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We have come a long way in the last years of developing
analytical strategies in metabolomics. We have seen

huge progress in tackling multiplatform measurement, data
analysis, data integration, and interpretation.1 Mass spectrom-
etry (MS) is the unrivaled technology in the field. Following a
divide and conquer strategy, successful approaches defined and
addressed sub-omes individually. Recursively solving technical
“subproblems” also with regard to the analytical tasks of
quantification and identification allowed us to make significant
progress. However, some of the challenges, as imposed by the
metabolome’s complexity (molecules <1500 Da), are not
entirely overcome to date.
Indeed, the physicochemical space occupied by this building

block of life is vastly heterogeneous, spanning concentration
ranges from (high) fM to mM2 and forming dynamic complex
reaction networks. The complete scope of metabolic networks
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remains to be elucidated. This holds true for “simple”
organisms such as bacteria with relatively small-sized
metabolomes (in the hundreds) and even more for the
human body metabolome considering that it consists of
hundreds of different metabolome, depending on body fluids,
cell type, status, and tissue. Next to the endogenous human
pathways, numerous metabolites exist that are transformed
and/or circulated upon the complex interplay with trillions of
microbes constituting the “ecosystem” of the human body.3

Additionally, certain disease-specific metabolites (e.g. methy-
lated amino acids) with biological function may occur, defining
the so-called epi-metabolome.4 Damaged and repaired
metabolites can be the result of enzymatic impairment.5

Finally, the human metabolome is highly dependent on
nutrition and the surrounding environment. More than
200,000 food derived metabolites and 10,000 xenobiotics
exist that are potentially circulating.6

Consequently, we have not yet reached the ultimate aim,
which is to comprehensively identify and quantify all
metabolites with one or at least a few analytical runs.
Metabolome coverage, selectivity, sensitivity and throughput
remain conflicting goals that we have to navigate.7 While this
fact limits the pace of experimental assessment of metabolome
inventories8 regarding different cell types and model
organisms, there has been significant progress in customizing
workflows, with the aim of providing a pragmatic base for
informative metabolite measurements.9

The virtuous cycle of the global metabolomics workflow
starts with discoveries by nontargeted analysis. Over the last
few years, this analytical strategy has seen a tremendous impact
across different metabolomics applications and beyond. At the
same time analytical chemists, embracing the novel omics-type
of measurement, have been and keep being challenged
regarding quality control (QC), method standardization, and
harmonization. Evidently, the computational methods for data
processing and data analysis are by far more complex than in
target analysis. Establishing metrics and guidelines for
nontargeted analysis is not straightforward,10 especially
compared to the well-established validation practice in target
analysis. Experimental design and data quality11 are key to fully
exploit the potential of nontargeted analysis with regard to e.g.
biomarker discovery12,13 and beyond. The integration of
reference materials in nontargeted workflows is still under
debate. The complexity of omics-reference materials produc-
tion, following stringent metrological criteria, results in high
costs, which contradicts to the idea of affordable discoveries by
large-scale studies. The authors assume that this lack of general
acceptance has in turn reduced the pace of material
development, and today we still have only a few biological
matrix reference standards available. Finally, whether a
discovery can be standardized might be debatable; however,
a finding should be validated. In fact, a metabolomics
experiment should not end with nontargeted methods, but
the results should be validated both analytically and bio-
logically.14

Thus, the final analytical step of our ideal virtuous
metabolomics cycle includes targeted measurements using
authentic standards. Typical sample numbers in metabolomics
range from tens or hundreds up to a few thousand, depending
on the study design.15 The more diverse the study cohort, the
more samples must be analyzed in order to generate a
meaningful hypothesis. Following the golden rules of step-wise
discovery and stringent analytical validation is more demand-

ing for large scale studies. Time spans between sampling,
analysis, interpretation, discovery, and final validation together
with the limited availability of authentic standards pose
practical limitations towards this approach. A major aim of
analytical development remains increasing throughput of
measurement. Regarding compound annotation, de facto
every current study accepts annotations with varying but
defined degree of certainty. This holds true for metabolomics
and lipidomics, where annotation is facilitated by rule-based
MS data interpretation as enabled by the structural templates
of lipids. It is common practice in both applications to report
levels of annotation.16,17 However, estimating the proportion
of potentially false assignments is still an exciting field of
research.18 Finally, analytical validation should include the
quantitative dimension of discoveries in nontargeted analysis.
Despite significant progress in harmonization, standardization,
and advanced statistical analysis,19 large scale multicenter
studies remain challenging. Recent applications resort to small
scale studies for hypothesis generation, followed by a (wide)
targeted large scale study for hypothesis validation.20

Biological validation is dependent on the scope of the study.
In metabolic phenotyping, biological probability checks are
facilitated by massive joint efforts to deploy open-source
metabolic atlases for a number of different organisms.
Comparisons with both experimental data and predictions
(reactions, rules, and enzymes) support the findings.21 The
complexity of biological validation increases dramatically in the
case of a hypothesized biological function. Then, validation of
the generated hypothesis does not only address the mere
presence/up- or downregulation of a certain metabolite/
pathway, but the hypothesized biological function needs to be
corroborated. For example, in functional metabolomics,22

cutting-edge multi-omics analysis23 together with biochemical
assays unravels molecular functions and associated modulatory
mechanisms of perturbed metabolism in relation to phenotype.
Undoubtedly, accepting multiple lines of evidence in

nontargeted discoveries (with reported degree of confidence)
has accelerated metabolomics research. The question to which
degree analytical validation can be reduced or even entirely
replaced by advanced computational methods and biological
validation experiments needs to be addressed in the over-
whelmingly interdisciplinary science of metabolomics. Report-
ing on the accurate assessment and the resulting degree of
confidence alone is a minimum requirement.24 On the other
hand, the ways of evidence besides strict analytical validation
might promote the acceleration of the measurement step itself.
High-throughput technologies proved to be fit-for-purpose in
dedicated applications despite limited selectivity.25,26

This review will focus on recurring topics in MS-based
metabolomics measurement (including lipids). We will
emphasize the role of stable isotopes for both target and
nontargeted analysis giving an overview on different standard
materials derived from isotopically labeled biomass and
strategies enabled by these materials. We will discuss the
current state of the art of quantification, validation, and
harmonization with respect to both metabolomics and
lipidomics. We will include strategies enabling various ways
of scientific evidence regarding the metabolite/lipid annotation
task. Finally, we will survey the rationales of workflow design,
which straddle coverage and throughput. Nearly five years have
passed since Cajka and Fiehn published their review on the
state of the art of metabolomics/lipidomics, proposing at the
same time a vision of merging targeted and nontargeted
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analysis.9 Since then, many studies have realized the potential
of simultaneous unanticipated discovery and quantification of a
selected metabolite pool, a strategy enabled by high-resolution
mass spectrometry (HRMS). We report on the progress of
“merging” ideas. We think that lipidomics and metabolomics
need to be integrated into one workflow. We will discuss the
potential of chromatographic solutions as compared to recent
high-throughput technologies for the simultaneous analysis of
the two sub-omes, as a first key step.

■ ESTABLISHED CONCEPTS OF QUANTIFICATION
IN METABOLOMICS/LIPIDOMICS

In absolute accurate quantification, guidelines on bioanalytical
method validation from the United States Food & Drug
Administration (U.S. FDA)27 or European Medicines Agency
(EMA)28 establish gold standards and metrological frames.
However, application to omics-type analysis is challenged by
the sheer number of analytes within one measurement, the lack
of standards, and the need for an actual analyte-free matrix. In
the following, we will give a brief tutorial summary on absolute
quantification strategies currently established in the field of
metabolomics and lipidomics. The term quantitative assess-
ment in MS-based omics studies often refers to relative

quantification of differences between sample groups, while here
we refer to absolute quantification requiring proper stand-
ardization and analytical validation. A brief introduction will
emphasize the need for standards and reference materials, in
the form of both multi-mix standards and biological matrix
material.

Recommended Absolute Quantification Approaches.
The method of highest metrological order in MS based
analysis is isotope dilution established by matrix-matched
multi-level external calibration with internal standardization.
The internal standard (ISTD) added as early as possible in the
analytical process and equilibration between sample and spike
should be ensured prior to extraction. Multilevel calibration,
preferred as the working range (given by the lower limit of
quantification (LLOQ) and the upper limit of quantification
(ULOQ)), is assessed and controlled along with the
quantification exercise. This is not the case when isotope
dilution is based on a single spike level (one-point calibration).
Next to this gold standard, other external calibration strategies
could meet the recommendations of widely accepted (bio-)
analytical method validation guidelines, as well, as long as they
properly employ internal standardization. As internal stand-
ards, either standards of similar structures or of matching

Figure 1. Accurate absolute quantification according to the U.S. FDA guideline. Four requirements need to be fulfilled for calibration: 1, matrix-
matched; 2, multipoint; 3, external standardization; 4, internal standardization. Additionally, their control point, the challenge, and a practical
solution for omics-experiments are given. *The ranking of ISTD follows the levels of quantification of the Lipidomics Standards Initiative (LSI).29

Figure 2. Fit for purpose internal standard-based quantification strategies established in the field of metabolomics and lipidomics. Colors in the
graphs symbolize values from the sample (purple), compound-specific standards (green), and surrogate standards (orange).
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retention time (RT) and thus co-ionization are commonly
used. Spiking the same amount of ISTD to external calibrants
and samples allows us to use ISTDs without certified
concentration. Figure 1 dissects the calibration method into
four major components and discusses their relevance.
According to the guidelines, the analysis of biological matrix
blanks is mandatory. The conceptualization of such a blank
sample, i.e. a biological matrix free of endogenous metabolites,
is challenging. Knockout experiments for specific metabolites,
albeit tedious, offer a solution. However, most studies resort to
simplifying approaches using extraction blanks or protein
mixtures.
The gold standard of quantification, if applied to -omics type

of analysis requires a high number of external standards
(ESTDs) and ISTDs, which are stable isotope labeled. Fully
labeled standards are expensive but simplify data evaluation
and validation. State of the art wide targeted assays in
metabolomics implement hundreds of standards. In research
practice, the need for fit-for-purpose methods has led to the
implementation of alternative quantification strategies with the
aim of reducing the overall number of standards, measure-
ments, and costs involved. In lipidomics, calibration strategies
resorting to few standards per lipid class have successfully been
established as enabled by the structural templates of lipids.30

Moreover, recent development concerns the use of partial
isotopic labeling for standard production.31 Figure 2 provides
an overview on established quantification methods in
metabolomics/lipidomics compared to the gold standard
(matrix-matched multi-point external calibration including
internal standardization).
As previously mentioned, isotope dilution using a known

amount of isotopically labeled ISTD with characterized
concentration (traceable) offers a method of high metrological
order. Both fully labeled and partially labeled ISTDs can be
used. In the latter case, concentrations are calculated using
multiple linear regressions. The “single spike” isotope dilution
method is accurate, provided that (1) spike and sample are
equilibrated upon extraction and (2) the blend ratio is within
the linear dynamic range and (3) significantly different from
the natural ratio. Thus, additional validation experiments are
required. For highest metrological order, reversed isotope
dilution experiments are necessary to characterize the spike
with every experiment. These steps are mostly omitted in
-omics measurements. The validation process is accelerated by
kit solutions and commercial availability of ISTD mixtures with
concentration levels tailored for specific applications. If no
compound-specific calibrant is available, surrogate calibration
is accomplished by structurally similar standards, either using
isotopically labeled ISTD or non-endogenous ISTDs.
Structurally similar standards are preferred over RT matched
standards, which ensure co-ionization only. Surrogate internal
standardization drastically reduced the number of necessary
standards. It is executed as multi-point calibration32 or as one-
point calibration.33 In lipidomics, surrogate calibration is
accepted, provided lipid class co-ionization and the use of
response factors34 is ensured. If lipid surrogate quantification is
performed on the MS2 level, variations in signal intensities
between the different fatty acyl chain fragments have to be
mathematically corrected for. Schuhmann et al. recently
published a model based on commercially available lipid
standards to correct systematic errors (up to 60%) for
common glycerophospholipids due to the differences in (1)
the sn-1/2 positions of the glycerol backbone, (2) the length of

the hydrocarbon chain, and (3) the number and location of
double bonds.35

■ STABLE ISOTOPE LABELING
In contrast to radionuclides, isotopes have stable nuclei, hence
representing a safe alternative for labeling approaches. The
overall abundance of heavy stable isotopes in nature is low
(<5%). Given the isotopic effect, i.e. the isotopic fractionation
upon chemical reactions and biological processes, the natural
abundance varies to a small degree, forming the basis for
natural tracer studies in geochronology, ecology, archeology, or
climatology. The low natural abundance facilitates the
production of pure stable isotope labeled compounds, either
via chemical synthesis or via in vivo synthesis.36 Stable isotopes
and stable isotope labeling have a well-documented history in
MS, which was exquisitely outlined for life sciences by
Lehmann.37 In this review, we emphasize the pivotal role of
stable isotope labeled biomass. Today, in vivo synthesized
stable isotope labeled compounds have become essential tools
for mass spectrometry-based identification or quantification in
metabolomics (including lipidomics). The important applica-
tion of supplied stable isotope tracers in metabolomics for flux
and tracer studies is comprehensively covered elsewhere.38−41

