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ABSTRACT Microbial ecological processes are frequently studied in the presence of
perturbations rather than in undisturbed environments, despite the relatively stable
conditions dominating many microbial habitats. To examine processes influencing
microbial community structuring in the absence of strong external perturbations,
three unperturbed aquifers in Ohio (Greene, Licking, and Athens) were sampled over
2 years and analyzed using geochemical measurements, 16S rRNA gene sequencing,
and ecological modeling. Redox conditions ranging from highly reducing to more
oxidizing distinguished aquifer geochemistry across the three locations. Distinct mi-
crobial communities were present in each aquifer, and overall community structure
was related to geochemistry, although community composition was more similar be-
tween the Athens and Licking locations. The ecological processes acting upon mi-
crobial assemblages within aquifers were varied; geochemical changes affected the
Athens location, while time or some unknown factor affected Greene County. Sto-
chastic processes, however, dominated the Licking aquifer, suggesting a decoupling
between environmental fluctuations and community development. Although physi-
cochemical differences might be expected to drive variable selection, dispersal limi-
tation (inability to mix) explained differences between Athens and Licking. Finally,
community complexity as measured by “cohesion” indicated that less-interconnected
communities experienced higher turnover and were more likely to be affected by sto-
chastic processes. Conversely, more-interconnected communities experienced lower
turnover and susceptibility to homogenizing selection. Based upon these data, we
support the hypothesis that unperturbed environments house dynamic microbial
communities due to external and internal forces.

IMPORTANCE Many microbial ecology studies have examined community structur-
ing processes in dynamic or perturbed situations, while stable environments have
been investigated to a lesser extent. Researchers have predicted that environmental
communities never truly reach a steady state but rather exist in states of constant
flux due to internal, rather than external, dynamics. The research presented here uti-
lized a combined null model approach to examine the deterministic and stochastic
processes responsible for observed community differences in unperturbed, ground-
water ecosystems. Additionally, internal dynamics were investigated by relating a re-
cently published measure of community complexity (cohesion) to ecological struc-
turing processes. The data presented here suggest that communities that are more
cohesive, and therefore more complex, are more likely affected by homogenizing se-
lection, while less-complex communities are more susceptible to dispersal. By under-
standing the relationship between internal dynamics and community structuring
processes, insight about microbial population development in natural systems can
be obtained.
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The terrestrial subsurface is estimated to be the largest reservoir of life on Earth (1,
2). Given that biomass density generally decreases with depth, shallow aquifer

systems that underlie much of the continental land masses likely host a significant
fraction of this microbial life (2). Numerous studies have revealed extensive microbially
diverse populations in these ecosystems, with recent work significantly expanding the
microbial portion of the tree of life by over 50% (3–6). However, despite our under-
standing of diversity in shallow subsurface systems, the majority of research on ecological
drivers of community structuring and turnover has focused on dynamic environments
or community disturbances and subsequent recoveries (7–10). For example, microbial
communities in shallow aquifers and adjacent hyporheic mixing zones in Colorado and
Washington were influenced by river water intrusion, leading to shifts in redox condi-
tions and carbon availability (11–15). Similar processes have also been observed in
engineered ecosystems where artificial perturbations in groundwater ecosystems lead
to changes in both community structure and functionality (9, 16, 17). Across these and
other dynamic ecosystems, community stability can refer to both resilience when
recovering from environmental disturbances (8) and resistance to change in the
presence of a perturbation (18).

Despite this focus on environments that undergo perturbations, critical information
regarding ecological structuring processes can be obtained from systems where phys-
ical and chemical conditions are less dynamic (19). In more stable systems, it has been
predicted that no environmental community truly reaches a steady state but rather
exists in constant flux (20). This statement has been supported by much previous work,
as described in a meta-analysis by Shade et al. (18), and also applies to more dynamic
environments (12, 21). In all these instances, internal community dynamics such as
speciation and microbe-microbe interactions may play a larger role in assemblage
development than any external pressure. This effect was observed in a laboratory
chemostat study, where unperturbed communities followed the same trajectory as
perturbed communities, suggesting that internal community dynamics played an
unexpected role in turnover (22). Additionally, Graham et al. demonstrated that differ-
ences in community structure do not necessarily relate to ecosystem processing and
that development of some functional groups can be uncoupled from the surrounding
conditions (23). Graham and Stegen suggested that communities assembled primarily
through stochastic processes would have lower biogeochemical function and, by
extension, be less related to surrounding geochemistry (24). Despite the implications of
these studies, less work has focused on this potential decoupling between environ-
mental variability and community development. Here, we propose that shallow
subsurface regions may represent one such ecosystem where naturally occurring
ecological structuring processes can be investigated in the absence of large-scale
perturbations.

