
Introduction 

The ascending reticular activating system (ARAS) is considered 
an important neural structure for the control of consciousness 
[1,2]. In the field of neuroscience, clarification of the neural struc-
tures of the ARAS involved in the recovery of consciousness has 
been an important topic with regard to neurorehabilitation in pa-
tients with disorders of consciousness. Diffusion tensor tractogra-
phy (DTT), which is reconstructed from diffusion tensor imaging 
(DTI), has enabled the three-dimensional reconstruction of the 
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ARAS, and several DTT studies have reported on changes in the 
ARAS in patients who showed recovery of impaired conscious-
ness following rehabilitation [3-9]. In contrast, only one study re-
ported the positive effect of cranioplasty on impaired conscious-
ness without evidence of change in the ARAS [10]. 

In this study, we report on changes in the ARAS concurrent with 
the recovery of impaired consciousness following rehabilitation 
and cranioplasty in a patient with traumatic brain injury (TBI), 
which were demonstrated on DTT. 
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Case 

Ethical statements: This study was approved by the Institu-
tional Review Board (IRB) of Yeungnam University Hospital 
(IRB No: YUMC-2021-03-014), and informed consent was 
obtained from the patient. 

A 34-year-old, right-handed male patient was diagnosed with a 
traumatic intracerebral hemorrhage after falling from a height of 
approximately 7 meters and underwent a right frontoparietotem-
poral decompressive craniectomy and hematoma removal at the 
neurosurgery department of a local hospital. He was admitted to 
the rehabilitation department of a university hospital at 5 months 
after onset. Impaired consciousness was observed in the patient, 
with a Glasgow Coma Scale (GCS) score of 4 (eye opening, 1; 
best verbal response, 1; and best motor response, 2) [11]. Com-
prehensive rehabilitative therapy, including neurotropic drugs 
(levodopa, bromocriptine, baclofen, zolpidem, and amantadine), 
occupational therapy, and physical therapy, was provided [12]. Af-
ter 9 months of rehabilitation (14 months after onset) at the uni-
versity hospital and a local rehabilitation hospital, his GCS score 
improved to 8 (eye opening, 4; best verbal response, 1; and best 
motor response, 3) [11]. Cranioplasty was performed using au-
to-bone at 14 months after onset. One month after cranioplasty 
(15 months after onset), his GCS score improved to 12 (eye open-
ing, 4; best verbal response, 2; and best motor response, 6), and he 
was able to open his eyes upon verbal command. 

Diffusion tensor imaging 
DTI data were acquired twice (5 months and 15 months after on-
set) using a 6-channel head coil on a 1.5 T Philips Gyroscan Intera 
(Philips, Best, Netherlands) with single-shot echo-planar imaging 
(Fig. 1A). Sixty-five contiguous slices (reconstruction matrix, 
192 × 192 matrix; acquisition matrix, 96 × 96; echo time, 76 ms; 
field of view, 240 × 240 mm2; repetition time, 10,726 ms; number 
of excitations, 1; slice gap, 0 mm; thickness, 2.5 mm; b, 1,000 sec/
mm2) were acquired for each of the 32 noncollinear diffusion-sen-
sitizing gradients. The Oxford Centre for Functional Magnetic 
Resonance Imaging of the Brain (FMRIB) software library was 
used to analyse DTI data. FMRIB Diffusion Software with routine 
options (curvature thresholds of 0.2, 5,000 streamline samples, 
and 0.5-mm step lengths) was used for fiber tracking. Three por-
tions of the ARAS were analyzed by the selection of fibers passing 
through the following regions of interest (ROIs): the dorsal lower 
ARAS–the seed ROI was located on the pontine reticular forma-
tion (RF), and target ROI was placed on the intralaminar thalamic 

nucleus (ILN) [13]; the ventral lower ARAS–the seed ROI was 
placed on the pontine RF and target ROI located on the hypothal-
amus [14]; and the upper ARAS–seed ROI placed on the neural 
connectivity of the ILN to the cerebral cortex was analyzed [15]. 