Labeled biomass was used early on in quantitative omics
workflows, e.g. amino acid labeling to monitor proteome
changes upon system perturbation. Relative quantification in
proteomics studies using cell culture based labeling42 was
performed, but also successful labeling of higher organisms
such as Caenorhabditis elegans, Drosophila melanogaster, and
mice was reported.43−45 However, it is important to note that
for higher organism complex nutrients and media composition
are necessary so that in most cases only specific amino acids
(SILAC approach) were labeled leading to amino acid labeling
efficiencies of up to 98%.44 Only when fully labeled
mircoorganisms such as Escherichia coli 98% enriched in 15N
were fed to worms (C. elegans) or fruit flies (D. melanogaster),
protein extracts with a labeling degree up to 94% were
detectable.45 However, the smaller number of nitrogen atoms
limits its use in metabolomics or lipidomics, thus carbon or
deuterium labeling is preferred. Already in 2005, absolute
quantification based on internal standardization by uniformly
13C-labeled yeast cell extracts was introduced, paving the way
for absolute quantification of a high-numbered analyte panel.46

At that time no enrichment degrees were reported for
metabolites or lipids. The use of labeled biomass for
quantification tasks in metabolomics was facilitated by fully
labeled E. coli grown in shaking flasks as pioneered by the
group of Rabinowitz47 and further extended for eukaryotic
uniformly labeled yeast grown in fermenters by Canelas et al.48

Enrichment Degree and Isotopologue Distribution.
Isotopically labeled standards are characterized by the
enrichment degreeoften used interchangeably with the
term labeling efficiencywhich refers to the probability of
finding a labeled atom at any possible label site. One has to be
aware that the actual relative abundance of the heaviest
isotopologue, i.e. the fully labeled isotopologue, is lower than
the enrichment degree and depends on enrichment, the
number of labeling sites, elemental composition, and mass
resolution (see Figure 3 A−D). A simplified assumption of
100% abundance of the fully labeled isotopologue leads to
errors in actual relative abundance in the mass spectra
(Examples for leucine and phosphatidylcholine (PC) 34:2
can be found in Figure 3 E). This is relevant in absolute
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quantification relying on ISTDs with known concentration and
especially crucial if the labeled compound is used as surrogate
ISTD as e.g. often performed in lipidomics.33 In this case,
either all isotopologues are summed up (after they have been
checked for interferences) or the actual value is corrected e.g.
similar to isotope correction Type 1 for natural unlabeled
lipids.33 A useful tool for fast prediction of isotopologue
distributions from molecular formulas is enviPat, which is
available as website version and R package.49 Overall, in order
to enable omics-type analysis, the known enrichment degree is
of paramount importance. Spike materials of high enrichment
degree (>99%) are preferred as they lead to more distinct
isotopologue signals, reduced spectral overlay, and more
straightforward data interpretation.
Suite of In Vivo Synthesized Isotopically Labeled

Materials. In the last decades, labeled organisms such as
bacteria, yeast, or plants have been grown to create huge
libraries of stable isotope labeled (13C, 15N, 34S, 2H)

endogenous metabolites.51−53 Controlled growth conditions
of E. coli or Pichia pastoris were particularly successful as
enrichment degrees higher than 99% were achieved leading to
the simultaneous production of hundreds of biologically
relevant labeled metabolites covering the highly conserved
primary metabolome.51,54−56 Some of the materials are already
commercially available (such as labeled E. coli, yeast, and algae
products; details on the materials can be found in Table 1).
The list of labeled organisms is further growing. For

example, uniformly 13C labeled lipids derived from microalgae
Nannochloropsis oculata were measured via MS/MS to calculate
13C enrichment for both the whole molecule and the different
building blocks of a lipid.60 Such information can be useful to
follow labeling of the head group versus fatty acids and might
help to study lipid synthesis and remodeling processes.
Advances in stable isotope labeling in plants using customized
closed growth chambers enabled us to increase the enrichment
degree to 96−98% for 13C and 95−99% for 15N adding a
complex compound panel of primary and secondary
metabolites.62 Still missing is a fully labeled mammalian
organism. The complex feed or media and the resulting high
costs limit the production to partial labeling approaches, which
have been used successfully for relative quantification. For
example, growing HeLa cells on a 5% deuterium oxide
enriched medium together with a deconvolution algorithm
facilitating classical isotopic dilution approaches enabled
improved relative quantification for lipids.31 Even mice can
be partially labeled (6−75% enrichment depending on the
metabolite) for feeding a commercially available 13C-labeled
bacterial diet (Ralstonia eutropha). This strategy was also
applied for relative quantification, improving precision from
27% to less than 10%.64 Table 1 summarizes the labeled
biomass materials, used labeled isotopes, enrichment degree,
feed, and literature.

Applications of Stable Isotope Labeled Biomass.
Isotopically labeled biomass has three major applications in
metabolomics and lipidomics, namely (1) credentialing by
identification of biological metabolites using labeled and
nonlabeled metabolite pairs, (2) validation of isotopologue
distributions, and (3) standardization and normalization for
quantification workflows.

Credentialing: Isotopically Labeled Biomass for Identi-
fication. Credentialing-type approaches involve the analysis of
samples containing analytes in an unlabeled as well as a stable-
isotope labeled form. Mixing of extracts from uniformly labeled
organisms with those from unlabeled organisms allows us to
distinguish metabolic features with biological origin from
background contaminants by the occurrence of shifted m/z
and MS/MS spectra and, in approaches implementing liquid
chromatography (LC−MS), also matching RTs. An early
application of comprehensive incorporation of stable isotope
labeled biomass was published by Giavalisco et al.,53 who
applied 13C labeling of Arabidopsis thaliana in order to
recognize biological features and improve the molecular
formula annotation of their flow injection (FI-) fourier-
transform ion cyclotron resonance (FTICR) and reversed-
phase (RP)-LC-FTICR analysis. The first open-source
software MetExtract capable of automatizing assignment of
LC-MS peaks originating from 13C labeled compounds to their
endogenous counterparts was published by Bueschl et al.66

Later, other tools mostly relying on differential incorporation
of isotopic labels into metabolites have been introduced, which
simplify this type of analysis and include tracer analysis

Figure 3. Difference between enrichment degree and the relative
isotopic abundance of a fully labeled isotopologue. (A) Isoleucine
with 6 carbon atoms is used as an example. (B) Calculation of
abundances for carbon as di-isotopic element is based on the
binominal formula. Other elements with more than one isotope (e.g.
H, N) influence the final abundance according to their natural
abundance also based on a binominal formula. Polyisotopic elements
(O) are based on polynomial terms. Usually, the contribution of H,
N, and O to the overall difference is minimal (here 1−2%) but other
elements must be considered (e.g. Cl, Br, S). (C) Determination of
coefficients of a binominal formula for each term according to the n +
1 line in Pasqual’s triangle (for n = 6:1, 6, 15, 20, 15, 6, 1). (D)
Binominal formula for n = 6. Each term is the relative abundance of
the corresponding isotopologue without the consideration of other
elemental isotopes. The last term corresponds to the fully labeled
isotopologue. The sum of all isotopologues is always 100%. (E)
Exemplarily, the effect of 1% enrichment difference (99%-darker color
and 98%-lighter color) on the abundance is shown for PC 34:2 (n =
42, blue) and isoleucine (n = 6, grey). The bar chart shows the
distribution from the fully labeled isotopologue (M′) until M′ − 4 for
both molecules. The difference for the fully labeled isotopologue to
100% is already 12% for the 98% labeled isoleucine and 58% for PC
34:2. But even for a better enrichment (99%) the error for PC 34:2 is
still 36%, highlighting the importance to consider the relative
abundance for quantification workflows.50
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(MAVEN,67 mzMatch-ISO,68 X13CMS,69 isoMETLIN,70

george,71 and ALLocator72). The isotopic ratio outlier analysis
(IROA) approach demonstrated the introduction of highly
specific isotopologue patterns to further improve specificity
and quantification capabilities using labeled organisms.73 In
2014, Mahieu et al.74 coined the term “credentialing” and
further emphasized the importance of this type of approaches
for the recognition of real biological features and the
comparison and fine tuning of metabolomics workflows.
Later they used stable isotope labeling combined with other
feature grouping and noise removal approaches to show that
the number of biological features in an E. coli extract can
account for less than 5% of all features detected via
nontargeted peak detection.57 MetExtract was later updated
to MetExtract II to remove mismatches and group different
ion-species as well as employ stable isotope patterns for the
purpose of LC-MS peak detection, annotation/noise removal
in fragmentation spectra, molecular formula elucidation, and
isotopic tracer studies.75 This presented a significant step in
harvesting the full potential of stable isotope labeling. In 2019,
Wang et al. employed not only 13C but also 15N isotopically
labeled organisms (Saccharomyces cerevisiae and E. coli).76 As in
the original credentialing approach they combined stable
isotope labeling with other noise reduction and feature
grouping approaches in order to recognize biological features.
Using this approach, they found a comparable number of
biological features (only 4% of the peaks were annotated as
apparent metabolites). Moreover, systematic annotation of
peaks and discrimination of biological compounds (including
isotopic variants) from adducts, fragments and MS artifacts
was established. In fact, the correct identification of adducts
was identified as a major bottleneck for elucidating the number
of true sample molecules. In the following, the integration of
stable isotope labeled buffers in LC-HRMS improved cost
efficiency and introduced an universal stable isotope labeling
approach for the corroboration and annotation of real chemical
features to any kind of sample.77 The disadvantage of doubled
measurement time is compensated by the comparable
performance (for noise removal and annotation) to other
credentialing approaches.

Isotopically Labeled Biomass for Validated Isotopologue
Distribution Elucidations. Another way to harvest stable-
isotope labels in metabolomics is the investigation of
differential incorporation of labels into organisms comprehen-
sively reviewed elsewhere.38−40 However, we want to highlight
the application of labeled biomass with controlled labeling
pattern78−80 to validate isotope tracer analysis workflows.81 In
the past, it was shown that 13C tracer and flux experiments
demand dedicated validation tools. Spectral accuracy, i.e. an
instrument’s ability to truly measure the fractional abundance
of the different isotopologues, is crucial. Metabolite standards
with natural isotopic pattern (as well as fully labeled standards)
are not well suited to assess the accuracy of carbon
isotopologue distribution in tracer studies. Due to the low
natural abundance of 13C, heavy natural isotopologues are
below the limit of detection. Using in vivo synthesis, tailored
carbon isotopologue distribution of primary metabolites can be
obtained, which serves as ideal reference. Isotopologue
distribution of stable isotopologe-labeled compounds can be
assessed with excellent precisions of <1% and trueness bias as
small as 0.01−1%.

Isotopically Labeled Biomass for Quantification. Starting
in the 1980s, stable isotope-labeled ISTDs and isotope dilution
approaches in combination with LC- and gas chromatography
(GC)-MS/MS were used to improve quantification of small
molecules.37 In metabolomics, internal standardization is
widely adopted for absolute quantification, as the analytical
process consists of multiple steps and requires normalization.
Chemical synthesis of isotope labeled standards precludes
omics-type of analysis, as hundreds of ISTDs are required to
make isotopically labeled biomass a promising alternative. The
cost-effective in vivo synthesized metabolites standards are
characterized with respect to their isotope labeling degree but
not their concentrations. Thus, normalization between samples
(relative quantification) or internal standardization of external
calibration (absolute quantification)47,48,54,56 is accomplished
by spiking known amounts of labeled biomass into the
samples. The benefits of these quantification workflows are
well documented. Overall, improved analytical figures of merit
(trueness, precision, and linearity) have been observed upon

Table 1. Overview on Labeled Biomass Materials

Organism Kingdom Isotope Enrichment degree Feed Reference

Escherichia coli Bacteria 13C >98% Glucose Mahieu and Patti 201757

Escherichia coli Bacteria 15N >98% (NH4)2SO4 Krüger et al. 200843

Arthrospira platensis (Spirulina) Bacteria 13C >97% CO2 Berthold et al. 199158

Chlamydomonas reinhardtii (algae) Bacteria 13C >98% CO2 Behrens et al. 199459

Chlorella vulgaris (algae) Bacteria 13C >98% CO2 Behrens et al. 199459

Nannochloropsis oculata (algae) Protist 13C >85% CO2 Doomun et al. 202060

Pichia pastoris (yeast) Fungi 13C >98% Glucose Neubauer et al. 201256

Pichia pastoris (yeast) Fungi 34S >95% Na2SO4 Hermann et al. 201661

Saccharomyces cerevisiae (yeast) Fungi 15N >94% (NH4)2SO4 Krüger et al. 200843

Fusarium graminearum Fungi 13C >99.5% Glucose Bueschl et al. 201452

Arabidopsis thaliana Planae 13C >95% CO2 Giavalisco et al. 200953

Triticum durum (wheat) Planae 13C /15N >96%/>95% CO2/NO3 salts Ćeranic ́ et al. 202062

Caenorhabditis elegans (worm) Animalia 15N >98% E. coli Krüger et al. 200843

Drosophila melanogaster (fly) Animalia 15N >94% S. cerevisiae Krüger et al. 200843