Over the course of 2 years, we examined microbial community dynamics in ground-
water monitoring wells located in three counties across central and southern Ohio
(Athens, Greene, and Licking). Each well has a history of being geochemically unper-
turbed and presents an opportunity to study community stability, here defined as
“constancy through time” (25) and measured by low turnover, in an environmental
setting. Using a combination of biogeochemical measurements and ecological calcu-
lations, we investigated whether the dynamic equilibrium of microbial communities in
these wells is unrelated to the surrounding physicochemical environment. Overall, our
data suggest that internal dynamics (e.g., microbe-microbe interactions) of aquifer
microbial communities may significantly contribute to overall community turnover in
these systems.

RESULTS
Monitoring wells experience different degrees of geochemical stability and are

significantly distinct. Three groundwater monitoring wells were sampled quarterly
over the course of 2 years (Fig. 1A). The aquifers in Athens and Greene Counties were
both approximately 10 to 15 ft beneath the surface and shared similar physical
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characteristics (comprised of mostly brown clay, sand, and gravel). In contrast, the
Licking County aquifer was deeper (~26 ft.) and was predominantly comprised of sand
and gravel. Likely due to these formational differences, hydraulic conductivity (as
inferred from well production) was higher in the Licking County well.

In addition to differences in physical characteristics, each aquifer featured unique
geochemical profiles (Fig. 1B). The Greene County aquifer was the most oxidized
environment (per high oxidation-reduction potential [ORP] measurements), the Licking
aquifer exhibited intermediate redox characteristics and contained the highest dis-
solved arsenic concentrations (5 to 7 �g/liter), while the Athens County aquifer was the
most reduced, containing high concentrations of dissolved iron (6 to 9 mg/liter).
Despite the abundance of reduced species at the Athens location, both �18O and �D
groundwater measurements indicated that this location was more hydrologically con-
nected to the surface than either of the other two aquifers over the course of the
sampling period (see Fig. S1 in the supplemental material). This suggests significant
redox buffering capacity within the Athens aquifer, enabling the accumulation of
reduced species despite potential inputs of more oxic surface fluids. Despite this
heterogeneity across sampling locations, temporal geochemical patterns were moder-
ately stable over the 2-year sampling period, with few measured parameters deviating
more than two standard deviations from their average concentrations (see Fig. S1 and
Table S1 in the supplemental material). While not determined statistically, the Athens
aquifer appeared to experience minor natural variation and was the least stable system,
followed by the Greene aquifer, and then the most stable system, the Licking aquifer.

Microbial communities within the wells are complex, varied, and stable. Mi-
crobial communities retained on 0.2-�m-pore filters were analyzed from each aquifer
via 16S rRNA gene sequencing after 97% clustering. Mirroring geochemical measure-
ments, Bray-Curtis dissimilarity results indicated that the communities from each
aquifer were significantly distinct from each other (Table 1), suggesting linkages
between physicochemical differences and microbial populations that are supported by
significant permuted Procrustes and Mantel tests (a P value of 0.001 for both). Further
mirroring the aquifer geochemistry, both time-resolved alpha diversity and beta dis-
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persion analyses revealed no seasonal trends or strong variability, respectively, in
community composition within each well (see Fig. S2 in the supplemental material).
Although Shannon’s diversity (H) measurements initially indicated that the communi-
ties in the Greene County aquifer were the most diverse, followed by Athens County
and Licking County (Fig. 2A), the incorporation of phylogenetic information into

TABLE 1 Pairwise and overall PERMANOVA statistics for the
various beta diversity measurements used in this studya

aBray-Curtis is delineated by “Bray,” weighted UniFrac by “wUni,” and
unweighted UniFrac by “uwUni.” Values in boldface are F statistics for the
specific pairwise PERMANOVA comparisons, while values in italics are the
corresponding P values.
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diversity estimates via Faith’s phylogenetic diversity (PD) revealed that the Athens and
Greene populations were equally diverse (Fig. 2A). As inferred from Pielou’s evenness
index (J=), the discrepancy between Shannon’s and Faith’s diversity estimates was due
to a more even distribution of operational taxonomic units (OTUs) in the Greene aquifer
(Fig. 2A).

