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Abstract: Among neurological adverse reactions in patients with schizophrenia treated with antipsy-
chotics (APs), drug-induced parkinsonism (DIP) is the most common motility disorder caused by drugs
affecting dopamine receptors. One of the causes of DIP is the disruption of neurotransmitter interactions
that regulate the signaling pathways of the dopaminergic, cholinergic, GABAergic, adenosinergic, en-
docannabinoid, and other neurotransmitter systems. Presently, the development mechanisms remain
poorly understood despite the presence of the considered theories of DIP pathogenesis.

Keywords: antipsychotic-induced parkinsonism; drug-induced parkinsonism; antipsychotics; theories
of pathogenesis; pathophysiology; pathogenesis

1. Introduction

Drug-induced parkinsonism (DIP), tardive dyskinesia (TD), tardive dystonia, akathisia,
myoclonus, and tremor are drug-induced motility disorders. Among these adverse drug
reactions (ADR), DIP is the most widespread movement disorder caused by drugs that
antagonise dopamine receptors, after Parkinson’s disease (PD), which has similar clinical
manifestations [1,2]. That is why patients with DIP are often misdiagnosed as having
PD [1,3]. These patients often took antiparkinsonian drugs for a long period of time,
despite the fact that recovery is possible simply by stopping the offending medicinal
drugs. Antipsychotics (APs) are the most common cause of DIP. Antipsychotic-induced
parkinsonism (AIP) usually manifests itself within a few days or weeks after the start of
AP, but in rare cases, the delay in onset can be several months or more [4]. Moreover,
the complexity of differential diagnosis arises between DIP and negative symptoms of
schizophrenia or withdrawal syndrome, as well as with depression [5].

AIP debuts in patients older than 40 years, women are two times more committed
than men [6]. Despite the development of APs of new generations, the problem of AIP has
not been solved to date. As shown in Table 1, all APs have a potential risk of AIP ranging
from low (+) to high (+++).
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Table 1. The risk of developing parkinsonism induced by taking antipsychotics of the first and new
generations.

Antipsychotics of
First Generation

Risk of Developing
AIP

Antipsychotics of
New Generations

Risk of Developing
AIP

Haloperidol +++ Lurasidone ++
Pimozide +++ Olanzapine ++

Thiothixene +++ Paliperidone ++
Fluphenazine +++ Risperidone ++

Loxapin ++ Azenapine +
Molindon ++ Aripiprazole +

Perphenazine ++ Brexpiprazole +
Trifluoperazine ++ Ziprasidone +
Chlorpromazine ++ Iloperidone +

Thioridazine + Karipazin +
Quetiapine +
Clozapine +

Lumateperone +
Pimavenzirin +

Note: + low risk; ++ moderate risk; +++ high risk.

Due to the fact that APs of the first and new generations affect different mechanisms
of action in the treatment of schizophrenia spectrum disorders, the risk of developing AIP
in some APs of new generations remains high, almost similar to APs of the first generation.
This may be due to the fact that the pathophysiological mechanisms of AIP development
are more complex than previously thought. In addition to the effect of AP on dopaminergic
neurons, other possible mechanisms are being considered (Figure 1). Knowledge of these
mechanisms can help in the development of new personalized strategies for the prediction,
prevention and early correction of AIP in patients with schizophrenia spectrum, which will
improve the therapeutic response and quality of life of the patient. This was the reason
for the preparation of this thematic review, the purpose of which is to analyze basic and
clinical studies studying on the pathophysiological mechanisms of AIP.
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One of the causes of AIP is a disruption of neurotransmitter interactions that regulate
the signaling pathways of the dopaminergic, cholinergic, GABA-ergic, adenosinergic, endo-
cannabinoid and other neurotransmitter systems. The monoamine (dopamine, serotonin,
and norepinephrine) systems of the brain play an important role in normal behavior, and
disturbances in these circuits are thought to be involved in the development of a number
of neurological and psychiatric disorders. The dopamine system is involved in the imple-
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mentation of such brain functions as locomotion, affect and cognition. It is also known that
this system is the last monoamine system that is formed in the brain during ontogeny [7],
which suggests that it can have an important stabilizing and integrative effect on brain
circuits, and that its disruption can cause their dysfunction [8]. Dopamine neurons in the
substantia nigra in its dorsal part are associated with the limbic and cortical or associative
systems of the brain, while those in the ventral part are associated with motility [9].