Rattus norvegicus domestica (rat) Animalia 15N >94% Spirulina McClatchy et al. 200763

Mus musculus (mice) Animalia 13C 6−75% Ralstonia eutropha Dethloff et al. 201864

Homo sapiens (HeLa cells) Animalia 2H 0−5% 5% D2O Kim et al. 201931

Homo sapiens (HCT116 cells) Animalia 13C 0−99% Glucose and AAs Grankvist et al. 201865
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the integration of labeled yeast extracts.54,55,82 The use of
HRMS together with stable isotope labeled standards supports
workflows merging absolute quantification and nontargeted
unanticipated discoveries (relative quantification and annota-
tion) in one analytical run. This powerful strategy has been
addressed in metabolomics and lipidomics.54,82 In lipidomics,
only a slight decrease of identified lipids (∼10%) was observed
in the presence of labeled biomass.82 This can be explained
with ion competition in complex matrices when applying data-
dependent fragmentation and can be further optimized by
deep metabolite profiling or data-independent acquisition.
Stable isotope labeled materials as an intermediate have to be
chosen on the bases of sufficient metabolite/lipid class
coverage and biomass availability/costs. Labeled yeast, e.g. P.
pastoris, offers a reasonable compromise for quantitative
studies, as it is an eukaryotic organism that can be easily
cultivated under controlled conditions on a sole carbon source.
Yeasts share a high metabolome and lipidome overlap with
humans including the evolutionarily conserved primary
metabolome, e.g. amino acids, nucleotides, organic acids, and
metabolites of the central carbon metabolism. But also lipids
are covered as shown by Natter et al.83 Wolrab et al.
summarized the most frequently up- and downregulated lipids
in oncology including the classes phosphatidylcholines (PC),
phosphatidylethanolamines (PE), phosphatidylinositols (PI),
phosphatidylserines (PS), lysophosphatidylcholines (LPC),
lysophosphatidylethanolamines (LPE), lysophosphatidic acids
(LPA), free fatty acids (FA), triacylglycerols (TG), diacylgly-
cerols (DG), cholesterol esters (CE), sphingomyelins (SM),
ceramides (Cer), monosialodihexosylganglioside (GM3), and
sulfatides (SHexCer) in both tissue and body fluids,84 and
except for CE, SM, GM3, and SHexCer, all of the listed classes
are present in yeast. In the past, P. pastoris yeast extracts were
successfully spiked to human plasma (including standard
reference material (SRM) 1950 from the national institute of
standards and technology (NIST), USA), different cell
extracts, and yeast, either as ISTD based on ethanolic extracts

or chloroform based lipidome isotope labeling of yeast (LILY)
extracts, for metabolites and lipids, respectively (Figure 4A, B).
At the present state, a library of 206 metabolites for the

ethanolic yeast extract covering the classes of (1) organic acids
and derivatives, (2) nucleosides, nucleotides, and analogues,
(3) lipids and lipid-like molecules, (4) organic oxygen
compounds, (5) organoheterocyclic compounds, (6) organic
nitrogen compounds, and (7) benzoids is established (Figure
4A). All of the identified metabolites were also present in The
Human Metabolome Database (HMDB)88. This can be in part
attributed to the human microbiome, but also to the
evolutionary (inter-species) conservation of the primary
metabolome. With regard to the yeast and human lipidome,
major differences exist including a different sphingoid base
SPH 18:0;3 instead of SPH 18:1;2as well as other
sphingolipid classes (inositol phosphoceramide (IPC), man-
nosylinositol phosphoceramide (MIPC), and mannose-bis-
(inositolphospho)ceramide (M(IP)2C) instead of SM, ceram-
ide 1-phosphates (CerP), and gangliosides. Yeasts also contain
a smaller diversity of fatty acids with a maximum of three
double bonds with a lack of higher polyunsaturated fatty acids
(PUFA). Furthermore, no ether lipids (plasmanyl (ether
bond), plasmenyl (vinyl bond)) are present and cholesterol is
replaced by ergosterol in yeast. Overall, this leads to a list of
405 lipid species (Figure 4B) combining information from
reports on LILY from chloroform extracts by RP-LCMS82 and
an improved preparative supercritical fluid chromatography
(SFC) workflow.87 Optimized extraction strategies and
confirmation by authentic standards can further increase the
metabolite and lipid list in yeast.89 Here, we want to emphasize
the possibility of class or retention-time specific stand-
ardization if the target metabolite or lipid is not present in
the yeast extract. By using these labeled compounds as class or
retention-time specific ISTD if the target analyte is not present
in the yeast extract,90 the list of possible analytes in a
quantitative approach can further be enlarged and adapted to
the sample of interest.

Figure 4. Current in-house library of annotated metabolites and lipids found in Pichia pastoris (yeast). (A) Metabolite classes in ethanolic yeast
extract85 classified using the ClassyFirer86 annotation system. (B) Lipid classes annotated in chloroformic yeast extract.87 GPL,
glycerophospholipids; GL, glycerolipids; SL, sphingolipids; ST. sterols; PR, prenols; Hex1Cer, hexosyl ceramides; SPH, shingosine bases; SE,
steryl esters; Co, coenzyme Q; PG, phosphatidylglycerols; PA, phosphatidic acids; CL, cardiolipins.
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■ HARMONIZATION AND REFERENCE MATERIALS

Joint efforts toward harmonized metabolomics protocols and
the definition of a minimum of quality requirements are of
paramount importance. There is a vivid scientific community
working toward harmonization to raise transparency and
quality of published results.17,91−95 Standardized methods and
reference materials provide benchmarks, paving the way to
reproducibility and most importantly interassay commutability,
with regard to both targeted and nontargeted analysis.
Reference Materials and Interlaboratory Compar-

isons. Certified reference materials represent the highest
metrological order benchmarks enabling traceable and accurate
quantification in metabolomics workflows. Certification
requires an inherently long lead time, as composition and
quantitative values are reported with characterized uncertainty
and stability. Certified reference materials are provided by
metrological institutions or by accredited material producers.
While the application of (certified) reference materials in
absolute quantification is well established, their integration for
nontargeted metabolomics is emerging. A recent multi-
platform study by hydrophilic interaction liquid chromatog-
raphy (HILIC)/RP-LC HRMS96 demonstrated the power of
using high-quality benchmarks in large-scale nontargeted
metabolomics. Three pooled human plasma reference
materials (Qstd3, 211 CHEAR, NIST SRM 1950) were
repeatedly measured along with 3600 samples over a period of
17 months, providing a convincing strategy for data normal-
ization and estimative concentration levels.
As the pace of standard production suitable for omics-type

research in national metrological institutions is slow, interna-
tional ring trials/interlaboratory initiatives drive standardiza-
tion by offering measurement protocols and consensus values
for biological matrix materials which can be distributed to the
community. For the widely adopted NIST reference material
human plasma SRM 1950, the number of consensus values
assessed by international ring trials is continuously growing.
Consensus values for 250 metabolites (amino acids, biogenic
amines, acylcarnitines, glycerolipids, glycerophospholipids,
cholesteryl esters, sphingolipids, hexoses) were assessed on
the basis of the Biocrates AbsoluteIDQp400HR.97 Interlabor-
atory comparisons are of paramount importance in lipidomics,
since reference materials are lacking. In 2017, an international
ring trial provided consensus values for 339 lipids (from the
major categories: fatty acids, glycerolipids, glycerophospholi-
pids, sphingolipids, sterols) in SRM 1950.98 Recently, Triebl et
al.99 further emphasized the need for reference samples by
showing that lipidomics workflows continue to suffer from
limitations associated with reproducibility and commutability
of quantitative data from different platforms, even when
isotopically labeled ISTDs were included. The authors
compared direct infusion, HILIC, and RP-LC-MS workflows
for lipid analysis showing that upon normalization to the
reference sample SRM 1950, platform-dependent quantitative
bias was successfully removed.99 The frequent use of SRM
1950 in both metabolomics and lipidomics studies96,97,100,101

highlights its key role as a reference point for merged
workflows. Another recent interlaboratory study tested seven
distinct materials including human urine pools from four SRMs
and one research-grade test material (RGTM) provided by
NIST.102 Untargeted analytical profiles for these materials
were obtained using a variety of common metabolomics
platforms (nuclear magnetic resonance (NMR), GC- and LC-

MS), leading to the conclusion that all platforms were able to
detect compositional differences despite some platform-
dependent differences.

Community-Based Guidelines in Metabolomics. Com-
munity guidelines on how to report and perform metabolomics
workflows form the basis of standardization. The metabolo-
mics standardization initiative (MSI) of the metabolomics
society91 has worked intensively on definitions and guidelines
considering all steps of the targeted and nontargeted analytical
process for many years. This includes defining the analytical
task, sampling/analysis of data standards, data evaluation, and
reporting.17,93

The metabolomics community is currently, revisiting the
standards of metabolite reporting by the state of the art level of
confidence scala94 (1−3) introducing new subclasses (A−F)
for unambiguous metabolite identification such as cis/trans
configuration information. In October 2020, a new guideline
on lipid classification, nomenclature, and shorthand notation
was published95 including major changes for the annotation of
double bond equivalents and the number of oxygens as well as
newly delineated oxygenated lipid species. Figure 5 shows the
metabolite and lipid identification ranking according to the
newly proposed guidelines of the metabolomics community.

Updated metabolomics repositories such as MetaboLights103

provide openness and transparency of reported data sets.
These repositories will be essential for developing of
community-based benchmark materials and will facilitate the
development of accepted guidelines.
Instrument-dependent compound identification workflows

complicate cross-platform evaluations and call for harmoniza-
tion of reference libraries. A recent European interlaboratory
study published harmonization guidelines for acquisition and
processing of tandem MS data. Interestingly, they also revealed

Figure 5. Metabolite (left) and lipid (right) identification according
to the proposed guidelines of the metabolomics society (A−G) using
the examples of leucine and a PC 18:0/16:2(7E,11Z)[R]. The lowest
annotation level corresponds to known accurate mass information
(G) followed by a known compound class (F), known compound
sum formula (E), known functional moieties (D), known structure
(isoleucine)/double bond position (PC 18:0/16:2(7,11) (C), known
diastereomer (B), and the highest level to enantiomer-specific
identification (A). *in lipidomics105 3 intermediate steps are
distinguished at level D: sum of carbon and double bond number
for all fatty acyl chains (PC 34:2)/known distribution (PC
18:0_16:2) and known position of the fatty acyl chains (PC 18:0/
16:2).
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that under certain collision energies time of flights ((TOF)s)
and Orbitrap fragmentation spectra are comparable.104

Quality Control and Benchmarking. QC and normal-
ization strategies are essential for successful large-scale studies.
Normalization can be performed by QC samples and data-
driven or via ISTDs and is extensively summarized else-
where.106−109 In large-scale metabolomics and lipidomics
studies, the concept of a pooled sample for QC has gained
worldwide acceptance, also allowing us to correct for intra- and
interbatch variations and to accomplish MS/MS measurements
required for annotation.109,110 However, the production of
sufficient amounts of pooled samples can be problematic for
multicenter studies in clinical metabolomics. Additionally, if
only one sample pool including all sample groups is produced,
dilution effects can mask low abundant metabolite signals. The
production of QCs for each group represents an alternative;
however, in some cases preparing a pooled sample is simply
impossible. For example, in many large-scale investigations
such as longitudinal clinical studies or population profiling, all
samples are not available at the beginning of the analysis.
Alternatively, multistandard mixes of metabolites and/or lipids
are established reference samples, which can be either
produced user-defined in the lab or ordered as commercially
available stocks, e.g. LSMLS or MSMLS (from IROA)
including 400 metabolites each 1 mg in well plates or 600
metabolites each 5 μg per well plate. Lipid-specific kits are also
offered, e.g. AbsoluteIDQ (from Biocrates) including 180 or
400 lipids. More recently, lipid mixes with matrix-specific
concentrations are commercially available e.g. SPLASH
LIPIDOMIX (Avanti) products which include one deuterated
ISTD of all major lipid classes at ratios relative to human
plasma. Another possibility is to take deuterated standards
from the UltimateSPLASH (Avanti) panel from different lipid
classes to prepare a customized lipid mix. These valuable
standard panels offer reference materials for streamlined
validation protocols and accelerate harmonization. However,
it should be emphasized that harmonization efforts enabled by
reference standard mixes and kit-type of analysis will not
replace certified reference materials which are fully traceable.
Recently, the concept of a cheap and easily accessible
biological benchmark material was proposed for metabolomics
and lipidomics. The idea was resumed from proteomics, where
HeLa cell extracts have become the gold standard for
benchmarking instrument performance and proof-of-principle
experiments upon introduction of new analytical meth-
ods.111−115 Yeast ethanolic extracts with a characterized
metabolome, not only enabled testing for the chemical space
and coverage upon method implementation and developments
but also enabled in-house routines for instrumental perform-
ance tests with additional potential for batch to batch
corrections in large scale nontargeted metabolomics studies.
The benchmark material is obtained from P. pastoris from fully
controlled fermentations, which can be easily reproduced in a

lab with fermentor access.85 Additionally, these extracts are
also commercially available in both endogenous and 13C-
labeled formate. An open-source yeast metabolite and lipid
library is established for the material. All reported compounds
were reported in the human metabolome data base, showing
once more that yeast is a cost-effective benchmark material for
human metabolomics. 104 out of 206 metabolites were stable
for several years when stored in aliquots at −80 °C.85

■ NONTARGETED DATA ANALYSISINCREASING
QUALITY BY MULTIPLE LINES OF EVIDENCE

Nontargeted metabolomics workflows consist of key steps that
need to be addressed individually with regard to stand-
ardization. The first step of a nontargeted experiment involves
the analytical process aspects, discussed in several re-
views.1,116,117 Data analysis constitutes the most time
consuming and complex step of nontargeted experiments.
Many tools and approaches are available for this process and
have been summarized extensively.107,118−120 More specifically,
data analysis follows stepwise data preprocessing, features table
processing, statistical analysis (feature prioritization and
biomarker elucidation), annotation, and biological contextual-
ization like pathway mapping and integration with other omics
data, all of which (with the exception of statistical analysis) are
discussed in the following. We will emphasize the multiple
strategies of corroborating nontargeted read-outs and deliber-
ately focus on different aspects that improve quality.