Both weighted and unweighted UniFrac analyses were utilized to examine changes
in community phylogenetic structure through time and space. Unweighted measure-
ments consider only the phylogenetic distance between community members, while
weighted measurements incorporate both phylogenetic distance and abundance in-
formation. Therefore, differences between these metrics can reveal detailed relation-
ships between microbial communities. UniFrac results revealed that although commu-
nities from each aquifer were significantly different from the others (Table 1; Fig. 2B
and C), greater similarity existed between the Athens and Licking locations. However,
greater differences existed among and between locations within the weighted data set
than in the unweighted (Table 1). This suggests that while many microbial lineages are
shared between the aquifers, weighted UniFrac-inferred differences between locations
can be significantly attributed to abundances of these phylogenies across the commu-
nities (Fig. S2). As an example, among roughly 600 OTUs shared across these different
wells, an uncultured OTU within the Rhodospirillaceae that represented over 11% of the
community across all time points in the Athens aquifer represented less than 0.05% of
OTUs in either of the other wells. To investigate the ecological processes driving these
compositional differences between the aquifers, null modeling tools were employed to
assess the relative influence of selective and stochastic factors constraining microbial
population turnover.

Ecological processes controlling microbial community development within
aquifers vary between locations. Ecological modeling with the �-nearest taxon index
(�NTI) and Raup-Crick (Bray-Curtis) (RCBC) models was utilized to examine differences in
selective pressures between locations and determine potential explanations for com-
munity variation (Table 2). This approach uses randomized community structures to
assess whether measured communities are more similar or dissimilar than would be
expected purely by chance. For example, communities that are more different than
would be expected by random chance (�NTI � 2) occur due to variable selection, which
typically results from fluctuating geochemical conditions (i.e., influx of organic carbon)
(14). Communities that are more similar than by random chance alone (�NTI � �2)
would occur due to homogenizing selection, which occurs under constant conditions
(26). Finally, if communities are as different as expected by random chance (|�NTI| � 2),
stochastic processes dictate community structure. These stochastic processes can be
further distinguished as dispersal limitation (greater than expected turnover; RCBC �

0.95), homogenizing dispersal (less than expected turnover; RCBC � �0.95), and
undominated (ecological processes unclear; |RCBC| � 0.95). By combining these metrics,
we are able to measure turnover between two communities and identify whether
selective (homogenizing/variable) or stochastic (homogenizing dispersal/dispersal lim-
itation) processes dominate (14, 27).

Within-aquifer comparisons for the biomass retained on the filter indicated that the
microbial community in the Greene aquifer was dominated by homogenizing selective
processes (i.e., communities were more similar than expected by random chance), while
the communities in the Athens and Licking aquifers were subject to a mixture of
homogenizing selection and homogenizing dispersal (Fig. 3). Homogenizing selection
refers to conditions that force microbial communities to be more similar than would be
expected by random chance, while homogenizing dispersal describes conditions where
low community turnover is explained by high levels of dispersal that mix microbial
populations. Rank-based mantel correlations were calculated to determine potential
drivers of homogenizing selection across all sampling locations (see Table S2 in the
supplemental material). These correlations examined whether microbial community
turnover was directly related to temporal shifts in geochemistry. Results indicated that
community turnover within the Athens aquifer was significantly positively related to
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larger changes in sulfate, sodium, and strontium concentrations, while turnover in the
Greene aquifer was only related to longer periods of time between samplings (Ta-
ble S2). Total nitrogen was the only geochemical factor in the Licking aquifer that was
significantly, but weakly, correlated with the observed turnover.

Many differences between aquifer communities are linked to stochastic eco-
logical processes. While differences in community structures between spatially distinct
aquifers were inferred from Bray-Curtis and UniFrac measurements, the broad-scale
ecological processes responsible for driving these differences (and similarities) were
analyzed using the same modeling framework described above. Variable selection
dominated turnover between the Greene aquifer and other locations, while turnover
between Licking and Athens aquifers was subject to a mix of variable selection and
dispersal limitation (Fig. 3). Every comparison between samples from the Greene
aquifer and either the Athens or Licking aquifers resulted in higher turnover than would
be expected by random chance (�NTI � 2). This suggests that the distinct physico-
chemical conditions in the Greene aquifer (more oxidizing) exert a stronger influence
on the local microbial community than conditions in either Athens or Licking aquifers
(more reduction at both locations). Turnover measurements between the Athens and
Licking aquifers typically signified that samples were as different as expected by
random chance, suggesting that ecologically stochastic processes were driving com-
munity divergence. Specifically, Raup-Crick analyses indicated that dispersal limitation
was dominant, meaning that the communities within the two spatially distinct aquifers

TABLE 2 Definitions of the various terms used throughout this articlea

Term Definition

�NTI �-Nearest taxon index, which uses phylogenetic information to
assemble random populations of microorganisms to measure
whether compared communities are more or less different than
random chance; differentiates deterministic and stochastic
processes