1.1. Dopamine D2 Type Receptors Blockade

Dopamine receptors in the brain are represented by two families: the D1 (D1 family
receptors and D5 receptors), and the D2 (D2, D3 and D4 receptors). All currently available
APs are able to antagonize dopamine D2 receptors, and the APs’ therapeutic effects in
psychosis are related to their action on the limbic system reducing dopamine transmis-
sion. Due to antagonism of dopamine D2 receptors in the striatum, neurons of gamma
aminobutyric acid (GABA), encephalin and the subthalamic nucleus are disinhibited at the
beginning of the indirect pathway without changing the direct pathway. Due to this, there
is an increase in GABA inhibition in the thalamocortical projection by facilitating inhibition
in the globus pallidus/reticular substantia nigra. This pathway is similar to the model of
basal ganglia motor loop impairment in PD [4].

It is assumed that the mechanism of action of APs is associated with the level of occu-
pancy of the dopamine D2 receptors. This is confirmed by several reports that therapeutic
doses of typical APs block D2 receptors in 70–89% of cases in young adults, while atypical
APs block in 38–63% of cases [10].

1.2. Supersaturation (“Occupancies”) of Striatal Dopamine D2/3 Receptors

The exact mechanism of AIP development is still unknown; nevertheless, the main
theory is the dopamine receptors blockade. In animal models, about 70% of the occu-
pancy of dopamine D2/3 receptors was recorded during AP therapy, which leads to the
development of AIP [11]. The threshold levels of occupancy of dopamine D2/3 recep-
tors in the striatum associated with the development of AIP in young adults, which is
about 80%, have been demonstrated in studies using neuroimaging technologies (using
positron emission tomography (PET) D2/3 receptor imaging) [12,13]. Dissimilarities in the
severity of AIP development are associated with the occupancy density of dopamine D2/3
receptors, AP concentration, the rate of dissociation from the D2 receptor, the selectivity of
dopamine receptors in the limbic system and striatum, and the activity of other receptors
(for example, serotonergic, muscarinic) [14]. Therefore, typical APs are more associated
with an increased risk of developing AIP than atypical APs [14–16]. However, such a high
occupancy of dopamine receptors should not be considered unequivocally, because the
occupancy of receptors is not equal to antagonism. For example, aripiprazole, which, in
addition to dopamine receptors, interacts with serotonin (5-HT) types 1A and 2A receptors
and rarely causes AIP, even with a dopamine receptor occupancy rate > 95% due to a weak
antagonistic effect on dopamine receptors [17,18].

1.3. Influence of the Basal Ganglia of the Thalamocortical Motor Loop

The pathophysiology of AIP is associated with drug-induced changes in the motor
chain of the basal ganglia secondary to blockade of dopaminergic receptors [4]. The
central dopaminergic system is presented of the four pathways: mesolimbic, mesocortical,
tuberoinfundibular, and nigrostriatal (Figure 2).

When dopamine D2 receptors blockade in the striatum, striatal neurons containing
GABA and encephalin are disinhibited, affecting the indirect pathway and ultimately
leading to a relative decrease in the activity of thalamocortical circuits [4,19]. This effect
may be mitigated by APs anticholinergic activity [20,21], as evidenced by the observation
that clozapine has a low risk of developing AIP and also has a high relative affinity for mus-
carinic cholinergic receptors [20]. The reason for the decrease in sufficient concentrations
of dopamine in the striatum may also be a decrease in the release of dopamine into the



Biomedicines 2022, 10, 2010 4 of 16

synaptic cleft [21]. Drugs that do not directly affect dopamine levels (valproic acid, calcium
channel blockers) can induce DIP through other mechanisms, including modulation of
GABA activity or mitochondrial dysfunction (Figure 3) [4,21–24].
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Figure 3. Schematic diagram of the excitatory and inhibitory ganglia involved in the development of
AIP (Adapted from [25], Copyright year 2020, BMJ Neurol. Open). Note: Substantia nigra dopaminer-
gic projections exert an exciting effect on stria-pallidal fibers of the direct pathway through dopamine
D1 receptors, which leads to disinhibition of the thalamic nuclei and increased thalamocortical
excitation, facilitating movements initiated by the cortex. The obstruction of voluntary movement
occurs due to thalamic inhibition, due to the inhibition of stria-pallidal fibers in an indirect pathway
through dopamine D2 receptors. The direct pathway is due to the activation of glutamate neurons in
the sensorimotor cortex, and the indirect pathway is due to the activation of GABA-ergic neurons.
The dotted line shows the inhibitory action due to the action of GABA. The straight line shows the
excitatory effect due to the action of glutamate.