Data Preprocessing. Data preprocessing (DPP) presents
the first major challenge in nontargeted metabolomics since it
facilitates the translation of raw data into the less complex
format of so-called feature tables. While approaches enabling
metabolomics DPP keep being improved, the general steps
have remained unchanged across different tools (Figure 6)
(with very few exceptions as in ref 121). However, despite this
fact and the development of different DPP parameter
optimization tools122−124 it often suffers from extensive
problems. Those include false negative and false positive
reports of ion species as well as wrongly reported abundance
values and other issues.125−128 It should be noted that data pre-
processing is not challenging because it is hard to perform, but
because it is hard to perform well. This point was laid out by
Sindelar et al., who demonstrated why poor performance of
data preprocessing could lead to much harder downstream
data analysis.129 It is therefore essential to control the
effectiveness of this process.
There are a number of advances we would like to highlight

in this context. One recent R package, named patRoon,
combines different data preprocessing and annotation
algorithms into a single framework and thereby allows us to
build pipelines in the R-environment.130 This increases
flexibility in data processing choices considerably since it
allows us to combine the strengths of many different tools and
to compare them more easily. It is worth noting that patRoon

Figure 6. General steps of nontargeted data preprocessing.
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supports any HRMS platform and supports algorithms from
many widely used tools such as ProteoWizard,131 XCMS.132

Two other tools which should be noted here are NeatMS133

and MetaClean134, which are based on deep learning and
machine learning, respectively. Both tools allow us to
comprehensively assess the peak picking quality as conducted
via different tools for experimental datasets.133 To the best of
our knowledge these recently published works represent the
only available tools to comprehensively assess peak picking
quality for all picked peaks, which poses a significant
advancement. However, RT alignment and false negatives are
not considered in this approach which makes further
development necessary. To address this need mzRAPP was
introduced, a tool enabling reliability assessment of different
nontargeted data preprocessing steps (under submission). It is
based on automatically validated and extended benchmarks
(starting from user supplied integration boundaries per
molecular formula) and allows us to derive different perform-
ance metrics including the proportion of false negatives,
affected isotopic ratios, and the number of alignment errors for
nontargeted DPP of any experimental datasets. It is worth
noting that the use of benchmark datasets in this context
enables us to investigate the number of false negative peaks as
they provide a so called “ground truth” as a reference point.
While this also offers several other apparent advantages for the
benchmarking of different DPP tools,135 benchmark datasets in
metabolomics come with significant problems. First, their
curation process requires extensive manual work and is hugely
time intensive (although some do exist; e.g., ref 136). This, in
turn, implies that it is impractical to create benchmarks for
different types of datasets (e.g. sample complexities or choices
in instrumentation or acquisition mode such as RP-LC, HILIC,
orbitrap MS, TOF MS) which might imply different needs for
applied DPP software. Secondly, it can be problematic to
consider benchmark datasets as “ground truth” without
sufficient validation. mzRAPP tackles this problem by
automatically applying a number of validation metrics to
check the consistency of user supplied benchmark candidates.
Elimination of Redundancies and Noise from Feature

Tables. As discussed, nontargeted data preprocessing of LC-
HRMS data generally leads to aligned feature tables. Ideally,
(when bioinformatic noise is not considered) rows in those
feature tables correspond to chromatographic peaks with
specific mz@RT values in different samples. Hence, each mz@
RT value ideally reflects an ion species originating from a
sample molecule eluting from the chromatographic dimension
and being ionized in the electrospray. However, preprocessing
workflows typically introduce significant numbers of bio-
informatics noise-features into data sets. In this context, we
would like to highlight three recently published tools allowing
us to remove those noise features from datasets. MetProc
allows us to remove features based on missing value structures
in QC samples.137 Another tool called genuMet is solely
relying on injection order to identify false positive features
without relying on measured QC samples.138 Finally MS-
CleanR has been added to the MS-DIAL139 workflow, allowing
us to (among other things not discussed here) filter features
based on blank signals, background drifts, unusual mass
decimals and relative standard deviations (RSDs).140 Since all
of those tools offer slightly different approaches, their
compatibility for different data sets remains to be elucidated.
Over the last years, many papers and authors have discussed

the challenge that the number of reported ion-species cannot

be directly translated to the number of sample molecules.11

This is due to bioinformatic noise and because one molecule
will form multiple ion species due to the presence of different
isotopologues and adducts. It has been reported that a single
metabolite can lead to more than 100 different ion species
during the ionization process.141 More recently, it was also
shown that adduct species differ significantly in HILIC
compared to RP chromatography.142 The same work also
highlighted the problem of in-source fragmentation, which
poses a significant risk for wrong annotation.
Over the years a number of approaches have been developed

to group those different ion-species in order to eliminate
redundancies or even gain additional reliability for annotations.
Many tools enabling this and other important data analysis
steps are summarized elsewhere.120 An interesting experimen-
tal approach which has been shown to allow improved and
simplified annotation of adducts has been to measure samples
twice with different LC-MS buffer compositions (14NH3−
acetate and 15NH3−formate buffer)77 (in fact, this approach
has also been used by ref 142). In both conducted studies this
approach showed great potential for annotating adducts and
eliminating noise. Unlike credentialing approaches74,143 this
workflow is applicable to any samples even if it cannot be
labeled via stable isotopes. However, as it requires two
measurements for each sample, it dramatically increases
measurement time and might not be applicable to small
sample volumes. Nevertheless, this approach presents signifi-
cant improvement in increased control over noise reduction
and adduct annotation.

The Annotation Task. In metabolomics the term
annotation refers to the assignment of molecular information
to features. This information can involve details on
contributing atoms (molecular formula e.g. C6H12O6),
structural class (e.g. steroid), atomic connections (e.g.
phenylalanine), relative stereochemistry (e.g. leucine or
isoleucine) or chirality (e.g. D-leucine). Different approaches
allow to collect evidence for the affiliation of a feature on any
of those levels. In fact the Metabolite Identification Task
Group of the Metabolomics Society has proposed reporting
standards for different levels of identification depending on the
nature of collected evidence (Figure 5 shows the proposed
metabolite annotation). While those standards are defining
specific types of evidence which have to be collected for a level
to be reached (e.g. matching of acquired MS/MS scans against
a mass spectral library), there are no consensus criteria for the
necessary strength of collected evidence (e.g. what constitutes
a valid spectral match). In this context one of the most
discussed topics is the adaptation of a false discovery rate
(FDR) for spectral matching as it is routinely applied in the
proteomics field. Over recent years a range of different
strategies allowing us to apply this idea also in metabolomics
has been proposed or implemented.18,144−147 While their
actual application is still scarce, they definitely pose a step
toward increased reliability of annotations. Another point,
which needs to be considered in this regard is the nature of
reference spectra used for spectral matching. Until now,
matching against experimental spectral libraries has been
considered the gold standard for this kind of approach.
Although spectral libraries have been growing to impressive
sizes (e.g. recently METLIN reached more than 850 K
standard spectra),148 a recent evaluation on available reference
spectra from authentic chemical standards149 regarding the
coverage of different MS spectral libraries in different genome
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scale metabolic models (GSMs) revealed that on average only
<40% of metabolites in the models are represented. Mean-
while, in silico approaches MetFrag150 (a combinatorial
fragmenter) and machine learning based methods such as
CFM-ID151 (an in-silico fragmenter) and CSI:FingerID152 (a
structure predictor) are more and more accepted. This is
mainly due to their increased coverage of the molecular space
since they do not rely on experimental fragmentation data but
molecular structure databases such as PubChem.153 Indeed
some of those can even go beyond that (e.g. in combination
with tools like EMMF154).
The advantage is evident since such structure databases are

many orders of magnitude larger than any spectral library.
Indeed, this might lead to an improved FDR when using this
kind of approach as compared to matching against a spectral
library with less metabolic coverage. Another strategy worth
mentioning involves the support of annotations utilizing
reactivities of specific functional groups. Briefly, this involves
the specific derivatization of functional groups (such as amines,
carboxylic acids, alcohols, etc.) commonly referred to as sub-
omes.155 Derivatization improves overall ionization efficiency
and enables selective separation and enrichment using
reversed-phase stationary phases. Moreover, the production
of sample specific ISTDs is facilitated. Blends of sample
derivatized with isotopically labeled reagent or unlabeled
reagent, respectively, served for relative as well as absolute
quantification.156 This also enables credentialing-type ap-
proaches (as discussed above).157 As a drawback, these
approaches take considerable effort in terms of data analysis.
Dedicated RT and spectral libraries for identification of
derivatized molecules (available for some derivatization
strategies such as dansylation158) are required. It should be
noted that derivatization approaches reduce throughput and
require dedicated validation, due to challenges arising from
matrix effects and decreased stability.159 Hence, derivatization
strategies can potentially bring many advantages, but require
an extensive amount of work in order for validation and
method development.
H/D exchange on the other hand is more straightforward in

its application and can be included into existing data evaluation
pipelines. Recently, there have been significant advancements
in infrastructure for this type of analysis. For example, the
software MetFrag supports H/D exchange data.160 Although
H/D exchange only allows us to investigate acidic moieties, its
potential for annotation has been shown in multiple
studies.161,162

In cases where the annotation strategies discussed above fail
to deliver the desired insight, novel approaches based upon
complex bioinformatics algorithms fill the void. These
innovations utilize molecular networking of fragmentation
spectra (spectral similarity translated to biochemical and
chemical substructures) or machine learning algorithms. In
this context MS2LDA, which was initially published in
2016,163 associates specific fragments and/or neutral losses
with chemical moieties and, thereby inspecting complex
structural relationships between different unknown analytes.
This algorithm has been further developed to now directly
enable differential analysis of chemical substructures between
different samples (such as investigations on the regulation of
xenobiotic derivatives across different samples.164 More
recently also feature based molecular networking, allowing us
to consider the chromatographic and/or ion mobility
dimension in this type of analysis, has been introduced.165

This way, isomers and in-source fragments can potentially be
investigated. Another tool we wish to highlight here is
CANOPUS166, which classifies features via their MS/MS
spectra even when existing spectral libraries do not include
MS/MS scans of the class in question.

Annotation in the Field of Lipidomics. The general
annotation strategies applied for metabolomics are often not
applicable in nontargeted lipidomics. This is reflected in a
survey among lipidomics researchers from 2018167 revealing
that 60% of all researchers rely mostly on manual (visual)
annotation. Even though software tools are available and
commonly applied (e.g. LDA;168 MS-DIAL,169 LIFS software
tools170), manual annotation remains an integral part of lipid
annotation highlighting the lack of adequate nontargeted
analysis tools in lipidomics. Most available software tools are
based on two approaches: library matching (MS-DIAL,
LipidSearch, Greazy, LipidDex, etc.) and decision rule-based
identification (LDA, LipidXplorer, LipidMatch, LipidHunter,
etc.). Due to building blocks of lipids leading to a distinct MS2
pattern within the same class, decision rule sets based on well-
defined fragments (fragment rules) and their intensity
relationships (intensity rules) can be described for specific
lipid classes.171,172 For library matching similar principles are
applied as in standard metabolomics workflows using accurate
mass, MS2 spectra, and scoring algorithm. Both experimental
or in-silico databases are applied in lipidomics. Unfortunately,
false discovery rate calculation is not possible up to now and a
certain level of false assignments is state of the art in
nontargeted lipidomics. Hence, it is of utmost importance to
reliably estimate the proportion of potentially false assign-
ments. Filtering of false positive annotations can be done by
relative RT; the homologous lipid series of the same class
depends on relative carbon number and/or relative double
bond number.173 Using regressions models the so-called
equivalent carbon number (ECN) model can be applied for
manual annotation174 or RT prediction175 in order to exclude
false positive hits and confirm lipids. Additionally, Kendrick
mass plots can be used to identify homologous series in lipid
data sets.176 The application of Bayesian statistics presents an
interesting and promising direction and may overcome some
limitations of hand-crafted rule sets.177 Excellent community-
based resources provide guidelines (see ILS, LSI92) on criteria
and characteristic fragments for MS/MS annotation. The
LIPID MAPS178 and LSI website list continuously update
information on manual inspection of MS/MS data reporting
on obligatory fragment ions for unambiguous annotation of
lipids. Still, only the minimum requirements have been defined
(see ILS and LSI) so that openness and transparency of
reported datasets remains inevitable to bring harmonization in
lipidomics to the next level. As nontargeted lipidomics remains
error-prone and still requires expert knowledge, comprehensive
information on lipid annotations is essential. The periodicity of
lipids offers further control points in lipid identification. In our
opinion, lipidomics and metabolomics annotation have to be
harmonized and is already possible using the proposed
identification levels by the metabolomics society (Figure 5).