RCBC Raup-Crick (Bray-Curtis), which builds null communities
probabilistically based upon OTU abundances within a
sample to determine whether communities are more or
less different than random chance alone; differentiates
stochastic processes

Variable selection The result of communities being more different than would be
expected by random chance alone (e.g., geochemical conditions
are very different between samples); deterministic process

Homogenizing selection The result of communities being less different than would be
expected by random chance alone (e.g., geochemical
conditions are identical/different between samples);
deterministic process

Dispersal limitation Indicates populations between samples are unable to interact,
due to separation by either time or space; stochastic process

Homogenizing dispersal Indicates populations between samples are freely able to interact,
potentially due to significant hydrological connectivity;
stochastic process

Ecological drift Occurs when communities are as different as random chance
alone; primarily occurs due to random mutations or variations
in generation times

Undominated Indicates no single ecological process is capable of explaining
the observed results

Cohesion A metric that measures the complexity/interconnectedness of a
given community as measured by the degree of cocorrelation

Positive cohesion The cohesion result for those community members that were
positively correlated; unknown interpretation

Negative cohesion The cohesion result for those community members that were
negatively correlated; potentially significantly related to
community turnover and complexity

Interconnectedness A term used to reference the degree of negative cohesion within
a community

aSee Zhou and Ning (37) and Herren and McMahon (28) for greater detail.
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were different as a consequence of distance (i.e., inability to mix) rather than the
geochemical characteristics. Therefore, the ecological drivers identified here using �NTI
and RCBC measurements offer insights into the mechanisms behind the community
clustering patterns identified by UniFrac analyses (see Fig. S3 in the supplemental
material).

Many geochemical parameters, including barium, arsenic, manganese, calcium, and
sulfate, were significantly related to the between-location �NTI values (r � 0.6, P � 1 �

10�4), indicating that larger environmental differences significantly drive differences in
community composition between sites. In the absence of ecological modeling, how-
ever, community differences between Athens and Licking samples may have been
attributed to these physicochemical differences alone. Given that variable selection
would lead to more dissimilarity, the closer clustering between Athens and Licking
aquifer samples per UniFrac analyses is likely driven by dispersal limitation. Conversely,
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the action of variable selection processes on community structure results in Greene
biomass samples clustering separately (Fig. S3).

Community complexity is significantly related to community turnover. In ad-
dition to determining the relationship between external physicochemical factors and
microbial populations, we examined if the degree of complexity (extent of intercon-
nected taxa) within a community affected turnover. Complexity itself is difficult to
measure directly, so a new metric proposed by Herren and McMahon called “cohesion”
was utilized (28). In brief, cohesion measures complexity by calculating the abundance-
weighted pairwise correlations of every taxon in a given community, yielding a series
of positive and negative cohesion values that are subsequently treated separately.
Given that negative cohesion values have been related to greater levels of community
complexity, the Athens and Greene aquifers feature similar cohesion values and
therefore contained the most interconnected or cohesive communities, followed by the
Licking aquifer (Fig. 4). These results mirror the community alpha diversity measure-
ments (Fig. 2A) and weighted gene coexpression network analysis (WGCNA) results,
inferred from the edge-to-node ratio of each network (see Fig. S4 in the supplemental
material). Conversely, positive cohesion did not demonstrate any strong trends (Fig. 4),
as previously demonstrated by Herren and McMahon (28).

Both Spearman-based correlations and multivariate comparisons between cohesion
results and turnover metrics (Bray-Curtis, UniFrac, and �NTI) were performed to deter-
mine how complexity related to community turnover. Our results, as measured by
Bray-Curtis dissimilarity, revealed significant relationships between negative cohesion
and overall community turnover (Mantel r � 0.498, P � 0.0001), which supports
previous research (28). Weaker correlations with positive cohesion were also detected
(Mantel r � 0.285, P � 0.001). Expanding these analyses to incorporate phylogenetic
information, Mantel correlations between both UniFrac measurements and cohesion
supported the Bray-Curtis observations, with stronger relationships in the weighted
UniFrac fraction (negative Mantel r � 0.426, P � 0.0001; positive Mantel r � 0.310, P �

0.0003) than the unweighted UniFrac fraction (negative Mantel r � 0.306, P � 0.0009;
positive Mantel r � 0.149, P � 0.019). These Bray-Curtis and UniFrac correlations are
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only partially supported by multivariate analyses where only negative cohesion was
significantly related to turnover (see Fig. S5 in the supplemental material). Taken
together, not only did community complexity, as measured particularly by negative
cohesion, influence community turnover taxonomically (i.e., Bray-Curtis), but it addi-
tionally had a significant impact on the phylogenetic structure, suggesting a determin-
istic influence.