1.4. Fast-off-D Theory

In studies devoted to brain occupancy, radioactive clozapine has been proven to show
rapid and transient occupancy of the dopamine D2 type receptors, dissociating in less
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than 60 s after administration, while radioactive haloperidol and chlorpromazine show
long-term occupancy with slow dissociation in less than 30 min. Therefore, atypical APs
are clinically more effective, having temporary occupancy of D2 type dopamine receptors
and rapid dissociation to normal dopamine neurotransmission (Table 2) [26,27].

Table 2. Dopamine receptors occupancy while taking antipsychotics (Adapted from [27], Copyright
year 2013 Neurosci. J.).

Antipsychotics
Occupancy Percentage (%)

D2 Receptors D3 Receptors D4 Receptors

Clozapine 38–63 62 49–73
Chlorpromazine 78 62 17

Haloperidol 85 52 57
Olanzapine 43–89 10–55 27–80
Risperidone 63–89 25–61 22–55
Quetiapine 51 24 88

1.5. Role of Adenosine Receptors

Purine and adenosine interact with major neurotransmitter systems (glutamatergic
cholinergic, GABA-ergic and dopaminergic) to modulate neuronal function in the central
and peripheral nervous systems [28].

Transmission of adenosine occurs through purinergic receptors coupled to the G-
protein class P1, which is subdivided into four receptor subtypes: A1, A2A, A2B, and
A3 [29]. A2A adenosine receptors are highly expressed by GABAergic neurons in the
striatum, globus pallidus, and olfactory bulb [30], and are co-localized with dopamine
D2 type receptors in the basal ganglia on enkephalin-expressing output neurons of the
indirect pathway leading to the globus pallidus and substantia nigra [31,32], which are
in dopaminergic nigrostriatal and mesolimbic neuronal pathways [33]. The A2A and D2
receptors are antagonists and regulate GABA neurons [34,35].

Most evidence suggests that due to intramembrane interaction, activation of the
adenosine A2A receptor indirectly blocks the activation of dopamine D2 receptors, and
stimulation of D2 receptors blocks the activation of adenylate cyclase caused by the A2A re-
ceptor [34]. Upon stimulation of A2A receptors, GABA is released, while upon stimulation
of D2 receptors, it is suppressed in the globus pallidus [35,36]. Here is evidence that these
receptors, on the contrary, can act as synergists, under certain circumstances (presence of
certain isoforms of adenylate cyclase, interruption of previous long-term exposure to D2
receptor agonists), activation of the D2 receptors enhances the effects of A2A receptors [34].
A study by Parsons et al. [37] in rats showed that chronic administration of haloperidol
activates striatal A2A receptors. The effect of haloperidol was selective for A2A receptors
over other adenosine receptor subtypes. Notably, atypical APs did not affect A2A receptors’
density in this study [37]. A2A adenosine receptor antagonists suppress motor disorders
such as catalepsy and locomotion induced by dopamine antagonists [38,39]. A2A receptor
antagonists are effective in relieving muscle rigidity and tremor in AIP (Figure 4) [15,40,41].
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1.6. Blockade of the Serotonergic System

The serotonergic system plays a crucial role in various physiological actions regulation,
including psychoemotional, cognitive, sensorimotor, and autonomic functions [42–44].
Serotonergic neurotransmission is presented by several 5-HT receptors, which are classified
into 7 families (5-HT1 to 5-HT7) and 14 subtypes (5-HT1A, 1B, 1D, 1E, 1F, 5-HT2A, 2B,
2C, 5-HT4, 5-HT3, 5-HT5A, 5B, 5-HT6 and 5-HT7) [45,46]. The 5-HT1E, 5-HT1F, and 5-
HT5 receptors are associated with the Gi/o protein and inhibit adenylate cyclase activity,
cyclic adenosine monophosphate (cAMP) formation, and protein kinase A (PKA) activity.
The 5-HT2A, 5-HT2B, and 5-HT2C receptors are coupled to the Gq protein and increase
phosphatidylinositol (PI) turnover by activating phospholipase C, thereby stimulating the
protein kinase C− and Ca2+/calmodulin cascade. The 5-HT4, 5-HT6, and 5-HT7 receptors
are Gs-coupled and activate adenylate cyclase and PKA [44–46].

