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Donal F. O’Shea, and Carsten Strohmann*

Abstract: Insights gained from a comparison of aminometa-
lation reactions with lithium amides, potassium amides and
mixed lithium/potassium amides are presented. A combination
of structural characterization, DFT calculations and electro-
phile reactions of aminometalated intermediates has shown the
advantages of using a mixed metal strategy. While potassium
amides fail to add, the lithium amides are uncontrollable and
eliminated, yet the mixed K/Li amides deliver the best of both
systems. Aminopotassiation proceeds to form the alkylpotas-
sium species which has enhanced stability over its lithium
counterpart allowing for its isolation and thereby its further
characterization.

The transition metal catalysed hydroamination is an impor-
tant reaction in synthetic chemistry.l'! The related catalytic
reaction of alkene derivatives with lithium amides has been
widely investigated (Scheme 1).! Major limitations remain
for the use of polar lithium metal amides for alkene addition
reactions as uncontrollable polymerization is often an occur-
ring reaction.”! Presumably, this is due to a combination of
reversible (-elimination from addition product A (higher
stability of B compared to A) and carbolithiation by A of the
starting alkene substrate (higher nucleophilicity of LiCR;
than LiNR,) (Scheme 1).P*# Yet research for new approaches
is a necessary topic of modern chemistry as if these
undesirable features could be controlled, the synthetic scope
of A (beyond protonation as in hydroamination) would
become available via reactions with electrophiles producing
H.P! To date, reactive intermediates such as A have not been
isolated, making progress in addressing these issue challeng-
ing and slow.®! To access new synthetic strategies and
influence the reaction pathway, these two limiting compo-
nents must be overcome. At first glance, finding a means of
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preventing both the polymerization and 3-elimination reac-
tions of A may appear contradictory. To prohibit these
undesirable pathways, the reaction barrier for addition should
be lowered and the carbanionic centre formed needs to be
stabilized. In this account, we report our efforts to achieve this
by exploiting the characteristics of different alkali metals (Li
and K) in combination with stabilizing groups and allowing
the thermodynamics of the reaction to select the preferred
metal from a mixture of both.®!

Within this paper, the reaction pathway too difficult to
access building blocks is presented on the basis of synthesizing
-metalated amines. At the outset of this study, the advantage
that aminometalated intermediates of type A can be accessed
by either a deprotonation of G or aminometalation reaction
with C was recognized as a unique approach to investigating
this challenging problem.”’ The inaccessibility of A via an
alkene aminometalation route has restricted studies which
may shine light on why this route is so challenging to control.
As such, we first chose to access derivatives of A via
deprotonation using either tBuli or Schlosser’s base mixture
of ‘BuOK and nBuLi which would allow a comparison of
metallic reactions containing either lithium alone or both
lithium and potassium. Previous work has shown the value of
mixed K/Li amides for selective deprotonations which
indicated that they had potential for the development of
a new aminometalation strategy.™

The first substrate chosen for investigation was N,N-
dimethyl-2,2-diphenylethan-1-amine (2a; Scheme 2) as the
inclusion of a geminal diphenyl group should limit undesir-
able amide eliminations through stabilization of the meta-
lated intermediates."’
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Scheme 1. Schematic sequence and side reactions of the catalytic
aminolithiation shown for the example of the addition of lithium
dimethylamide (B) to styrene.
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Scheme 2. Synthesis of 3-metalated amines by deprotonation and
aminometalation.

tBuLi and Schlosser’s base (fBuOK/nBuLi) were used to
achieve an irreversible deprotonation of 2a, and the subse-
quent metalated mixtures were subjected to crystallization
studies. As expected, reaction of 2a with rBuLi did give
deprotonation, although the aminolithiated 1a was not
observed. In all attempts, the subsequent [-elimination
product lithium dimethylamide [4a-2THF], was obtained.
The lithium dimethylamide crystallizes in a mixture of THF
and n-pentane in the triclinic crystal system, space group P1
(Figure 1). The asymmetric unit contains one half of an
inversion symmetric dimer of the lithium amide. The central
structural motif is a Li-N rhombus. Each of the lithium cations
is coordinated by two THF molecules as well as two
dimethylamide groups. Attempts to in situ react la with
electrophiles failed to provide products (see later for dis-
cussion). These results indicate that under the typical reaction
conditions used the equilibrium lies towards the aminolithia-
tion starting materials 3 and 4a, which is consistent with the
known failure of this reaction.