Retention Time and Cross Section as Orthogonal
Parameter in Nontargeted Analysis. Retention Time for
Annotation. Orthogonal data as chromatographic RTs are key
to increase the confidence of MS-based compound annota-
tions. So far, the poor reproducibility and commutability of
experimental retention times across labs even when using
reversed-phase chromatography only precluded the wide
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adoption of RT libraries179 for high quality annotation across
labs. RT prediction from molecular structures is a currently
very active area of research. The most relevant developments
are summarized elsewhere.180 The most recent advances not
covered in the review are provided by the software tools
Retip181 and QSRR automator.182 Retip is a machine learning
based tool which has been trained using more than 800
standard compounds for each, RP and HILIC chromatography.
Retip was integrated into the MS-DIAL tool-box. QSRR
automator has been published as a Python package and builds
RT prediction models for in-house chromatographic meth-
ods.182 It is worth noting that RT prediction is not (yet)
accurate enough to enable accurate identification of small
molecules. However, it can be applied for the annotation of
(miss-)annotated in-source fragments and allows reranking of
positional isomers which can provide valuable insights.181

Collision Cross Section Value for Compound Annotation.
The role of collision cross sections (CCS) obtained from ion
mobility spectrometry (IMS) for confident compound
annotation has been extensively discussed.183−186 The pace
of generating CCS databases (both experimental and in-silico
predicted) has been enormous.187−189 Currently there are two
unified databases, CCS Compendium186 and AllCCS.190 Novel
open-source software tools facilitate data evaluation.131,169

Seminal studies showed that interlaboratory reproducibility
of CCS assessment outperforms191,192 reproducibility of
chromatographic RTs. As a drawback, a CCS value correlates
with the measured accurate mass of a molecule, while
chromatographic retention offers an entirely orthogonal
identifier. Due to the current limitations in ion mobility
resolution, isomer separation of small primary metabolites is
limited. In complex samples, only molecules exhibiting CCS
differences in the low % range (typically 3%) are routinely
resolved. The resolution is improved by novel advanced
instrumental concepts.193,194 Recently, the potential of trapped
IMS (TIMS) to separate lipid isomers was shown.195 The
obtained resolving power allowed us to discriminate lipid
species exhibiting CCS differences of <1% in complex
biological mixtures. Several studies implemented ion mobility
for structurally characterizing lipids with a high degree of
specificity. Information on double bond position and geometry
was obtained combining IMS with ozonolysis and Paterno−̀
Büchi reaction.196,197

■ NAVIGATING THE CONFLICTING GOALS OF
METABOLOME COVERAGE AND THROUGHPUT

Up to date metabolome analysis is the best fit for purpose
compromise between coverage, selectivity, and throughput.
High coverage implies a wide interrogation window with
regard to both the chemical molecular dimension and the
metabolite abundance dimension (8 orders of magnitude
concentration difference). Major application areas of metab-
olomics such as, e.g., precision medicine envisage the
measurement of large cohorts (thousands of samples) in
regulated environments. The current transitory phase from
small scale experiments to large scale studies, industry- and
clinical applications, triggers exciting developments regarding
streamlined workflows and tailored solutions with advanced
throughput. As the field moves forward, economic consid-
erations regarding cost effectiveness and automation of the
complete workflow become more important. Miniaturization
accommodates the analysis of small precious samples, bears the
potential of increasing sensitivity, and reduces solvent

consumption following the principle of green chemistry. We
will discuss key aspects of current developmentsfrom sample
preparation to analysis, advancing automation, miniaturization,
and throughputand discuss the methods with regard to
coverage and selectivity.

Sample Preparation. High-throughput sample prepara-
tion is still a bottleneck preventing exploitation of the full
potential of high-throughput MS-based metabolomics. A
recent review discusses the need for high-throughput
technologies emphasizing the role of sample preparation.198

The state of the art of sample preparation strategies for all
relevant sample matrices is comprehensively reviewed else-
where.1 Protein precipitation upon dilution, liquid−liquid
extraction, and solid phase extraction (SPE) are widely
accepted methods in metabolomics and lipidomics analysis
which can be adopted for robotic liquid handing systems (e.g.
methyl tert-butyl ether (MTBE) extractions in lipidomics199).
Further advancement of classical sample preparation strategies
in metabolomics and lipidomics is driven by emerging
application fields such as biotechnological large-scale enzyme
activity screens and plate-based biomarker or drug screening
and includes the development of miniaturized green sample
pre-treatment (e.g. micro-liquid−liquid extraction, low volume
SPE), offering favorable extraction kinetics, high preconcentra-
tion rates, and increased throughput. For example, implemen-
tation of a commercially available, fully automated SPE system
using small volume SPE cartridges achieved a duty cycle of less
than 15 seconds per sample preparation.200 Automated
nondispersive micro-liquid−liquid extraction allows high-
throughput through parallelization. Dispersive micro-liquid−
liquid extraction ameliorates extraction kinetics, but severe
limitations regarding automation of phase separation have
been reported.198,201 Currently, solid-phase microextraction
(SPME) and electromembrane extraction methods are “re-
explored” for metabolomics, given their potential for fully
automated parallel extraction in well-plate formats and
enrichment through miniaturization.202−204

SPME is a nondestructive and nonexhaustive extraction
showing great promise in probing and extraction of “tiny”
metabolomes. While multianalyte quantification remains a
challenge, low invasiveness of SPME and the nonexhaustive
nature of extraction, together with recently developed
extractive phases, make the technique particularly attractive
for time-resolved or spatially resolved metabolomics finger-
printing.202 For example, a high-throughput time-course
metabolomic analysis was achieved through multiple extraction
of 96-well-plate cell cultures.205 Direct immersion (DI) in vivo
sampling enabled time-resolved metabolic fingerprinting of
animal brains206,207 and a method for the analysis of small
molecules from semi-solid tissue relying on DI-SPME and
desorption electrospray ionization, (DESI)-MS, has been
proposed, promising space-resolved analysis of tissues.208

Non-exhaustive in vivo extraction followed by GC X GC
qTOFMS analysis enabled real-time monitoring of apple
metabolism during the process of ripening on the tree. The
slim geometry of the extraction device avoided tissue
wounding and oxidative degradation of analytes seen with
conventional workflows relying on harvesting, metabolism
quenching, and ex vivo extraction.209 However, the current
selection of commercially available DI-SPME extractive devices
is very narrow, limiting the wide adoption of this technique.202

Electromembrane extraction is a combination of partition-
ing-based liquid−liquid extraction and electrophoresis. Funda-
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mentals of electromembrane extraction have been summarized
in a review by Douin et al.204 Analytes move from a donor
phase, usually an aqueous sample, through a water-immiscible
organic layer acting as purification filter, into an aqueous (or
optionally organic) acceptor phase. Mass transfer is driven by
an electric field introduced between donor and acceptor phase
via insertion of electrodes and application of direct current in
the milliampere range, which speeds up the extraction process
and enhances extraction yield compared to simple partitioning-
based extraction. For optimized systems, selective analyte
enrichment up to 100-fold and recoveries up to 100%204 and
excellent cleanup potential have been reported (salt- and
protein-removal,210 phospholipid-removal211). The technique
holds high potential for point of care analysis as enabled by
parallelization and downscaling of analysis as well as
implementation into microfluidic chips (e.g. Hansen et
al.212). However, the extraction principle is inherently limited
to ionizable molecule species and is not suited for molecules
prone to degradation by electrolysis, and electrolysis
phenomena are aggravated with decreasing acceptor volume.
Plus, electromembrane extraction is a selective extraction
procedure,204 preventing the full scope of wide coverage
metabolomics. On the other hand, high selectivity towards
target analytes is a desirable feature for specialized routine
application in regulated environments as it facilitates process
validation.
Direct Analysis in Metabolomics and Lipidomics.

Flow Injection-MS. Direct analysis has its undisputed role as a
rapid first-pass metabolic fingerprinting method. It comes with
a reduced analysis time of 2−5 min, thereby increasing the
analytical throughput by one order of magnitude compared to
typical LC-MS-based metabolomics. A recent review gives an
excellent summary on successful applications and well-known
limitations imposed by matrix effects and the occurrence of
isomers and in-source fragments.213 Ion suppression and ion
competition were studied in fundamental experiments using
injections of 5 μL at flow rates <100 μL min−1, where ion
competition was shown to be a major cause for limited
sensitivity in orbitrap MS.214 As a consequence, sensitivity
could be increased by optimizing data acquisition. The use of
sequential narrow mass segments in trapping MS with fixed m/
z windows or variable sample specific windows showed to be
valid strategies for improving sensitivity and linear dynamic
range.214

A recent study combined FI-HRMS with online fractiona-
tion improving the metabolome coverage and reducing matrix
effects.215 The fully automated sequential fractionation was
based on solid-phase extraction on complementary ion-
exchange and reversed-phase chemistries. Fast and high
coverage screening (3 min per polarity) was thoroughly
validated for targeted analysis of 50 diagnostic and explorative
biomarkers in plasma samples, including amino acids, amines,
purines, sugars, acylcarnitines, organic acids, and fatty acids.
The sensitivity of FI was significantly improved. LLOQ values
comparable to conventional LC-MS/MS were reported. FI-
HRMS for quantification of high abundant cholesterol and
cholesterylester utilizing compound specific response factors
proved to be fit for the purpose for cultured cells, tissue
homogenates, and serum samples.34

IMS offers a rapid (millisecond-regime) post-ionization
separation dimension,216 which makes it particularly attractive
for FI analysis. Its benefit for both targeted and nontargeted
metabolomics has been investigated.217,218 Compared to FI-

MS alone, FI-IMS-MS offers improved linearity and reduced
noise level. Nonetheless, ionization suppression due to matrix
effects remains a major obstacle with detrimental impact on
sensitivity, peak capacity, and consequently, coverage.219 It is
therefore unlikely that IMS will render chromatographic
separations obsolete in nontargeted analysis.

Ultimate Throughput−Duty Cycles of Seconds Per
Sample. The cycle time of the sample transfer to the MS
limits the throughput of FI-MS-based metabolomics. For
example, the fastest commercially available SPE system offers a
sample cycle time of 10 seconds, limited by the required SPE
elution volumes.200 When used without SPE, the rate limiting
step becomes the autosampler, enabling a duty cycle of 2.5
seconds per sample,220 a setting which was proposed for drug
discovery and high-throughput MS targeted assays.
Duty cycles of seconds per sample are also realized in

alternative ambient MS approaches. However, despite
significant progress, large scale metabolomics studies have
not yet been put into practice. Excellent duty cycles in the
second-regime were, for example, obtained by immediate drop
on demand technology combined with open port sampling
interfaces (I-DOT-OPSI-MS).221 Recent studies on single cell
metabolomics demonstrate the power of high throughput MS.
Another emerging high-throughput-technique enables nano-
liter-scale infusion MS at sampling rates of up to 6 Hz
installing plate robotic handling.222 Acoustic droplet ejection
(ADE) uses acoustic pulses to generate nanoliter-droplets
directly from a microtiter plate in a contactless manner with
high speed, precision, and accuracy. The potential areas of
future applications are evident and range from high-throughput
drug screening assays, plate based synthetic chemistry, and
large-scale biotechnological studies addressing enzyme kinetics.
Interfacing ADE with MS involved (1) acoustic mist ionization
(AMI) coupled to MS222 or (2) acoustic ejection MS (AEMS)
using an open port interface (OPI) with electrospray
ionization (ESI).223,224 While the first approach integrated
droplet generation and ionization, the latter configuration used
ADE only for sample delivery for subsequent ionization by ESI.
This way, matrix effects and adverse effects caused by
contamination of MS transfer capillaries were reduced.
Excellent analytical figures of merit were obtained upon
injection of 25,000 samples (standards) revealing excellent
RSD of 8.5% for peak intensity and full width at half maximum
(177 ms), respectively. The peak width was in the order of 200
ms.224

Miniaturization−Nanoflow Direct Infusion. Miniaturiza-
tion of direct analysis toward nanoflow proved to be
particularly attractive because of the inherent features of
nanoESI. Ionization at this flow regime is characterized by
increased ionization efficiency. At the same time, differences in
ionization efficiency for different molecules are significantly
reduced as compared to ESI at higher flow rates.225 Shotgun
lipidomics accomplished by chip based nanoESI orbitrap MS
have become an essential tool of the trade for both lipid
identification and quantification.35,226 A 50 min analysis time
consuming only 10 μL of sample solution is theoretically
possible.227 In practice, a 5−15 min run time ensures analysis
at both polarities while applying data dependent acquisition
(DDA) or data independent acquisition (DIA) approaches.
Today, MS2 methods based on DIA (covering the whole mass
range in 1 Da steps228) prevail over DDA (follows the intensity
order226). Dedicated software solutions allow for noise filtering
accelerating data processing.229 Typically, several hundred
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lipids are identified on a species level covering the abundant
lipid classes. Several strategies enable increased coverage, by
e.g. including derivatization.230 Pitfalls regarding lipid identi-
fication are summarized and curated by the LSI.29