5-HT1A receptors are localized in the raphe nucleus, hippocampus, amygdala, and
lateral septum. Expression of 5-HT1A receptors occurs in the cerebral cortex, basal gan-
glia (striatum), and diencephalon (thalamus and hypothalamus) in low to moderate den-
sity [42,47,48]. Inhibition of adenylate cyclase activity by 5-HT1A receptors leads to inhibi-
tion of the cAMP-PKA cascade. In addition, 5-HT1A receptors activate G-protein-gated
inwardly rectifying potassium channels (GIRK), which hyperpolarize target neurons and
suppress their activity [41,43–45]. Several studies on animal models have shown that 5-
HT1A receptors are activated with the introduction of AP for dehydration, has a protective
effect on the development of extrapyramidal syndrome (EPS) [49–55]. The 5-HT2A and
5-HT2C receptors are highly expressed in the cerebral cortex, olfactory tubercle and limbic
system (nucleus accumbens, hippocampus), basal ganglia (striatum and substantia nigra).
5-HT2A/2C antagonists attenuate AP-induced EPS in PD patients [56–58] by increasing
the level of released acetylcholine, dopamine metabolism, and Fos protein expression in
the striatum [57]. 5-HT3 receptors constitute a heteropentamer consisting of subunits from
5-HT3A to 5-HT3E and function as a cation (Na+, K+, and Ca2+) permeable channels [45,59].
Therefore, when 5-HT3 receptors are activated, postsynaptic membranes are depolarized,
thereby exciting target neurons. Serotonin 5-HT3 receptors are located in the nerve endings
of various neurons and induce the release of neurotransmitters (acetylcholine, glutamate,
GABA and dopamine). Clinical studies have also shown that 5-HT3 receptor antagonists
significantly reduce the frequency and severity of AP-induced EPS (e.g., AIP) in patients
with chronic schizophrenia [60,61]. However, a recent study showed that serotonin 5-HT3
receptors do not affect the activity of cholinergic interneurons in the striatum [62]. Thus,
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the functional mechanisms of 5-HT3 receptors in EPS are still unclear. The expression of
serotonin 5-HT6 receptors mainly occurs in the brain, in particular, in the basal ganglia
(striatum and nucleus accumbens), limbic system (olfactory tubercles and hippocampus),
and cerebral cortex [45]. According to the results of clinical studies, 5-HT6 receptor an-
tagonists also have a protective property against the development of EPS [63,64]. The
decrease in the incidence and severity of EPS in the presence of 5-HT6 antagonists was
further confirmed by an electrophysiological study [62], reflecting a decrease in the activa-
tion of striatal acetylcholine neurons, thereby reducing the likelihood of developing EPS
(Figure 5) [65].
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Agonists of postsynaptic and presynaptic serotonin 5-HT1A receptors lead to a de-
crease in the manifestations of extrapyramidal movement disorders. This is explained by
hyperpolarization GABA medial spine neurons or indirectly by inhibition acetylcholinergic
and glutamatergic interneurons in the striatum. In addition, when presynaptic 5-HT1A
autoreceptors are stimulated, the serotonergic activity of neurons in the nuclei of the sutures
is inhibited, reducing the functions of 5-HT2A/2C, 5-HT3 and 5-HT6 receptors, as a result
of which the symptoms of extrapyramidal movement disorders improve.

1.7. Cholinergic Theory

The desired blockade of the mesolimbic pathways leads to simultaneous inhibition of
dopamine D2 type receptors in the substantia nigra, resulting in AIP. Cholinergic interneu-
rons in the basal ganglia balance dopaminergic activity. Accordingly, in PD, when the
balance is disturbed due to the degeneration of dopaminergic neurons, there is a relative
predominance of cholinergic activity. Thus, the pathogenesis in PD can be considered as
both a lack of dopaminergic activity and a relative increase in cholinergic activity.