Next, deprotonation with Schlosser’s mixed metal system
of tBuOK/nBulLi was explored. Again, as expected, an
irreversible deprotonation occurs, but in contrast to the
above example, this reacting system can self-select from
either lithium or potassium, allowing either amino-metalated
species 1a or 1b to be formed. From crystallization studies of
this reaction, single crystals of the metalated intermediate in
which potassium was the metal of choice as in [1b-4THF],
were obtained. The potassiated species crystallizes at —80°C
in THF in the monoclinic crystal system, space group P2,/n.
The asymmetric unit contains one monomer of the metalated
species. The potassium is coordinated by four THF molecules,
the dimethylamino group and C2, C9, C14 and C19 of the
diphenyl group. The C-K distances range from 3.065(2) A to
3.389(2) A. To the best of our knowledge, this is the first
monomeric potassiated structure only coordinated by the
solvent THF and one nitrogen since other reported mono-
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Figure 1. Molecular structure of [4a-2THF],." For further information
on selected bond lengths and angles see Supporting Information.
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meric structures utilize chelating nitrogen-based ligands. By
warming up the crystals of the monomeric species on the
microscope slide in perfluorinated oil to —20°C and recrys-
tallisation, a polymeric potassiated species [1b-2THF], is
formed, which crystallized in the monoclinic crystal system,
space group P2,/c (Figure 2)." This transformation shows
that THF can easily be removed from a potassium cation in
favour of forming a polymeric potassium network. This can
also be done selectively by using the reaction mixture of
[1b-4THF],, removing the solvent in vaccuo, resolve the
residue in m-pentane and crystallize the compound
[1b-2THF], at —79°C. This favouring of potassium over
lithium at the carbanion centre is consistent with previous
work in which we have observed that the deprotonation of
toluene with a mixed K/Li base results in the formation of
benzyl potassium.!'!]

To gain a more in-depth understanding of the reaction
mechanisms involved, quantum chemical calculations of the
deprotonation and metal amide elimination reactions utiliz-
ing fBuLi and Schlosser’s base have been performed
(Scheme 3)."2 The obtained structures [1b-4THF] and
[4a-2THF], served as basis for the calculations and a mixed
Na/Li system (fBuLi/fBuONa) was included for additional
comparison (Table 1). Calculations predicted that the most
favourable deprotonation conditions are with Schlosser’s base
(63 kImol™") followed by rBuLi (73 kJmol ') being the next
best. Other alkyllithiums such as MeLi or iPrLi were less
efficient and the combination of tBuLi with a sodium source
further decreased the reactivity (86 kJmol™'). Comparable
results were obtained for the deprotonation of N,N-dimethyl-
2-phenylethan-1-amine and N,N-dimethyl-2-phenyl-2-(tri-
methyl-silyl)ethan-1-amine (see SI).
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Figure 2. Molecular structure of [1b-4THF].'” The Formation of a poly-
meric potassiated species [1b-2 THF],, occurs on heating the mono-
meric species. For further information on selected bond lengths and
angles see Supporting Information.
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The subsequent elimination reaction has the highest
barrier with potassium (activation barrier: 88 kJmol™', ther-
modynamics: 70 kJmol™, free energy: 36 kJmol™") and is
most likely to happen with lithium compounds (activation
barrier: 51 kJmol™', thermodynamics: 17 kJmol™', free
energy: —15 kImol™') (Scheme 3, Table 2).

Comparable results were obtained for lithium, sodium
and potassium metalated N,N-dimethyl-2-phenylethan-1-
amine and N,N-dimethyl-2-phenyl-2-(trimethylsilyl)ethan-1-
amine (see SI). Taking together the experimental and
computational results strongly indicates that the undesired
[-elimination observed for aminolithiation reactions should
be experimentally controllable if potassium amides are used
for an addition to styrene derivatives (Scheme 4). Using 4-
methoxystyrene and alkali metal dimethyl-amides (Li, Na, K)
as substrate, quantum chemical calculations of the amino-
metalation reaction show that a reaction with potassium
amides should be kinetically (lower addition barrier/higher
elimination barrier) and thermodynamically possible
(Scheme 4). In contrast, the lithium was the least favourable
with sodium in between. Calculations also revealed that an
aminolithiation should be kinetically hindered and, depend-
ing on the styrene derivative, could also be endothermic (see
SI).

While computational studies showed the advantage of
potassium over lithium and sodium, experimental evidence
was obtained to show that potassium alone was insufficient
and a mixed K/Li amide is essential for a positive reaction

Table 2: Results of the quantum chemical calculations of the -
elimination of metal dimethylamides from 1 in k] mol™; for further
information regarding the modulated reaction schemes see Supporting
Information; M062X/6-31+ G (d)."'*"!

Li+2DME K+3DME Na+2DME Na+ 3 DME
AAH:g 51 88 77 75
AAHyosra 17 70 43 57
AAG, g —15 36 -3 25

© 2020 The Authors. Published by Wiley-VCH GmbH

methoxystyrene with different alkali metal amides using DME as
solvent; M062X/6-31+ G (d).b"!

outcome. Using potassium piperidide on its own and in
combination with potassium-z-butoxide and 5 or 3 as sub-
strates, no aminometalation product was obtained, with
starting material recovered (Scheme 5).