Quantification is achieved by ISTDs. The lipid head group
determines the ionization efficiency to a large extent, allowing
us to minimize the number of calibrators to one or a few per
class. Response factor corrections were introduced for the
quantification of neutral lipids.34 Quantification on the
molecular species level is complicated as the required MS2
level, different fatty acyl chain moieties show different
responses (up to 60%), jeopardizing accuracy without
correction.231

ChromatographyKey Steps Toward Coverage and
Throughput. Miniaturization of Liquid Chromatography.
In MS-based metabolomics, microscale and nanoscale
separations have been developed with the aim of advancing
small scale sample analysis, increasing sensitivity and thus
coverage of low abundant analytes, and finally reducing costs
by overall reduced reagent consumption. Miniaturized
separation used with tailored low-diameter ESI-emitters offers
unrivaled absolute detection limits (fmol on column).
Combinations with large volume injection and online enrich-
ment allows the analysis of very low analyte concentrations and
very efficient sample use. However, the successful application
of online-enrichment-nano-RP-LC faces limitations: Numer-
ous primary analytes show poor retention on RP-LC, and
sample volumes may be extremely limited, as in single cell
analysis. In such cases, the full sensitivity potential of nano-RP-
LC-MS platforms may be exploited by analyte derivatization,
increasing RP-retention and ionization efficiency. A compre-
hensive summary of theory, common approaches, and over 20
of the most recent applications of nano-LC-MS in metab-
olomics and lipidomics investigation can be found else-
where.232 Single cell analysis is an emerging application of
small-scale metabolomics by nano-LC-MS. Recently, Nakatani
et al. reported a method for derivatization-free targeted
quantification of hydrophilic metabolites in single HeLa cells.
Living single cells were sampled from culture using an in-house
developed nano-pipette device, and the sampling capillary was
directly connected to a sample loop line. The optimized nano-
LC-MS/MS method based on a self-packed RP-LC column
(pentafluorophenylpropyl Discovery HSF5, 0.1 × 180 mm, 3
μm) and multiple reaction monitoring yielded an average
sensitivity increase of 26-fold compared to a conventional flow
setup (2.1 x 150 mm) employing the same column chemistry.
18 relatively abundant hydrophilic metabolites (16 amino acids
and 2 nucleic acid related metabolites) were detected and
quantified in 22 single HeLa cells. Clustering in different
groups was observed.233

Another emerging nano-LC-MS application is the in-depth,
high-coverage analysis of the lipidome. With a recently
published 110 min nano-LC-MS method, linear dynamic
range and sensitivity could be substantially increased by 1−2
and 2−3 orders of magnitude, respectively, when compared to
conventional high-performance LC (HPLC) (150 × 2.1 mm,
2.7 μm). The proposed workflow displayed excellent analytical
figures of merit after careful optimization of sample
reconstitution. Lipidome coverage was evaluated for the
phospholipidome of S. cerevisiae and achieved increased lipid
identification (436 phospholipids) compared to conventional-
flow HPLC and a shotgun approach. Low abundant lipid
species and isomers could be detected even when they were

coeluting.234 When combined to a new data evaluation pipe-
line, almost 900 lipid species in 26 lipid classes in S. cerevisiae
were identified. The identification rate was increased by a
factor of 4 compared to previous whole yeast lipidome shotgun
studies.89 The high potential of this workflow for in-depth
lipidome analysis is highlighted due to the detection of less
common lipid classes like monomethyl-PE (MMPE) and
dimethyl-PE (DMPE) and lipids with incorporated odd-chain
and diunsaturated fatty acids.
For a long time, the development and wide adoption of

microscale separations in metabolomics suffered from the fact
that many stationary phase chemistries were not commercial-
ized for the required column dimensions (1.5−0.5 mm inner
diameter for micro-LC; 0.5−0.15 mm I.D. for capillary LC235).
Micro-LC separations are more common, since ionization
performance of ESI sources is compromised at the flow regime
of capillary-LC (0.01−0.001 mL min−1). The sensitivity gain of
micro-LC is moderate as compared to microbore-LC (3.2−1.5
mm I.D.). In a recently published study, the optimized
microflow-LC-MS/MS improved sensitivity in a compound-
dependent manner by 6- to 49-fold when compared to
conventional microbore-LC-MS/MS.236

In metabolomics, the sensitivity gain provided by micro-LC
has been exploited to design rapid separations for metabolic
phenotyping. Throughput has been optimized at the expense
of chromatographic performance, providing fit for purpose
platforms with enhanced but not maximized sensitivity upon
miniaturization.237−241 A systematic comparison to conven-
tional HPLC methods in terms of LOD and LLOQ was
beyond the scope of these studies. Short micro-ultra-
performance (UPLC) type of separation utilizing RP materials
with sub-2-μm particles (100% wettable, 1.0 × 50 mm, 1.7
μm) and separation times of 2.5 min was successfully applied
in large scale phenotyping studies237 and recently explored in
combination with ion mobility.238,239 A rapid micro-HILIC
method utilizing sub-2-μm particles (Acquity UPLC BEH-
Amide, 1.0 × 50 mm, 1.7 μm) addressed the analysis of polar
metabolites in rat urine in less than 3.5 min. Comparison to
conventional HILIC-MS demonstrated 4-fold reduction of
analysis time, 75% reduction in solvent consumption, and 18-
fold reduction of sample consumption, while providing
sufficient retention of polar metabolites (e.g. hexoses,
methylhistidine, kynurenic acid, creatinine), excellent reprodu-
cibility (RT RSDs between 0.31 and 6.3% over 134 sample
injections), and excellent run-to-run reproducibility.240 Rapid
lipidomic profiling of plasma by micro-LC-IMS-MS proved to
be fit for the purpose for clustering plasma lipotypes as
assessed in breast cancer patients and healthy controls
indicating the suitability of micro-LC−IMS−MS as a rapid
platform for large scale lipidomics screening.241 The
combination of online SPE enrichment with micro-LC-MS
was validated for targeted analysis of 13 steroid hormones from
human plasma. After careful optimization, large volume
injections obtained excellent LOQs in the sub-ng/mL range
at high throughput (below 3 min per sample). Validation
according to FDA guidelines showed the suitability for high-
throughput analysis in a clinical routine laboratory.242 Cebo et
al. introduced a validated approach based on offline mixed-
mode SPE enrichment and micro-UHPLC-ESI-triple quad-
ruple (QqQ)-MS/MS for the quantification of 42 oxylipins in
plasma and platelets at reasonable throughput (13 min per
sample).243 Limits of detection were between 2 and 250 fmol
on column, offering comparable LODs to well established
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conventional LC approaches, but at significantly reduced
solvent consumption.
Multidimensional Chromatography. Comprehensive two-

dimensional chromatography is undoubtedly a powerful
strategy for the separation of complex mixtures.244,245 In
order to maximize the separation space and thus the peak
capacity, orthogonality and compatibility of the two
dimensions is essential. Each chromatographic peak of the
first dimension requires sampling several times, efficient
transfer, and rapid separation by a second dimension, in
order to maintain the chromatographic resolution of the first
dimension. The time spans between successive separations in
the second dimension should be minimized requiring short
separation and equilibration times. This is well established in
GC X GC but still a technical challenge in 2D-liquid-
chromatography. The wide suite of successful GC X GC
applications in metabolomics has been summarized else-
where.1,245 In LC X LC, method development is still regarded
as a bottleneck. The experimental design regarding the two
separation dimensions is not straightforward, as separation
conditions influence and restrict each other.244 Solvent

incompatibility with regard to mismatch of elution strength
and immiscibility requires dilution of the sample upon transfer
to the second dimension. Typical 2D-LC-MS designs involve
HILIC and RP-LC. Long microLC/microbore LC columns
(flow rate 10−50 μL/min) are employed as the first
dimension, followed by short, thick columns (flow rate in
the mL/min regime) in the second dimension. In the last years
many new instrumental 2D-LC designs have been developed
for metabolomics/lipidomics applications facilitating flexibility
and universality.246 Elaborate constructions allow versatile
modulation (i.e. sample collection and transfer) including
active modulation with dilution conditions optimized over the
separation time. Despite significant progress, the theoretical
peak capacity in LC X LC-MS is hardly reached in practise,
due to incomplete usage of separation space, still suboptimal
cutting, and peak deterioration upon remaining solvent
incompatibility.
Adoption of comprehensive LC X LC-MS in metabolomics

and lipidomics has been limited mainly because comprehensive
2D-LC-MS metabolomics approaches developed up to date
have largely suffered from incomplete usage of separation space

Figure 7. Practical setup solutions for sequential and parallel LC. (A) In valve position A, the void volume of the first column is transferred to the
second column. Afterward, the valve is switched in position B and the sample is analyzed on both columns parallel.251,252 (B) In valve position A,
the first extract is injected on the first column and analyzed. Meanwhile, the second column is equilibrated and the mobile phase is flushed into
waste. After separation on the first column, the valve is switched to position B and the second extract is injected on the second column and analyzed
while the first column is equilibrated.253 (C) In valve position A, the sample is loaded and divided into two sample loops equally. In valve position
B, both parts of the sample are injected onto two orthogonal columns and analyzed.254
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in HILIC and RP-LC combinations and from severe sensitivity
loss.247 The latter diminishes actual coverage in nontargeted
screenings. Solvent evaporation interfaces as featured in SFC X
RP-LC lipidomics might overcome this challenge. Recent
reports on 2D-SFC-RP-MS, separating 370 lipids from 10 lipid
classes of human plasma within 38 min, are promising.248 2D-
LC-MS relying on heart-cutting strategies proved to be
powerful in selected applications246 including the separation
of secondary metabolites in plants and emerging targeted chiral
metabolomics.249,250

Dual/Parallel Chromatography. Several column switching
approaches have been introduced as elegant solutions for
increased throughput and coverage within one analytical run.
One successful configuration (Figure 7A) integrated serial
orthogonal chromatography in order to transfer the poorly
retained metabolites of the first dimension onto a second
orthogonal column and enable two parallel separations
subsequently. This configuration offered a valuable alternative
to heart-cut chromatography.246 A simple six-port valve was
installed between the two chromatographic columns enabling
to transfer metabolites eluting from the first column onto the
second column. Two independent separations were carried out
by the switching of the valve. This setting was successfully
employed for high coverage metabolome251 and lipidome
analysis.252 For metabolome analysis, reversed-phase and
porous graphitized carbon LC were combined. The method
was validated by targeted absolute quantification of 80 primary
metabolites in P. pastoris. Excellent RT stability (average 0.4%)
even in the presence of a biological matrix was obtained. An
interplatform comparison with GC- and LC-tandem-MS
analyses showed the power of the method even with respect
to sugar phosphate isomer quantification.251 The same
separation concept combined HILIC and RP-LC for high
coverage lipidome analysis.253 The void volume of the HILIC
separation containing non-polar lipids was transferred to the
RP column which enabled the on-line combination of HILIC
with RP without any dilution in the second dimension. Rapid
consecutive separation for polar lipids and class specific
separation for nonpolar lipids was accomplished within one
analytical run of only 15 min (including re-equilibration time,
using stationary phases with sub-2-μm particles and UPLC).
Figure 7 summarizes options for successful column switch-

ing technologies. Dual chromatography extends the separation
space by fully automated consecutive or parallel execution of
orthogonal chromatographic separations. Different configura-
tions enabled orthogonal dual HILIC/RP-LC separation by
parallel injection of two extracts from one biological specimen
(Figure 7B) or of one sample extract (Figure 7C). While the
latter configuration was proposed for simultaneous analysis of
nonpolar and polar metabolites,254 the parallel injection of
different sample extracts facilitated the development of merged
metabolomics/lipidomics.253 The HRMS workflow integrated
biphasic extractions, parallel injection, separation, and MS
analysis providing the full scope of targeted and nontargeted
metabolomics and lipidomics within one analytical run. Wang
et al. proposed a dual chromatography approach for
simultaneous lipidomics and metabolomics analysis imple-
menting parallel HILIC and RP separation in a heart cutting
2D-LC configuration where parallel analysis was preceded by
prefractionation on a first separation dimension.255 As a
drawback, this method precluded the integration of biphasic
extractions, since only one sample could be analysed. Recently,
sample preparation and reconstitution were reoptimized in

order to provide high coverage within one measurement
solution.256

MS Platforms and Data Acquisition Strategies
Improving Coverage, Selectivity, and Reliability. Despite
significant progress, cutting edge low-resolution tandem-MS
outperforms latest generation HRMS for quantitative analysis,
both in terms of sensitivity and linear dynamic range. Large
scale metabolomics studies are often performed on triple
quadrupole-MS based platforms profiting from increased
robustness and high quantitative capabilities.257 Today, the
implementation of multiple reaction monitoring (MRM)
approaches is supported by significant computational resour-
ces. A library containing MRM transitions for more than
15,500 molecules is publicly available.258 Both experimentally
assessed and in-silico generated MRM transitions are included.
Dedicated software tools enable optimization of MRM
transitions including collision energies using mass spectral
libraries, such as METLIN and HMDB.259 Large-scale
metabolomics as enabled by QqQ-MS was successfully applied
in wide-targeted assays providing absolute quantification of a
high coverage metabolite panel.1,97 Recently, hybrid MS
approaches emerged which offer attractive ways bridging the
concepts of targeted and nontargeted analysis.20 These
workflows successfully exploit the power for accurate relative
quantification by QqQ-MS, without omitting a discovery step.
The “discovery” is realized through optimizing the MRM
transitions based on a sample matrix representative for the
large-scale study. This optimization/discovery step can be
performed using low mass resolution MS only or integrating
high mass resolution. In MS/MS analysis by HRMS, sensitivity
and selectivity (and thus the coverage) are significantly
influenced by the type of mass spectrometer, but also by the
selected data acquisition strategy. DIA and DDA acquisition
modes have their specific applications in both targeted
quantification and nontargeted compound annotation.260−262

For both DIA and DDA, new tools for online/on-the-fly and
offline scan-level control, fragmentation, and acquisition
optimization are available to support automated mass
spectrometer parameter choice.262−264

■ TOWARD MS-BASED MULTI-OMICS
Emerging multi-omics analysis led to significant efforts for
methods integrating multiple omics layers for one sample.
Significant progress relates to the experimental design of multi-
omics measurement and data evaluation strategies. Multi-
omics applications profit from global phenotype metabolomics
data acquired at reasonable throughput. Sophisticated sample
preparation protocols together with high coverage multi-
platforms characterize the tools of the trade for multi-omics
analysis. Cutting edge network analysis enables us to integrate
MS-based datasets with genome, transcriptome, proteome, and
metabolome information derived from orthogonal platforms.