Based on this theory, cholinergic drugs can also be prescribed to patients in order to
restore the balance of the dopaminergic and cholinergic systems [66].

1.8. Melatonin Theory

Melatonin interacts with 5-HT2 receptors and can regulate the activity of dopamine. In
case of higher concentrations, melatonin acts as a 5-HT2 receptor antagonist and leads to an
increase in dopaminergic activity, while at physiological concentrations, melatonin reduces
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dopamine, acting as an agonist. These modulating effects of melatonin on dopamine
activity may explain the circadian changes in dopamine activity [67,68] and the circadian
changes in the clinical course in patients with schizophrenia treated with APs; as a result,
a reduction in the symptom severity can be expected [69]. Animal studies indicate that
APs interfere with melatonin secretion. In rats, APs sharply increase melatonin levels in
the pineal gland and blood plasma [70]. Similarly, in humans, plasma melatonin levels
increase during AP therapy [71]. As a result of antagonism of the 5-HT2 receptor by
high concentrations of melatonin, dopamine activity will increase, thereby counteracting
the blockade of dopamine receptors caused by APs. Thus, the interaction between the
decrease in dopamine activity during the use of APs, and the protective effect of therapeutic
concentrations of melatonin on dopamine function in the form of its increase, may partially
explain the delay in AP effects, the delayed appearance of AIP, and possibly the regression
of AIP. However, because chronic use of APs (for more than 6 months) can eventually
damage the cells of the pineal gland [72], it can be expected that melatonin secretion will
decrease, which will contribute to ADRs in the background of AP. In confirmation of this
theory, clinical examples are presented, where patients with AIP risk factors associated
with reduced melatonin secretion (older age, postmenopausal women, depression [73]) had
a history of AIP more often [74–77].

1.9. Theory of Oxidative Stress

The theory of oxidative stress is actively studied in the pathogenesis of extrapyramidal
movement disorders. Despite the fact that damage to cellular structures is observed during
oxidative stress, its components act as second messengers in the formation of regulatory
functions. One of the free radicals of oxidative stress that regulates various cellular signaling
pathways is nitric oxide (NO) [78]. When NO synthase is inhibited, enzyme activity is
reduced by 80%, leading to the formation of primary and secondary products of lipid
peroxidation (conjugated dienes (CD) and trienes (CT), malondialdehyde (MDA) and Schiff
bases (SB)). According to the study by Dolgo-Saburov et al. [79], a significant increase
in the concentration of CD and CT is observed after blockade of the dopamine D2 type
receptors while taking APs in the studied structures of the central nervous system. The
accumulation of MDA and SB also indicates the development of oxidative stress and its
maintenance after a decrease in NO synthase activity [79]. Haloperidol-induced AIP is
associated with elevated levels of the haloperidol metabolite, pyridinium, which is toxic to
dopamine neurons [80,81]. This toxic metabolite can be produced locally in the brain [82].
During haloperidol therapy, oxidative metabolism in the brain increases [83], protein kinase
B (Akt) phosphorylation decreases, which leads to caspase-3 activation [84]. Haloperidol
alters the expression of the transcription nuclear factor kappa B (NF-κB) in the substantia
nigra, which directly affects oxidative stress [85] and plays a role in the activation of several
genes involved in the immune and inflammatory systems [86].