In order to directly determine if cohesion influences community assembly processes
deterministically, cohesion was correlated to �NTI. Both negative cohesion and positive
cohesion were related to the �NTI, although a stronger correlation was observed with
the negative cohesion (negative Mantel r � 0.200, P � 0.006; positive Mantel r � 0.142,
P � 0.022). Furthermore, multivariate analyses demonstrated a similar pattern to the
Bray-Curtis and UniFrac results, showing significant relationship to Licking community
structure (Fig. S5). Whereas previous analyses linked external parameters (e.g., geo-
chemical variables) to the observed community turnover, this technique measures the
interconnectedness of taxa in each sample, independent from external effects. Given
that negative cohesion is weakly but significantly related to Licking community struc-
ture (which had the least-negative cohesion values), these results suggest that more-
interconnected and therefore more-complex communities (with more negative cohe-
sion values) may be less susceptible to high community turnover, regardless of the
presence or absence of external perturbation by environmental factors. This is likely
due to critical community processes (e.g., metabolite exchange and competition) being
controlled by multiple interconnected taxa in a more complex community. As such,
community structures are more difficult to disrupt, resulting in lower rates of turnover
(29, 30).

DISCUSSION

Microbial community assembly processes were examined over a 2-year period in
three separate Ohio aquifers. Despite being unperturbed (Fig. 1B; Fig. S1), significant
correlations between community turnover (as measured by �NTI) and geochemical
parameters within location existed, indicating that small variations in the surrounding
chemical environment can exert a measurable effect on microbial communities, as
previously hypothesized with this technique (13). Sulfate concentrations in the Athens
aquifer, for example, never varied more than 25% from the median (or average)
concentration over the 2 years of sampling but were significantly correlated to com-
munity turnover (r � 0.64, P � 0.002). Given that sulfate is a terminal electron acceptor
utilized prominently in reducing environments, these concentration fluctuations may
select for putative sulfate reducers (31, 32). In the Greene aquifer, the observation that
longer periods of time between sampling efforts were linked to turnover suggests that
a changing unmeasured variable (e.g., a geochemical parameter) may have been
responsible for this relationship (Table S1). Alternatively, the process of ecological drift
(community change via stochastic differences in rates of cell division and death) could
account for this trend, but this signal (if it exists) is masked by the strong homogenizing
selection. A similar observation has previously been made in a dynamic hyporheic zone
environment (15). Lastly, samples from the Licking aquifer likely lacked strong corre-
lations between microbial community turnover and geochemical parameters as these
communities were subject to the highest degree of stochastic processes, specifically
homogenizing dispersal, overwhelming deterministic processes (Fig. 3). This may be
linked to the inferred higher hydraulic conductivity (and associated lithofacies compo-
sition) in this aquifer, which could enable greater mixing between microbial popula-
tions and thus drive homogenizing dispersal via potentially higher dispersal rates (33).

While stochastic processes (i.e., dispersal limitation) governed many �NTI compar-
isons between locations, Mantel correlations suggested that numerous physicochem-
ical parameters were significantly related to community turnover (|�NTI| � 2). Of these
significant relationships, correlations with barium, arsenic, manganese, calcium, and
sulfate concentrations, along with oxidation-reduction potential (ORP) variations, each
yielded r values above 0.6 and P values of 1 � 10�4, indicating that they may play
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outsized roles in the observed community differences (Table S2). Differences in redox
conditions (as inferred from ORP measurements) govern the biogeochemical reactions
that can occur in a given location and likely play a significant role in community
structuring (34). In reducing groundwater environments, sulfate and redox active
metals, like arsenic and manganese, are often utilized by many microorganisms as
terminal electron acceptors (32, 35, 36). The presence or absence of these chemical
species could drive variable selection through the development of niches for certain
taxa, allowing them to outcompete less-specialized community members (37).

We propose that the direct coupling between changes in geochemistry and micro-
bial community structure is only supported in systems in which external parameters
fluctuate beyond a given magnitude (Fig. 5). Similar behavior has been observed in
systems that could be considered “multistable” (38), but given that this system does not
enter into an alternative steady state, this conclusion is unlikely. While whole microbial
communities in a given aquifer were related to geochemical profiles (e.g., PROTEST,
Mantel), links to community turnover as measured by �NTI were often absent. Al-
though turnover could be linked to environmental drivers in the Athens aquifer and
time at the Greene location, only one weak relationship was apparent for the microbial
community in the Licking aquifer, which experienced intermediate redox conditions.
Additional cohesion measurements showing low levels of community complexity
support our inference that populations in the Licking aquifer were subject to the
greatest degree of internal (“endogenous”) dynamics of the three ecosystems (20). In
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(γ-diversity)