Multi-omics Sample Preparation Strategies. Multi-
omics sample preparation approaches have to deal with the
challenge that preferred collection methods, storage techni-
ques, required quantity, and choice of biological samples are
not directly transferable from one omics field to the other,
especially when quantification rather than profiling has to be
performed.265 The metabolomics part of multi-omics studies is
especially challenging as degradation, oxidation, or conversion
of metabolites (including lipids) might occur during sample
preparation. Moreover, the procedures have to be tailored for
the two sub-omes.9 In the multi-omics setting, discovery

Analytical Chemistry pubs.acs.org/ac Review

https://dx.doi.org/10.1021/acs.analchem.0c04698
Anal. Chem. 2021, 93, 519−545

534

pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c04698?ref=pdf


studies call for minimal pretreatment in order to prevent the
potential loss of metabolites.266 Multi-omics sample prepara-
tion strategies based on a single sample enable the true
combination of multi-molecular information without influen-
ces of different sample aliquots. One-phase extractions coined
as sample preparation for multi-omics technologies (SPOT)
were successfully applied for the parallel analysis of the
proteome and metabolome.267 Other multi-omics strategies
involve filter tips such as cellulose based filter tips, which
enable detergent-free single-pot metabolomics and proteomics
by capturing the protein fraction, collecting the metabolite
flow-through and the peptide fraction after tryspin diges-
tion.268 For lipid sub-ome integration, extraction strategies
involve different solvent mixtures with higher organic content,
e.g. chloroform/MeOH269 or MTBE/MeOH.199 Two-phase
extractions such as chloroform/MeOH/water270 or MTBE/
MeOH/water226,253,271,272 proved to be particularly successful
for global high coverage analysis as metabolites and lipids can
be analyzed from a single sample at the same time separating
the protein fraction. In terms of sample handling and
automatization potential, MTBE/MeOH/water is preferable
as the protein pellet is found at the vial bottom after phase
induction and is not present in the intermediate phase between
the polar and nonpolar phase. Such phase separation strategies
reduce the sample amount needed and pave the way for direct-
infusion and LC-MS based multi-omics (metabolomics,
lipidomics, and proteomics) from a single sample.226,273

Additional lipidome coverage can be achieved using
approaches such as (1) 3-phase extraction separating neutral
lipids in the upper phase and glycerophospholipids in the
middle organic phase274 or (2) the combination of two-phase
liquid extraction with MTBE combined with SPE.271 In order
to understand metabolite action on the subcellular level,
experimental resolution of subcellular metabolism is needed.
Recently, non-aqueous fractionation was successfully applied
to resolve subcellular plant metabolism and the corresponding
proteome.275 In this comprehensive approach, organic solvent
mixtures and ultracentrifugation was applied to analyze
proteins and primary metabolite in a four-compartment plant
model comprising chloroplasts, cytosol, vacuole, and mito-
chondria.275 However, additional steps such as various liquid
phases or subcellular analysis increase the sample preparation
significantly so that scientists have to decide in each case at
what time expense they aim to increase metabolite coverage.
Multiplatform Analysis Strategies for Metabolomics

and Lipidomics. High coverage analysis in MS-based
metabolomics is only achieved through multiplatform solutions
involving orthogonal chromatographic separations integrating
both HRMS and MS/MS methods. Despite significant
progress in HRMS and its quantification capabilities, up-to-
date tandem MS is the method of choice when aiming at the
analysis of low abundant metabolites (e.g. bile acids or fatty
acyl-CoA esters). Hydrophilic primary metabolitesthe bio-
logical definition of metabolites involved in growth, develop-
ment, and reproductionare among the most evolutionarily
conserved biomolecules. Multiple isomers and isomeric in-
source fragments intrinsically challenge MS analysis.276

Examples are hexose phosphates, pentose phosphates, 3-
phosphoglycerate/2-phosphoglycerat, citrate/isocitrate, homo-
serin/threonine, leucine/isoleucine, adenosine monophos-
phate/deoxyguanosine monophosphate, adenosine triphos-
phate/deoxyguanosine triphosphate, and alanine/sarcosine.
As a consequence, common multiplatform workflows include

chromatographic separations providing selectivity for primary
metabolites, a prerequisite for accuracy regarding both
identification and quantification, respectively. In LC, ion-
pairing and HILIC are the methods of choice separating water-
soluble central metabolites. A currently accepted protocol of
wide targeted analysis relies on RP ion-pairing MS/MS
analysis. The method covers 215 metabolites including
amino acids, citric acid cycle intermediates, and other
carboxylic acids, nucleobases, nucleosides, phosphosugars,
and fatty acids.277 Sugar phosphate isomers are quantified
based on distinct MS/MS fragmentation pattern278 (as no
base-line separation is provided). There are several drawbacks
associated with the use of ion-pairing reagents, such as MS
system contamination, ion suppression effects limiting overall
sensitivity, together with the fact that metabolites ionizing only
in positive mode such as e.g. carnitines and S-adenosylme-
thionine cannot be measured. Generally, the use of ion-pairing
reagents implies the establishment of a dedicated MS systems,
often precluding the combination with HRMS. For HILIC
separations, two stationary phases, i.e. the BEH amid phase
and the polymeric zwitterionic phase,279 prevail, using both
acidic and neutral/basic eluents. HILIC separations are
versatile, but as a drawback there is no single experimental
setting covering all relevant primary metabolites.280 When
optimized properly the separation selectivity of phosphorylated
carbohydrates is comparable to ion-pairing chromatography.
Thus, GC remains the unrivaled separation method when
addressing intermediates of glycolysis and pentose phosphate
pathways. Wide coverage of the primary metabolome is
established upon two-step derivatization procedures (ethox-
imation/methoximation followed by trimethylsilylation). Rou-
tine applications involve robotic just-in time derivatization.
However, GC is not suitable for measuring the energy status of
a given sample, as important nucleotides and cofactors are not
covered. For this purpose, both ion-pairing281 chromatography
or HILIC can be applied after careful consideration of sample
preparation.280 Up to date, despite excellent separation power
for polar and ionic metabolites, the application of capillary
electrophoresis (CE) in metabolomics is limited to expert
laboratories. The most recent CE developments were
comprehensively summarized elsewhere.1,198 Examples of
multiplatform combinations practice integrating the analysis
of different extracts (tailored preparation for sub-ome analysis)
followed by nontargeted assays (RP-LC-HRMS for lipidomics,
GC-HRMS for primary metabolites,280 complementary
HILIC-HRMS for metabolites not amenable to GC-MS, and
targeted tandem mass spectrometric assays for low abundant
metabolites such as bile acids,282 steroids, and oxylipins).283

Alternatively, the number of MS platforms can be reduced by
replacing the combination of GC-HRMS/LC-HRMS by two
complementary LC-HRMS methods (either two HILIC
methods with acidic and basic eluents/positive and negative
ionization or the combination of acidic RP-LC-HRMS and
basic HILIC-HRMS).
In lipidomics, the majority of lipid classes can be covered by

state of the art profiling approaches such as direct infusion MS
or RP-MS. Multiplatform combinations in lipidomics often
involve shotgun lipidomics for bulk lipid analysis in
combination with LC-MS strategies enlarging the lipidome in
terms of lower abundant lipids as recently shown for the
platelet lipidome.284 An excellent review by Rustam and Reid
summarizes the analytical challenges and advances in
lipidomics including common MS-based review, chromato-
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graphic solutions, and possible combinations.285 The major
challenge remains measuring high-abundant membrane lipids
besides very low-abundant signal molecules across a huge
polarity range (log P value from 5−35). Low concentrated
lipid mediators are an important subclass often analyzed by
RP-LC to cover different eicosanoide isomers.286 Sphingolipids
analysis is of high interest as they are involved in signaling and
protein sorting and are often suppressed by other membrane
lipids.287 Extraction and analysis of glycosphingolipids
subclasses such as gangliosides or sulfatides is challenging,
and potential strategies are summarized in a recent workflow
by Barrientos et al.288 If specific lipid sub-omes (e.g. sterols or
prenols) are of interest, LIPID MAPS provides methods and
protocols for LC-MS and GC-MS based analysis as starting
points including a summary of available analytical standards
(see resources section).178

Merging Metabolomics and Lipidomics. Monitoring
the metabolic phenotype should always consider lipids due to
their critical function in health and disease. Lipids make up
79% (90,678 lipids in 114,126 metabolites) of all listed
metabolites in the HMDB 4.0 (accessed October 2020)88

highlighting the need to cover them in the analysis workflows.
Especially when it comes to biomarker research the
metabolome including the lipidome should be monitored to
follow disease relevant changes as shown in recent studies on
cancer prediction289,290 or cardiovascular disease.291 Cajka and
Fiehn provide an excellent overview on the challenges and
opportunities of merged metabolomics and lipidomics work-
flows.9 Here, we want to emphasize that global metabolite and
lipid profiling in one analytical run is possible shown by two-
phase MTBE extraction and fully automated parallel HILIC
chromatography for metabolites and RP chromatography for
lipids.253 The instrumental setup was realized by a HRMS, a
dual-injection autosampler, and two positional 6-ports enabling
simultaneous lipid and metabolite analysis in one analytical run
of 32 min (Figure7B). Untargeted screening of human plasma

samples resulted in >100 metabolite (organic acids, amino
acids, nucleotides, acyl carnitines) and >380 lipid (phospho-
lipids, sphingolipids, cholesteryl esters, di-and triglycerides).
Stable-isotope labeled metabolites and lipids from yeast
extracts further enabled us to merge targeted and nontargeted
identification and are generally possible when labeled biomass
is utilized. Moreover, LC-MS based proteomics, metabolomics,
and lipidomics can be performed from a single sample which
provides the starting-point for interesting multi-omics studies
based on network analysis, e.g. protein-metabolite interactions
in mesenchymal stem cell adipogenesis.283

Network Analysis and Visualization of Multi-omics
Workflows. Multi-omics derived data sets including different
sub-omes rely on appropriate data integration originating from
several layers of information. The ultimate aim is to understand
“the flow of information” underlying a certain phenotype.
Here, we will consider relevant solutionsa selection of tools
can be found in Table 2, which emerged to satisfy the need to
facilitate downstream analysis of metabolomics data and
generate or validate an underlying biological hypothesis.
Visualization tools play a crucial role for biological
interpretation of metabolomics data, and well-covered over-
views can be found in several recent reviews.292−294 Such tools
are required at the end of a metabolomics workflow pipeline
and assume successful tackling of steps prior in the
pipeline292,295 including construction of adept study design,
biological experiment, sample preparation, identification,
quantification, assessing QC standards, adjustment to batch
effects, etc. The aspects and critical points of a metabolomics
experiment from study design and sample preparation to data
analysis and evaluation of various tools have been discussed in
a comprehensive review.293

Among the commonly applied strategies are uni- and
multivariate statistical methods. Multivariate methods involve
both several unsupervised methods like principal component
analysis (PCA) or hierarchical clustering (HC) as well as

Table 2. Selected Tools for Data Analysis and Visualization, Metabolic Networking, and Databases

Name of the tool Literature Innovation

MetaboAnalyst (Chong et al., 2019)328 One-in-all metabolomics data analysis tool collection.
MetExplore (Chazalviel et al., 2018; Cottret et al., 2018)303,304 Visualization of metabolic networks and pathways, facilitates the analysis of omics

data in biochemical context and pathway enrichment.
KEGG (Kanehisa et al., 2017)329 “Encyclopedia of genes and genomes”. Several model organisms. KEGG orthology

for genes and proteins.
Reactome (Bohler et al., 2016; Fabregat et al., 2018)309,330 Knowledge base of biomolecular pathways: free, open-source, open-data, curated

and peer-reviewed.
Cyc databases (Caspi et al., 2020)311 The “largest curated collection of metabolic pathways”. Many different model

organisms.
Virtual Metabolic
Human database

(Noronha et al., 2017) (Noronha et al., 2019)310,314 Human and gut microbiome metabolism, 255 diseases, and also microbial genes,
microbes.