1.10. Role of Vitamin D3

The vitamin D3 receptor (VDR) is a widespread steroid receptor, mainly localized in
the pigmented nigrostriatal tract and motor cortex [87,88], providing melanin synthesis,
cytoskeletal stability, and calcium in the motor area [89]. Indirectly, the control of calcium
during the inhibition of NMDA receptors (NMDAR) in the elimination of excitotoxicity
in vitro and in vivo has been described [90,91]. In addition, NMDAR enhancement is
involved in glutamate excitotoxicity, degeneration in the nigrostriatal tract and motor
cortex by increasing inward calcium flow, thereby increasing the level of calcium in the
brain [92]. Activation of VDR by its agonists and inhibition of NMDAR in vitro reduces
calcium toxicity and stabilizes microtubules, with a protective effect against excitotoxic-
ity and synaptic denervation [93–95]. Reducing the reversibility of cortical degeneration
(parkinsonism) with calcium supplementation mediated by VDR and NMDAR is still
relatively unexplored [96]. Potentiation of VDR and inhibition of NMDAR reduce the level
of toxicity in the cerebral cortex by improving neuronal metabolism, the amount of glia and
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the cytoskeleton to support synaptic function, thus increasing neural activity and motor-
cognitive functions. Against the background of taking AP, synaptic denervation occurs due
to a calcium-dependent depolymerization of microtubules in motor neurons [97]. It also
increases the activity of glia and cells, leading to inflammation [98,99]. Motor ADR in the
presence of APs may be the result of antagonism of D2 type dopamine receptors, resulting
in the induction of oxidative stress and increased production of free radicals (ROS) [100]
due to which the concentration of calcium ions increases both intracellularly and extracel-
lularly [101,102]. This accumulation of calcium leads to microtubule collapse and excessive
phosphorylation of the microtubule-associated protein tau, which is involved in the stabi-
lization of the structure of axons and dendrites [103,104]. Recent studies have established
an interaction between elevated calcium levels, autophagy, and synaptic denervation in the
pathogenesis of AIP [90,91,105]. Elevated calcium and glutamate concentrations, combined
with low serum vitamin D3 levels, are associated with the risk of developing parkinsonism
and other neurodegenerative diseases [106–108].

1.11. Genetic Theory

The role of genetic risk factors in the mechanisms of development of AIP [109] has
been known for more than 40 years. This was also confirmed by later studies [110–112]. In-
dividual differences in susceptibility to haloperidol-induced parkinsonism were explained
by individual pharmacokinetic variability associated with the influence of carriage of single
nucleotide variants (SNVs) of the CYP3A4 and CYP3A5 genes, which affects the metabolism
of haloperidol to its pyridinium ion. While taking haloperidol, pyridinium ion-related
toxicity may be observed, which may be exacerbated in patients on polytherapy with
antidepressants, as they interact with this system [6,86,113–116].

Moreover, at the moment, other associations of candidate genes for the risk of devel-
oping AIP have already been studied, shown in Figure 6.
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In our systematic review, the following positive associations for the risk of developing AIP
were noted: rs1799732 (NG_008841.1:g.4750dup), rs1800497 (NG_012976.1:g.17316G>A), rs6275
(NG_008841.1:g.67525T>C) of the DRD2 gene; rs167771 (NG_008842.2:g.46980C>T, NG_008842.2:
g.46980C>G, NG_008842.2:g.46980C>A) of the DRD3 gene; rs4680 (NG_011526.1:g.27009G>A) of
the COMT gene; rs6311 (NG_013011.1:g.4692G>T, NG_013011.1:g.4692G>A) of the 5HTR2A gene;
rs6318 (NG_012082.2:g.152242G>C, NG_012082.2:g.152242G>T) and rs3813929 (NG_012082.2:
g.4963C>G, NG_012082.2:g.4963C>T) of the HTR2C gene; rs2179652 (NG_022822.1:g.225C>T),
rs2746073 (NG_012800.1:g.6059T>A), rs4606 (NG_012800.1:g.8004C>G, NG_012800.1:g.8004C>T),
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rs1152746 (NC_000001.11:g.192827775C>G, NC_000001.11:g.192827775C>T), rs1819741 (NC_00000
1.11:g.192815708T>A, NC_000001.11:g.192815708T>A) and rs1933695 (NC_000001.11:g.192795690
G>A) of the RGS2 gene; rs4795390 (NG_030330.1:g.3434G>A, NG_030330.1:g.3434G>C, NG_03033
0.1:g.3434G>T) of the PPP1R1B gene; rs6265 (NG_011794.1:g.68690G>A) of the BDNF gene;
rs12678719 (NG_011723.2:g.189908C>G) of the ZFPM2 gene; rs938112 (NC_000003.12:g.117129003
C>A, NC_000003.12:g.117129003C>T) of the LSMAP gene; rs2987902 (NG_012034.1:g.125979A>T)
of the ABL1 gene. However, at present, it should be recognized that there is no definitive or single
decision on the leading role of any particular SNVs/polymorphisms in AIP development [6,114,
116,117].