M no reaction

“78°C— tt
( N—H . Wk THF
~78°C— 1t

THE 3or5

——————> noreaction

-78°C—rt
THF

Scheme 5. Failed aminopotassiation with potassium piperidide with
and without potassium-tert-butoxide.

This illustrates that a more complex and synergistic mixed
metal species is necessary to facilitate conditions for a stoi-
chiometric aminometalation. Schlosser’s base provides the
two metal components and an alkoxide to in situ produce
a potassium amide more suited to our needs. By mixing
piperidine with tBuOK and nBuLi a more effective, syner-
gistic mixed metal system is formed. After adding of 3, the
aminometalation with subsequent aqueous work-up could be
performed in an isolated yield of 85% (Scheme 6). By
changing the solvent to a more nonpolar 1:1 mixture of
THF and n-pentane we herein report the first functionaliza-
tion of an aminometalated species with different electrophiles
(MeOD, nBuBr, Me;SiCl).

By adding a second stabilizing phenyl group to the
molecule as well as utilizing the effect of the potassium, the
aminometalation reaction could be performed. Is the barrier
lowering effect of the potassium high enough that no second
stabilizing phenyl group is needed? Also, the reaction with 4-
methoxystyrene (5) has been performed. An isolated yield of
88% could be obtained (Scheme 7). Unfortunately, the
omission of a second stabilizing phenyl group leads to
a more complicated reaction kinetic, being more sensitive
towards changes of the reaction parameters and thereby

Angew. Chem. Int. Ed. 2020, 59, 22500 —22504
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Scheme 6. Aminometalation of 1,1-diphenylethene (3) with the
Schlosser’s base piperidide with subsequent aqueous work-up or
functionalization with electrophiles E* (MeOD, nBuBr, Me;SiCl).
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Scheme 7. Aminometalation of 4-methoxystyrene with the Schlosser’s
base piperidide with subsequent aqueous work-up.

hindering quenching with electrophiles. For example, as
recently shown by Hevia et al., moisture plays a significant
role in hydroamination reactions.'" Furthermore, a source
from which the metalated 4-methoxystyrene abstracts
a proton could not be identified."

To prove this reaction, also the intermediate of the
aminometalation reaction with a potassium amide should be
isolated. Crystals of the aminometalated 1,1-diphenylethene
could be obtained (Figure 3). The species crystallizes in THF
in the monoclinic crystal system, space group P2,/n. The
structure demonstrates that an aminometalation is possible
and the potassium, as already assumed in the calculations, is
significantly better stabilized in the reactive intermediate
than in the corresponding potassium amide because of
interactions with m-electrons.

Moreover, another species could be obtained, which is
generated during the aminometalation (Figure 4). This aggre-
gate contains deprotonated piperidine, potassium, lithium,
tert-butoxide, enolate and THF as ligand. The species
crystallizes in THF in the orthorhombic crystal system,
space group Pnma. The mixed lithium/potassium structure
10 shows that the extraordinary reactivity might be increased
by using this special mixture of an organolithium compound,
a potassium compound and an amine. Proof of this synergistic
effect was also given by using a reaction mixture without
lithium (Scheme 5).1'°!

The molecular structure in the crystal in combination with
the failed reactions of the potassiated piperidide on its own
and in combination with potassium-ters-butoxide with both
styrene derivatives show that the situation of the reactive

Angew. Chem. Int. Ed. 2020, 59, 22500 —22504
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[PhaCHCH,N(CsH40)2K(THF)2],,

Figure 3. Molecular structure of 9. The hydrogen atoms and disorder
in the THF molecules are omitted for clarity.!"”

(t-BuQ),(CH,CHO)(C5H1oN)4(THF);K3Li3

Figure 4. Molecular structure of 10. The hydrogen atoms and disorder
in the THF molecules are omitted for clarity."!

potassium amide is much more complex. Considerations are
needed whether parts of the structure observed in the crystal
are also involved in the reaction mechanism and influence the
reaction mechanism. Further anions such as the alkoxide
anion seem to be necessary in addition to the amide.
Additionally, alkoxides might also increase the solubility
and by this increase the reactivity. Also, two different or even
more alkali metal ions must be present. However, structure 10
represents only the thermodynamic minimum of a decompo-
sition product of THF and does not show the desired
reactivity.

In conclusion, highly reactive intermediates can be
accessed either by deprotonation reactions of phenethyl-
amine derivates but also by an alternative pathway: the
addition of alkali metal amides to the double bond. A
stoichiometric aminometalation reaction of styrene deriva-
tives with potassium amides at low temperatures without
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competing polymerization reactions is presented and the
possibility of quenching with different electrophiles is proven.
Quantum chemical calculations based on crystallized reactive
intermediates show a first insight into the reaction mechanism
and explain the advantage of potassiated amides in compar-
ison to lithiated amides in the aminometalation reactions. The
isolation of a complex potassium amide aggregate delivers
first explanations why a stoichiometric aminometalation
works only with a mixture of lithium, potassium, amide and
alkoxide.
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