Athens County Licking County Greene County
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Selection

Very Interconnected
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Homogenizing Selection
Homogenizing Dispersal

Not Interconnected

Local Hydrology Geochemistry

Very Interconnected
Homogenizing Selection

Ecological 
Processing

Local Communities

FIG 5 Summary figure illustrating our hypotheses. The metacommunity represents the total group of
possible organisms that could assemble into our local communities. The black lines illustrate the total
“ecological processing” that generates the local communities, with the blue, white, and purple boxes
indicating specific ecological filters within a given location. Arrows adjacent to the colored bars represent
interactions that enhance specific processes. For example, stable geochemistry enhances homogenizing
selection. The red-blue gradient arrow represents a range of redox conditions from reducing to oxidizing.
The red and green boxes indicate the measured ecological processes that must occur between the wells
to obtain the observed results (dispersal limitation between the Athens and Licking locations and variable
selection between the Greene aquifer and the other two locations).
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contrast, the temporal environmental changes within the Athens and Greene aquifers
were strong enough to deterministically constrain community turnover and limit any
changes due to stochastic processes. Given the gradient of redox conditions found
across these three sampling locations, we hypothesize that communities in more
strongly oxic (Greene) or reduced (Athens) systems are driven toward a particular
specialized but interconnected population with minor susceptibility to geochemical
fluctuations and overall stability (24, 39). However, intermediate redox conditions (e.g.,
suboxic) such as those measured in the Licking aquifer may lead to a more generalized
population (24), which when combined with homogenizing dispersal results in a less
interconnected (“cohesive”) microbial community in which internal dynamics play a
greater role than environmental pressures on community structure. Given that
dispersal-based assembly may lead to lesser biogeochemical function within microbial
communities (23, 24), a positive-feedback loop could potentially develop. In such a
system, stochastically assembled communities with few interconnections have dimin-
ished influence over surrounding redox conditions, subsequently leading to less inter-
connected communities.

Conclusions. Using a combination of biogeochemical measurements and ecological
calculations, we analyzed the microbial community structure in three Ohio aquifers
over the course of 2 years. Despite the absence of major perturbations in these
ecosystems, complex microbial dynamics across these aquifer environments high-
lighted the importance of stochastic ecological processes, revealing community turn-
over independent of physicochemical changes in the subsurface (20). In addition, while
some microbial lineages represented by ~600 OTUs were shared across all three
locations (Fig. S2), variations in selective pressures and stochastic processes altered the
distribution of these microorganisms.

A multifaceted approach incorporating both biogeochemical relationships and
ecological modeling has enabled a better understanding of the drivers behind complex
microbial community development. The data presented here help support “stability”
measurements conducted elsewhere (22), which revealed that no microbial community
exists in an absolutely steady state. Rather, communities appear to exist in flux,
regardless of the small changes in the surrounding environmental conditions. While
stochastic processes may exert significant control over population dynamics, even small
shifts in physicochemical parameters can drive additional community changes. Addi-
tional future insights may be provided by microbial community information beyond the
marker gene. Metagenomics and associated “omics” tools (transcriptomics and shotgun
proteomics) provide additional information on functional potential, inferred relation-
ships between taxa, and activity. The incorporation of these data into this ecological
framework would potentially enable a clearer view of the effects of both external and
internal dynamics on community turnover. Overall, these results suggest that interplay
of internal and external dynamics contributes to microbial community assembly, with
more-complex community structures being more likely to be subjected to homoge-
nizing selection and less-complex communities more susceptible to dispersal.

MATERIALS AND METHODS
Sample collection. Groundwater samples were collected on a quarterly basis over a 2-year period

from July 2014 to July 2016 from the Ohio Department of Natural Resources (ODNR) Observation Well
Network used to monitor groundwater level fluctuations in three different counties (Fig. 1A). These three
wells located in Athens County (39.4417°E, �82.2178°N), Greene County (39.5792°E, �84.0167°N), and
Licking County (40.1467°E, �82.4197°N) are situated within separate buried valley aquifers—valleys that
have been back-filled with glacial sands and gravels and some till.