2. Discussion

In terms of motor function disorders, AIP and AP-induced TD are the most common
neurological ADRs associated with APs use. However, to the present date, it remains
unclear which patient and against the background of taking which specific AP one or
another ADRs will develop. The pathophysiological mechanisms of AIP and AP-induced
TD are different. While there is a decrease in the function of the extrapyramidal system in
the form of the development of bradykinesia, muscle rigidity in AIP, in AP-induced TD, on
the contrary, there is an increase in function in the form of violent movements [118]. It has
been shown that long-term use of AP is associated with the formation of ROS as a result of
increased metabolism of catecholamines (Figure 7). The reduction in such oxidative damage
to AP-sensitive dopaminergic neurons has become the basis of antioxidant treatment for
AP-induced TD. However, the effectiveness of AIP antioxidant therapy is low. While AIP
results from the interaction of APs with substantia nigra neurons, dyskinetic symptoms
may also be more closely related to AP-induced problems in the striatum, in particular the
caudate nucleus [23,66].
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It should be assumed that the development of AIP in patients with schizophrenia is
influenced by such risk factors as taking APs of the first generation (in 50% of patients
AIP eventually develops while taking APs); elderly age; genetic predisposition; a history
of human immunodeficiency virus infection. On the other hand, when predicting the
development of AIP, one should take into account not only the risk factors, but also
protective factors of AIP: taking anticholinergic drugs (due to increased cholinergic activity,
which leads to stimulation of the GABA-ergic inhibitory pathway in the basal ganglia);
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smoking (nicotine can act as an inhibitor of monoamine oxidase B, increasing the availability
of dopamine) [28]. In recent decades, genetic predictors of AIP and AP-induced TD have
been actively studied as a risk for the development of these neurological ADRs [120–122].

The theories of AIP development discussed in this review are very important. First
of all, knowledge about the AIP pathogenesis can help with better understanding of the
disease nature. Moreover, thanks to the understanding of the pathogenetic mechanisms of
AIP, new opportunities for the treatment of this ADR are opening up. At the same time,
knowledge about the pathogenesis of AIP can help to develop personalized strategies
for the correction of patients suffering from AIP or at risk of developing AIP. Despite the
large number of theories presented, the pathogenetic mechanism of this neurological ADR
remains unclear.

Thus, it is impossible to single out one of the theories as the dominant mechanism for
the development of AIP. Undoubtedly, the pathophysiology of AIP should be considered
as an interconnected complex of neurotransmitter systems (dopamine, serotonin, adeno-
sine, acetylcholine, and others) that affect each other and depend on nonmodifiable risk
factors—gender, age, genetic predisposition—as well as modifiable ones—the type of AP,
its dose, concomitant diseases, etc. At the same time, knowledge of this raises questions
about the personalized risks of developing AIP in a particular patient because the patho-
physiological mechanisms of developing AIP may differ in different patients. Thus, this
poses new challenges and requires additional research to better understand the molecular
pathophysiology of AIP.

The limitations for this review were the difficulties in finding full-text publications
and the presence of abstracts that did not reveal the full information of the theories of
pathogenesis. Moreover, in many similar works, information is duplicated in a compressed
version. For a complete understanding of the pathogenetic mechanisms, it would be
interesting to consider the differences, taking into account the gender and age of patients
with AIP. We did not find any articles with reliable data assessing differences by sex and
age in this review, which are the predictors of the risk of developing AIP. Thus, a review of
these theories is relevant, but we have not found such works.

In this review, we have described the pathogenetic mechanisms of AIP development
found in the literature and presented the theories in as much detail as possible with the
help of figures and tables for better understanding.

3. Conclusions

Our review of studies of the mechanisms of AIP development in an animal model and
patients with schizophrenia allows us to identify the following theories: impaired function
of D2 type dopamine receptors (blockade of D2 type dopamine receptors, supersaturation of
D2 type dopamine receptors, “Fast-off-D2” theory); dysfunction of the basal ganglia of the
thalamocortical motor loop; dysfunction of adenosine receptors; blockade of serotonergic
receptors; cholinergic theory; oxidative stress; violation of melatonin metabolism; violation
of the level of vitamin D3; genetic theory. The search for the leading pathophysiological
mechanisms of AIP is important for the development of a personalized strategy, prevention,
therapy, considered neurological ADRs of AP-therapy in real clinical practice.
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