WikiPathways (Slenter et al., 2018)312 Browsable, editable database curated by the research community
Chemical Similarity
Enrichment
Analysis
(ChemRICH)

(Barupal and Fiehn, 2017)306 Alternative to biochemical pathway mapping for metabolomic datasets. Not based
on biochemistry directly but on structural similarity. The enrichment test is
Kolmogorov−Smirnov test based (not hypergeometric test or Fisher exact test).

Metabox (Wanichthanarak et al., 2017)308 Metabolomics data analysis and interpretation toolbox for integration of proteomics
and transcriptomics data.

Metscape (Gao et al., 2010; Karnovsky et al., 2012)322,323 Cytoscape plugin, metabolomics correlation networks and KEGG-based metabolic
networks integrating gene expression and metabolomics.

PathBank (Wishart et al., 2020)313 Comprehensive, interactive database for metabolic pathways in 10 different model
organisms.

OmicsNet (Zhou and Xia, 2018)318 Multi-omics data integration, biological networks (genes, proteins, microRNAs,
transcription factors, metabolites)

GEM-Vis (Buchweitz et al., 2020)324 Visualization of time-course metabolomic data within the context of metabolic
network maps.

FEMTO (Nag̈ele et al. 2016)302 Integration of metabolomic time-series analysis and network information.
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supervised methods (partial least squares discriminant analysis
(PLS-DA), orthogonal projections to latent structures
discriminant analysis (oPLS-DA), (linear) discriminant anal-
ysis ((L)DA), (canonical) correspondence analysis (C)DA,
random forests (RF), support vector machines (SVM), neural
networks (NN), and feature selection strategies (recursive
feature elimination, genetic algorithms, sparse models (Lasso,
Elastic Net, sparse PLS)). Such methods are capable of
capturing and pinpointing the unique metabolic fingerprints
related to the underlying phenotype.119 While this is no
concern with unsupervised techniques, a particular issue with
supervised methods is the risk of overfitting to the labeled
data.296 However, accompanying cross-validation can help
avoid this issue.297

A powerful approach beyond the realm of statistics and
machine learning algorithms is pathway analysis, which is
taking advantage of established biological knowledge. In the
simplest variation, metabolites of interest derived from a
metabolomics experiment can be mapped on the pathways
defined in a particular library. In the case of over-
representation analysis (ORA), corresponding p-values can
be obtained based on the metabolites list for the affected
pathways. Extending the metabolite list with quantitative
information (fold-change, intensity, and absolute amounts) can
be further exploited by metabolite set enrichment analysis
(MSEA). Even beyond this, considering the position of
affected metabolites within pathways informs about the
perturbation of the pathway and is a useful additional metric
next to the enrichment, as it is capable of identifying subtle but
consistent changes, whereby affected metabolites are ranked
based on centrality measures thus contributing more to
perturbation. Such a strategy constitutes the core of combined
enrichment and topology analysis.298,299 Although pathway
analysis is a powerful tool and there is great merit in identifying
relevant pathways corresponding to a phenotype, it suffers
from several limitations. First, definitions of pathways differ to
a varying degrees across databases.300 Second, highly linked
metabolites with a high number of possible biochemical
reactions are also constituents of multiple pathways and
pathways might overlap. Hence, it is challenging to explain
changes over several pathways.301 In such a scenario, time-
series analysis might support the identification of regulatory
hubs within a metabolic network.302

A great way to comprise results and enable biological
interpretation is the use of network-based approaches. Similar
to pathway analysis, metabolic networking relies on reference
databases for biochemical and signaling pathway information
but constructs a single network where each metabolite is linked
by all possible biochemical reactions. With the help of several
strategies and options to extract a subnetwork capturing all
relevant metabolites from the input metabolite list, they can
represent a global and concise picture of metabolism.301

MetExplore303,304 allows metabolic network construction,
exploration, and combination with omics data analysis. It can
access several databases for multiple model organisms and
allows collaboration in curation and annotation of metabolic
networks. The interpretation of results is aided by metabolite
set enrichment analysis (MSEA) and extraction of relevant
subnetworks. Correlation-network construction does not
require biochemical knowledge but is based on quantitative
information. It can establish correlations and metabolites can
be grouped based on the magnitude and sign of correlations,
while the network visualization strategy lends itself well to

identify the corresponding clusters and relationships among
them.305 Furthermore, correlations can also be determined
based on chemical similarity in a metabolite list (Chem-
RICH)306 or spectral similarity (MS2LDA).164 The full
potential and perspectives of network-analysis in metabolomics
data analysis and system biological approach for biological
interpretation have been discussed in recent reviews including
various possibilities and respective tools.294,305 A plethora of
bioinformatics and data analysis tools was developed in the R
ecosystem, also for the metabolomics community. These tools
and their evolution have been extensively reviewed.120

However, the barrier of entry can be substantially higher to
users with no programming skills or experience with command
line tools. One response by R developers for this is to include a
graphical user interface (GUI) within the package, which
allows users to work within the comfort of their browser.
Several web-based tools emerged in the last years, which
function as a metabolomics data analysis toolbox and allow the
visualization of metabolomics results via different modules and
offer multiple solutions from the aforementioned options
(MetaboAnalyst,307 MetaBox,308 MetExplore304). Such tools
lower the barrier of entry with aesthetic and user-friendly GUI
and example datasets. As a prime example, MetaboAnalyst and
its equivalent R-based package MetaboAnalystR123 serve
multiple functionalities in several modules ranging from
metabolite identification, exploratory data analysis, pathway
enrichment analysis, combined MSEA and topology analysis,
and multi-omics integration, just to name a few.
Several pathway databases exist (KEGG, Reactome,309

Recon,310 Cyc,311 WikiPathways,312 PathBank,313 etc., Table
2) with a different focus, number of model organisms
contained, and thus target audience, features, and applications.
They have been reviewed extensively.293 Most of them provide
a basic functionality to map metabolites from a list to their
pathways, visualize, and some form of quantitative analysis
(ORA, MSEA). As a unique feature Virtual Metabolic
Human310,314 integrates the largest database of human and
gut microbiome metabolism and presents a virtual human
model with many possible pathological conditions.
The final integration of data from multiple omics-type

experiments (like genomics, transcriptomics, and proteomics)
complementing metabolomics studies315 depends on the
possibility to combine multilayer information. MetaboAnalyst,
Reactome, Recon, PaintOmics 3,316 the R-package mixO-
mics,317 and OmicsNet318,319 contain several modules for
multi-omics data integration. A comprehensive review by
Wörheide et al.320 discusses the various ways how to perform
data-integration in multi-omics workflows. MetScape321−323 is
a Cytoscape plugin to facilitate the visualization of correlation
networks and metabolic networks based on metabolomics data.
Metabolomics networks can also integrate transcriptomics data
to inspect gene-metabolite connections, and subnetworks can
be extracted. The new visualization technique GEM-Vis324

facilitates the visualization and exploration of time-course
metabolomics experiments as metabolic network maps.
Although the field of metabolomics downstream data

analysis and visualization clearly gained momentum with an
increasing number of novel tools in the last years,120,293,325

there are many software examples which are not available
anymore through the uniform resource locator (URL)
originally referenced. This is by no means specific to
metabolomics, but rather to bioinformatics software in
general.326 In addition, some toolsthough still available in
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online repositoriesare not compatible with current R
versions or require specific dependencies. Using virtual
environments, virtual machines or containers are technical
solutions to the problem of long-term software availability.
Here it has to be mentioned that funding of scientific research
is often not capable to encompass the full life cycle of software
development as functional tools require maintenance even
after their publication.327 Hence, sustainability of software
solutions is of utmost importance as the challenge of growing
data complexity increases our dependency on data interpreta-
tion pipelines.

■ CONCLUSIONS

Years of successful analytical development led to informative
tailored methods. An optimal metabolomics workflow should
cover the lipid dimension and has to find the right balance of
coverage, throughput, and accuracy. State of the art workflows
consist of complementary multiplatform modules which allow
nontargeted discoveries and targeted absolute quantification.
Only recently, measurement and data evaluation strategies of
the two sub-ome specific disciplines metabolomics and
lipidomics converge. Both high-resolution and low-resolution
tandem MS are integral parts of multiplatform approaches. Up
to date, coverage of low abundant metabolites (pM/low nM
concentrations) is ensured by quadrupole-based tandem MS.
While, there has been a paradigmatic shift in using HRMS for
targeted absolute quantification, thereby enabling us to merge
targeted and nontargeted approaches, typical limits of
detection of HRMS workflows remain in the (low) nM
range. The final measurement strategy depends on sample type
and size, sampling frequency, the envisaged depth of the
metabolomics/lipidomic profile, the different experimental
conditions addressed, and finally, the type of information
expected as outcome. Accurate quantification and identifica-
tion are the prerequisite for correct biological interpretation, a
bold argument which remains valid even in the context of
powerful multi-omics data rich in analysis and network
integration. While the gold standard validating the quantitative
aspect in MS-based metabolomics will remain stringent
analytical validation using standards and reference materials,
the corroboration of the qualitative realm in metabolomics is
currently revolutionized by bioinformatics tools. For example,
in silico approaches are more and more accepted as an
alternative to spectral library search. However, one should not
forget that the development and validation of these tools is
inherently linked to the availability of excellent community-
based resources. Providing standards, reference materials,
setting up and curating open-source data sets and experimental
spectral libraries was and still is of paramount importance of
the progress to the field.
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Natl. Acad. Sci. U. S. A. 2015, 112 (41), 12580−12585.
(153) Sayers, E. W.; Beck, J.; Brister, J. R.; Bolton, E. E.; Canese, K.;
Comeau, D. C.; Funk, K.; Ketter, A.; Kim, S.; Kimchi, A.; Kitts, P. A.;
Kuznetsov, A.; Lathrop, S.; Lu, Z.; McGarvey, K.; Madden, T. L.;
Murphy, T. D.; O’Leary, N.; Phan, L.; Schneider, V. A.; Thibaud-
Nissen, F.; Trawick, B. W.; Pruitt, K. D.; Ostell, J. Nucleic Acids Res.
2020, 48 (D1), D9−D16.
(154) Hassanpour, N.; Alden, N.; Menon, R.; Jayaraman, A.; Lee, K.;
Hassoun, S. Biological Filtering and Substrate Promiscuity Prediction
for Annotating Untargeted Metabolomics. Metabolites 2020, 10 (4),
160.
(155) Zhao, S.; Li, L. TrAC, Trends Anal. Chem. 2020, 131, 115988.
(156) Guo, K.; Li, L. Anal. Chem. 2009, 81 (10), 3919−3932.
(157) Guo, K.; Bamforth, F.; Li, L. J. Am. Soc. Mass Spectrom. 2011,
22 (2), 339−347.
(158) Huan, T.; Wu, Y.; Tang, C.; Lin, G.; Li, L. Anal. Chem. 2015,
87 (19), 9838−9845.
(159) Han, W.; Li, L. Metabolomics 2015, 11 (6), 1733−1742.
(160) Ruttkies, C.; Schymanski, E. L.; Strehmel, N.; Hollender, J.;
Neumann, S.; Williams, A. J.; Krauss, M. Anal. Bioanal. Chem. 2019,
411 (19), 4683−4700.
(161) Shah, R. P.; Garg, A.; Putlur, S. P.; Wagh, S.; Kumar, V.; Rao,
V.; Singh, S.; Mandlekar, S.; Desikan, S. Anal. Chem. 2013, 85 (22),
10904−10912.
(162) Kostyukevich, Y.; Acter, T.; Zherebker, A.; Ahmed, A.; Kim,
S.; Nikolaev, E. Mass Spectrom. Rev. 2018, 37 (6), 811−853.
(163) Hooft, J. J. J. van der; Wandy, J.; Barrett, M. P.; Burgess, K. E.
V; Rogers, S. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (48), 13738−
13743.
(164) Van Der Hooft, J. J. J.; Wandy, J.; Young, F.; Padmanabhan,
S.; Gerasimidis, K.; Burgess, K. E. V.; Barrett, M. P.; Rogers, S. Anal.
Chem. 2017, 89 (14), 7569−7577.
(165) Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.;
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Masses: Systematic Classification of Unknowns Using Fragmentation
Spectra. bioRxiv 2020, 2020.04.17.046672. .
(167) Bowden, J. A.; Ulmer, C. Z.; Jones, C. M.; Koelmel, J. P.; Yost,
R. A. Metabolomics 2018, 14 (5), 53.
(168) Hartler, J.; Armando, A. M.; Trötzmüller, M.; Dennis, E. A.;
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L.; Lewis, M. R.; Nicholson, J. K.; Benton, H. P.; Siuzdak, G. Nat.
Methods 2018, 15 (9), 681−684.
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