Sample collection followed previously established protocols (40). At each sampling, wells were
purged of more than 250 liters of water to ensure that aquifer-derived water was being collected
(dedicated pumps were placed at the screened interval for the ODNR wells). Approximately 38 liters of
postpurge groundwater was pumped sequentially through a 142-mm-diameter 0.2- then 0.1-�m-pore
Supor PES membrane filter (Pall Corporation, NY). Filters were then immediately flash frozen and kept on
dry ice until they were returned to the Ohio State University, where they were stored at �80°C until DNA
extraction. During sampling, oxidation-reduction potential (ORP), temperature, and pH were measured
using a handheld Myron Ultrameter II (Myron L Company, CA). Groundwater samples (1 per site per date)
were analyzed according to Ohio EPA standard operating protocol (SOP) and testing methods, which can
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be found in the supplemental material (Table S1). Cations were measured both on an ICP-OES Optima
73000DV and ICP-MS ELAN 9000 (PerkinElmer, Inc., MA), while anions were measured using a Konelab
Aquakem 20 (Thermo, Fisher Scientific, MA). Water isotopes were measured using a Picarro water isotope
analyzer model L1102-i (Picarro, Inc., CA); two-sided Mann-Whitney U tests with Bonferroni corrections
were used to determine pairwise significant differences between locations. All geochemical measure-
ments and Ohio EPA SOPs are in Table S1.

DNA extraction, sequencing, and processing. DNA was extracted in duplicate from roughly a
quarter of each 0.2-�m Supor PES membrane filter by using the Powersoil DNA isolation kit (Mo Bio
Laboratories, Inc., Carlsbad, CA). Final DNA concentrations were determined by using a Qubit fluorimeter
(Invitrogen, Carlsbad, CA).

To generate 16S rRNA gene data, the V4 region of 16S rRNA genes was amplified and sequenced
using the universal bacterial/archaeal primer set 515F/806R on an Illumina MiSeq instrument at Argonne
National Laboratory according to the Earth Microbiome Project standard protocol (41). The resulting
reads were chimera checked and de novo clustered at 97%, with singletons removed through the QIIME
pipeline (V1.7.0), with tree generation and assigned taxonomy using the SILVA v132 database (42). The
OTU table is provided as Table S3 in the supplemental material.

Data analyses. All statistical analyses were performed using R v3.3.2 (43). Duplicate samples were
averaged together before any analysis was performed. Alpha diversity within these microbial community
samples (16S rRNA gene data) was determined according to Shannon diversity calculations (H=) (44)
(diversity, vegan package v2.4.4) (45), Pielou’s evenness (J) (H=/log species number), and Faith’s phylo-
genetic diversity (PD) (pd, picante package v1.6.2) (46, 47). Pairwise Bray-Curtis metrics were calculated
to obtain a taxonomic measure of beta diversity (vegdist, vegan package v2.4.4) (45, 48). Both weighted
and unweighted UniFrac values were calculated using the OTU data sets (GUniFrac package v1.0) to
obtain a phylogenetic measure of beta diversity (49, 50). For both UniFrac metrics, a principal-component
analysis (PCA) was used to visualize the community relationships (prcomp). Significant differences
between aquifers were determined using global and pairwise permutational analysis of variance (PER-
MANOVA) (Adonis, vegan package v2.4.4) comparisons on UniFrac measurements (45). Hierarchical
clustering (unweighted pair group method using average linkages [UPGMA]) was used to better visualize
these significant relationships (hclust). Significant relationships between UniFrac community structure
and geochemical profiles were analyzed using both a permuted Procrustes (PROTEST) and Mantel test
(protest and mantel, vegan package v2.4.4) (45).

Ecological modeling. In order to investigate potential ecological drivers within and between these
three aquifers, ecological modeling was performed following the protocol outlined by Stegen et al. (33).
Per this protocol, a phylogenetic signal was first found to establish a link between phylogeny and
ecology using oxidation-reduction potential as the environmental variable for calculating niche differ-
ences (see Fig. S6 in the supplemental material). Next, �-mean nearest taxon distance (�MNTD) was
calculated for each possible pairwise comparison between samples in order to capture underlying
phylogenetic contributions to community composition. Using 999 community randomizations to create
null models, the �-nearest taxon index (�NTI) was calculated to determine the deviation of the observed
�MNTD from the null �MNTD. Resulting �NTI values were used to examine the phylogenetic turnover
in each aquifer, providing insight into whether deterministic (i.e., selection) or stochastic (i.e., random)
processes shaped community composition. If a |�NTI| value exceeds 2, a deterministic process is
responsible for differences between microbial communities in two samples; if a |�NTI| value is less than
2, a stochastic process explains observed differences in microbial community composition between two
samples (12). Stochastic processes might include ecological drift (random changes in organismal
abundance), enhanced passive cell mobilization, or limitations in cell dispersal within a particular habitat
(51). Conversely, deterministic forces include niche-based factors, such as environmental fluctuations that
might select for specific microorganisms (e.g., localized abundances of certain nutrients) or specific
species interactions, which might drive microbial community structure toward a particular composition
(37). Deterministic processes can be further categorized as either variable selection or homogenizing
selection. Variable selection occurs when two communities are more dissimilar than would be expected
by random chance and occurs if �NTI is greater than 2. Typically, these processes occur when the
environmental conditions between the compared communities are very different (e.g., large differences
in organic carbon type), resulting in different compositions (14). If �NTI is less than �2, communities are
more similar than could occur by random chance and homogenizing selection is considered the
dominant process. This type of selection typically occurs in situations in which relatively constant
environmental conditions push community structure toward a common composition, such as in the case
of microbial community succession in geochemically stable soil environments (26). Correlations between
�NTI measurements and differences in geochemical data were then calculated, following a similar
protocol to that of Stegen et al. (34). First, differential tables for each environmental variable were
calculated to obtain pairwise comparisons for each sample. Then, correlations were performed using the
Spearman rank correlation specification in the Mantel test (mantel, ecodist package v2.0.1) (52). Due to
an aberration that prevents more than 20,000 total OTUs from being read through the cophenetic
command in the picante package, the abundance data were rarefied to 8,000 sequences for �NTI
analyses only (the sample with the lowest sequence count).