On the 5-month DTT, in the lower dorsal ARAS, the upper  
portions were deviated to the left side and thin on the right side 
(Fig. 1B). The lower ventral ARAS was not reconstructed on both 
sides, and decreased neural connectivity was detected in both  
prefrontal cortices and both basal forebrains of the upper ARAS 
(Fig. 1C, 1D), while on 15-month DTT, the deviated lower dorsal 
ARAS was restored on both sides and the thinned right side had 
become thicker (Fig. 1B). The right lower ventral ARAS was re-
constructed, and increased neural connectivity was detected in 
both the anterior cingulums and prefrontal cortices of the upper 
ARAS (Fig. 1C, 1D). 

Discussion 

In this study, using DTT, changes in the ARAS were observed in a 
patient with TBI who showed recovery from a vegetative state to a 
minimally conscious state after comprehensive rehabilitation and 
cranioplasty; in detail, GCS, 4 (5 months after onset, first DTT); 
GCS, 8 (14 months after onset, before cranioplasty); and GCS, 12 
(15 months after onset, after 1 month of cranioplasty, second 
DTT). In particular, 1 month before and after cranioplasty, he 
showed a 4-point improvement in the GCS score. The changes in 
the ARAS observed on DTT during the 10-month period from 5 
months to 15 months after onset are as follows: (1) lower dorsal 
ARAS, normalization of bent configuration and thickening on the 
right side; (2) lower ventral ARAS, appearance on the right side; 
and (3) upper ARAS, the neural connectivity to both the anterior 
cingulums and prefrontal cortex was increased. The patient 
showed improved awareness (GCS, best motor response: 2 [5 
months after onset, first DTT] to 3 [14 months after onset, before 
cranioplasty] to 6 [15 months after onset, after 1-month cranio-
plasty, second DTT]), rather than alertness (GCS, eye opening: 4 
[5 months after onset, first DTT] to 4 [14 months after onset, be-
fore cranioplasty] to 4 [15 months after onset, 1 month after cra-
nioplasty, second DTT]). Therefore, we believe that the increased 
neural connectivity to both prefrontal cortices and cingulums in 
the upper ARAS concurrent with the change in the lower ARAS 
was responsible for the improvement of consciousness in this pa-
tient. In addition, our results appeared to correspond with the re-
sults of previous studies reporting increased connectivity to the an-
terior cingulum and prefrontal cortex, which are important areas of 
awareness in the brain [3-9,16]. 

In conclusion, changes in the ARAS were observed in a patient 
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Fig. 1. (A) Brain magnetic resonance images taken at 5 months and 15 months after onset show leukomalactic lesions in the right 
parietal and occipital lobes, both frontal and temporal lobes, and left basal ganglia. (B–D) Results of diffusion tensor tractography (DTT) 
for the ascending reticular activating system (ARAS) of the patient. On 5-month DTT, in the lower dorsal ARAS, the upper portions 
are deviated to the left side and thin on the right side (black arrow). The lower ventral ARAS is not reconstructed on both sides, and 
decreased neural connectivity of the upper ARAS is detected in both prefrontal cortices and both basal forebrains. By contrast, on 
15-month DTT, the deviated lower dorsal ARAS is restored on both sides and the thinned right side has become thicker (black arrow). 
The right lower ventral ARAS (yellow arrow) is reconstructed and increased neural connectivity of the upper ARAS is detected in both 
prefrontal cortices (pink arrows) and anterior cingulums (green arrows).
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with TBI who showed recovery of awareness following comprehen-
sive management, including rehabilitation and cranioplasty. The in-
creased neural connectivity of the prefrontal cortex and cingulum 
contributed to the recovery of awareness in this patient. We believe 
that our study has important implications for the management of pa-
tients with disorders of consciousness. However, several limitations 
of DTI should be considered. First, the fiber tracking technique is 
operator-dependent. Second, DTI may underestimate fiber tracts. 
DTI is a powerful anatomic imaging tool that can demonstrate 
gross fiber architecture, but not functional or synaptic connections. 
Third, regions of fiber complexity and crossing can prevent full re-
flection of the underlying fiber architecture by DTI [17,18]. 

Notes 
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