaliana and D. melanoga-
ster exposed to thermal fluctuations, whereas amino acids were suppressed (Fig 6). These

patterns were not found for collembolans, which showed a markedly different metabolite

response than flies and plants.

Accumulation of soluble sugars, which act as compatible compounds that help stabilizing

proteins and membranes and regulating osmotic pressure, is a common low temperature

response in invertebrates [61, 93–96] and a low and high temperature response in plants [73,

97–100]. In our experiment, heat tolerance was tested at midday when temperatures in the

fluctuating thermal regime had returned to initial mean temperature subsequent to a cool ther-

mal peak reaching 13˚C during the night. It has previously been found that D. melanogaster
exposed to gradual cooling shows increasing levels of sugars and decreasing levels of amino

acid when temperatures approximate 10˚C and that the levels remain elevated for up to 4

Fig 6. Relative change in concentrations of nine metabolites. Whisker box plots of change in relative concentrations

of nine metabolites in A. thaliana, D. melanogaster, and O. cincta acclimated to fluctuating and constant temperatures,

respectively. Significant changes in concentrations are indicated by � (p< 0.05). The y-axis shows the concentration of

each metabolite in the organisms acclimated to fluctuating temperatures (measured as spectral intensity) relative to the

mean concentration of the metabolites in organisms acclimated to constant temperatures. The centerline in each

box represents the median, and the upper and lower boundaries are the 25th and 75th quantiles. The whiskers mark the

extremes, and dots represent the outliers.

https://doi.org/10.1371/journal.pone.0237201.g006
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hours after returning to pre-cooling temperatures [95]. Thus, it is likely that the accumulation

of sugars we observed was an effect of cold ramping during the cold part of the thermal fluctu-

ations which was maintained during the return to mean temperature. Accumulation of sugars

during exposure to cold temperatures has been linked to the direct effect of low temperatures

on enzyme activity involved in carbohydrate metabolism in invertebrates [101] and may also

be the reason for the observed accumulation of sugars in this study.

Seemingly, sugars also accumulate in some plants exposed to temperature variation [102,

103]. A recent study found that natural changes in light and varying temperature have pro-

found impact on daily rates of primary metabolism of A. thaliana compared to stable climate

conditions with a constant temperature and sinusoidal simulations of light intensity [103].

Thus, most metabolites increased in the daytime and declined during the night in both the

constant and variable thermal regimes, reflecting the build-up of reserves in the light and their

consumption in the dark. However, the level of sugars and starch were higher at dawn in the

naturally variable regime and this pattern was associated with slow carbon utilization at night

due to cold temperatures. Thus, findings of changed levels of sugars for A. thaliana and D. mel-
anogaster when exposed to fluctuating temperatures might not be a direct effect of accumula-

tion of osmoprotectants, but rather indicate an indirect effect of altered metabolism such as

slower utilization of energy-yielding molecules at night and faster synthesis at day.

Similar to findings in our study also Annunziata et al. [103] observed that acclimation of A.

thaliana to a variable temperature regime resulted in lower levels of amino acids than in a sta-

ble temperature regime. This may partly be a result of decreased metabolic connectivity, which

affected amino acids in particular or rapid incorporation of amino acids into proteins during

high daily temperatures and slow protein degradation at night due to low temperature. These

results can also explain the decreased levels of GABA for A. thaliana that was found in the fluc-

tuating regime in our study. GABA is a non-protein amino acid that is found in both animals

and plants and is proposed to be involved in intercellular stress signaling [104, 105]. However,

the regulation and function of GABA is still uncertain and it is proposed that increases of

GABA with thermal stress is simply a product of protein degradation [106, 107]. Thus, in

accordance with the lower levels of free amino acids found in this study, the decreased levels of

GABA might also reflect slow degradation of proteins at night when temperatures are low.

Findings of changed levels of sugars and amino acids for A. thaliana and D. melanogaster
when exposed to fluctuating temperatures are interesting as they share some common

responses to high and low temperature stress. However, in the current study, it is not possible

to deduce whether these metabolites have a direct impact on heat tolerance or merely reflect

indirect effects of altered metabolism. Future studies should focus on determining the separate

and combined effects of the cold and warm temperatures that individuals are exposed to dur-

ing thermal fluctuations on the metabolome and more in depth analyses of molecular mecha-

nisms, pathways and connectivity between constituents.

In O. cincta an increase in 3-hydroxybutyric acid and hydroxyphenyl ethanol was found in

response to fluctuating temperatures (Figs 3A and 6). The first is a ketone that is produced

from fatty acid metabolism when cellular carbohydrate levels are low [108]. This could be an

indication of increased energy demand, potentially because of increased metabolic rate as

more time is spent at higher temperatures due to Jensen’s inequality, or alternatively due

increased production of cellular protective molecules for stress mitigation. Hydroxyphenyl

ethanol is a phenolic compound, which is synthesized by some organisms, including fungi,

bacteria, and algae species which constitute the food items for collembolans [109]. Thus, the

elevated levels of this metabolite presumably come from increased food consumption, maybe

as a response to increased energy demand in the fluctuating compared to the constant thermal

acclimation regime. Phenolic compounds that are ingested via foods possibly act as
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antioxidants [96] which protect cells from oxidative stress in humans [110]. High and low tem-

peratures lead to cellular changes that induce oxidative stress [111] and thus, the increased lev-

els of hydroxyphenyl ethanol found in collembolans (Fig 6) might help alleviating cells from

oxidative stress. However, these are merely speculations and need further testing.

Conclusion

Collectively, results of the present study reveal that A. thaliana and D. melanogaster show

increased heat tolerance in response to acclimation to fluctuating temperatures in accordance

with Jensen’s inequality. The response was generally low and would in terms of climate change

probably have little impact on survival in nature. However, we only measured one aspect of heat

tolerance and this conclusion might have been different if examining other measures of heat tol-

erance, different life stages of the organisms or other acclimation regimes. Despite this, we

found a larger response of the plant species, and we speculate that this can be linked to its sessile

life-style. However, this study did not include enough species belonging to different thermal

habitats or with different levels of mobility to make any conclusions on this matter. The under-

lying metabolome response to acclimation was stronger in A. thaliana than in the invertebrates.

The physiological mechanisms of adaptation were comprised of metabolites involved in pri-

mary metabolism in both A. thaliana and D. melanogaster, but showed a markedly different

metabolite response in O. cincta involving fatty acid metabolism and phenolic compounds. We

cannot conclude whether these differences in metabolomes have direct impact on heat tolerance

or if different mechanisms were induced during acclimation and heat stress. Further studies

might focus on finding differential responses before, during and after heat stress to determine if

exposure to fluctuating, but non-stressful temperatures also changes the response to highly

stressful conditions compared to acclimation at constant temperatures. This aspect is important

to investigate to gain knowledge on whether exposure to fluctuating temperatures is adaptive or

if the changes in metabolites are only indirect effects of rates of metabolism. stylefix.
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