In addition to �NTI, Raup-Crick (Bray-Curtis) (RCBC) measurements were used to examine stochastic
processes according to Stegen et al. (27). Using 9,999 iterations per pairwise comparison, null commu-
nities were probabilistically generated based upon observed OTU abundances across all three aquifers.
The null distributions of Bray-Curtis values were then compared to observed Bray-Curtis comparisons to
determine deviations and, in turn, significances. These deviations are then normalized to vary between
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�1 and �1, resulting in the RCBC metric. If the |RCBC| is � 0.95, the turnover between the compared
communities was the result of either dispersal limitation or homogenizing dispersal. Dispersal limitation
(RCBC � 0.95) is measured when turnover is greater than expected by drift alone and occurs in situations
where communities are unable to mix (i.e., dispersal between sampling locations is impossible). Homog-
enizing dispersal (RCBC � �0.95) occurs in situations where organisms are freely able to move through-
out a given environment and is the result of turnover that is less than expected by drift alone. Finally,
if |RCBC| is � 0.95, the comparison is assumed to be the result of undominated processes and suggests
that no single ecological process was able to explained the observed community variation (33). Given
that RCBC is particularly useful in measuring differences in stochastic processes, these results are only
presented in situations where �NTI was insignificant (|�NTI| � 2). Table S4 in the supplemental material
contains the �NTI and RCBC values.

Cohesion. Cohesion was calculated within aquifers according to the protocol outlined by Herren and
McMahon (28). Between-aquifer cohesion measurements were not performed. Cohesion approximately
measures complexity by calculating the total abundance-weighted pairwise correlations of every taxon
in a given community. Briefly, this technique uses Pearson correlation measurements to determine the
interconnectedness of a community. The strength of each pairwise correlation was in turn verified using
null modeling as follows. The null model was iterated through each OTU (deemed the “focal taxon”),
randomizing relative abundances within community using observed OTU distributions, aside from the
focal taxon. Pearson correlations were then performed between this focal taxon and all other randomized
members. This process was repeated 200 times within each iteration, and the resulting distribution of
correlation values is considered the “expected” relationship if random interactions occurred. These
expected correlations were then subtracted from the observed correlations to obtain a “connectedness”
measurement, with positive and negative “connectedness” values being separated due to the nature of
relative abundance data (when one organism becomes more abundant, another must become less
abundant). These connectedness measurements were then weighted by taxon abundance and summed
to yield both a positive and negative cohesion metric. Two-sided Mann-Whitney U tests with Bonferroni
corrections were used to determine pairwise significant differences in cohesion between locations. The
cohesion values were transformed into a differential table as described above. Spearman rank correla-
tions (using the Mantel test) between the aquifer cohesion differential table and Bray-Curtis, UniFrac, and
�NTI values were performed to measure the relationship between community interconnectedness and
turnover (Table S2). Additionally, the cohesion values were related to Bray-Curtis, UniFrac, and �NTI using
a multivariate environmental fit (envfit, vegan package v.2.4.4) (45). Weighted gene coexpression analysis
(WGCNA) (53) was additionally performed and qualitatively related to cohesion metrics (WGCNA package
v1.51) (54, 55).

All R scripts and extra metadata used in this study are available on GitHub at https://github.com/
danczakre/AquiferEcology.

All terms used throughout this study can be found in Table 2.
Accession number(s). The data generated during 16S rRNA gene sequencing can be obtained from

the NCBI SRA database under accession no. SRX2896383.
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