
688  |  Nature  |  Vol 606  |  23 June 2022

Article

Many-body theory of positron binding to 
polyatomic molecules

Jaroslav Hofierka1,3, Brian Cunningham1,3, Charlie M. Rawlins1, Charles H. Patterson2 & 
Dermot G. Green1 ✉

Positron binding to molecules is key to extremely enhanced positron annihilation  
and positron-based molecular spectroscopy1. Although positron binding energies 
have been measured for about 90 polyatomic molecules1–6, an accurate ab initio 
theoretical description of positron–molecule binding has remained elusive. Of the 
molecules studied experimentally, ab initio calculations exist for only six; these 
calculations agree with experiments on polar molecules to at best 25 per cent 
accuracy and fail to predict binding in nonpolar molecules. The theoretical challenge 
stems from the need to accurately describe the strong many-body correlations 
including polarization of the electron cloud, screening of the electron–positron 
Coulomb interaction and the unique process of virtual-positronium formation (in 
which a molecular electron temporarily tunnels to the positron)1. Here we develop a 
many-body theory of positron–molecule interactions that achieves excellent 
agreement with experiment (to within 1 per cent in cases) and predicts binding in 
formamide and nucleobases. Our framework quantitatively captures the role of 
many-body correlations and shows their crucial effect on enhancing binding in polar 
molecules, enabling binding in nonpolar molecules, and increasing annihilation rates 
by 2 to 3 orders of magnitude. Our many-body approach can be extended to positron 
scattering and annihilation γ-ray spectra in molecules and condensed matter, to 
provide the fundamental insight and predictive capability required to improve 
materials science diagnostics7,8, develop antimatter-based technologies (including 
positron traps, beams and positron emission tomography)8–10, and understand 
positrons in the Galaxy11.

Pioneering technological developments have enabled the trapping, 
accumulation and delivery8–10 of positrons for study of their funda-
mental interactions with atoms and molecules1,12, and the formation, 
exploitation and interrogation of positronium (Ps)13,14 and antihydro-
gen15,16. The ability of positrons to annihilate with atomic electrons 
forming characteristic γ-rays makes them a unique probe over vast 
length scales, giving them important use in, for example, materials sci-
ence for ultrasensitive diagnostics of industrially important materials7,8, 
medical imaging (positron emission tomography)17 and astrophysics11.

Proper interpretation of the materials science techniques and the 
development of next-generation antimatter-based technologies rely 
on an accurate understanding of the fundamental interactions of 
positrons with atoms and molecules. Substantial progress has been 
made developing ab initio theoretical understanding of positron–atom 
interactions1,12,18–21. Yet, for molecules, clusters and condensed matter, 
many basic aspects of positron–matter interactions remain poorly 
understood, and predictive capability is lacking. A notable example 
is the open fundamental problem of positron binding to molecules. 
Observation of energy-resolved annihilation spectra have enabled 
measurement of positron binding energies (ranging from a few to 

a few hundred meV) for more than 90 molecules2–6. The majority of 
these (approximately 60) are nonpolar or weakly polar species, such 
as alkanes, aromatics, partially halogenated hydrocarbons, alcohols, 
formates and acetates. By contrast, ab initio calculations have been per-
formed predominantly for strongly polar molecules1 (though we note 
recent model calculations for polar and nonpolar molecules)22,23. Only 
six species have been studied both experimentally and with ab initio 
theory, via configuration interaction (CI)24–28 and ‘any particle molecu-
lar orbital’ (APMO)29 approaches: carbon disulfide CS2, acetaldehyde 
C2H4O, propanal C2H5CHO, acetone (CH3)2CO, acetonitrile CH3CN, 
and propionitrile C2H5CN1. For these, the sophisticated CI and APMO 
approaches proved deficient, greatly underestimating the experi-
mental binding energies, agreeing to at best greater than approxi-
mately 25% (for acetonitrile, theory28: εb = 136 meV, versus experiment5: 
εb = 180 meV), and failing to predict binding in nonpolar CS2 (versus 
experiment: εb = 75 meV)4 (see below). Also, the considerably larger 
positron–molecule binding energies compared to electron–molecule 
ones (that is, negative ion states)4,6 are not quantitatively understood.

For these molecules, vibrational and geometry relaxation effects 
are known to provide only a few per cent correction to fixed-nuclei 
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calculations of binding energies and wavefunction densities1,28–32: for 
example, for acetaldehyde, acetone and acetonitrile (all considered 
in this work) the vibrational averaging correction was approximately 
1–5%28. The theoretical difficulty lies in the need to identify and accu-
rately describe strong many-body correlations that dominate the posi-
tron–molecule system. A powerful method that can fully account for 
the important correlations in a natural, intuitive and systematically 
improvable way is many-body theory19,33–39.

Here we develop the many-body theory of positron interactions with 
polyatomic molecules. We quantify and delineate the role of the correla-
tions including polarization of the molecular electron cloud, screening 
of the positron–electron Coulomb interaction, and the unique process of 
virtual-Ps formation. We use the fixed-nuclei approximation and restrict 
to molecules with ionization energies larger than the Ps ground-state 
energy: for these, the Ps-formation channel is closed and the process is 
virtual, yet we will see that it has an important effect. After benchmarking 
its state-of-the-art computational implementation against explicitly corre-
lated Gaussian (ECG) and quantum Monte Carlo (QMC) results for LiH and 
formaldehyde, we calculate binding energies and annihilation lifetimes 
for the six molecules for which both previous theory and measurements 
exist, finding excellent overall agreement. We additionally predict binding 
in formamide, CSe2, benzene and the primary nucleobases.

The positron binding energy ε and bound-state wavefunction ψε is 
found by solving the Dyson equation33 (H(0) + Σε)ψε(r) = εψε(r), where 
H(0) is the Hamiltonian of the positron in the Hartree–Fock field of the 
ground-state molecule, ΣE is a nonlocal, energy-dependent correlation 
potential (irreducible self energy of the positron), and r is positron 
coordinate. It acts as an integral operator ΣEψ(r) ≡ ∫(ΣE(r, r′))ψ(r′)dr′ and 
encapsulates the full complexity of the many-body problem. We calculate 
Σ via its expansion in residual electron–electron and electron–positron 
interactions, see Fig. 1. In Fig. 1a, the ‘GW’ self energy, ΣGW, describes the 
positron-induced polarization of the molecular electron cloud, and 
corrections to it owing to screening of the electron–positron Coulomb 
interaction by the molecular electrons, and electron–hole attractions 
(the Bethe–Salpeter equation approximation, GW@BSE). Figure 1b repre-
sents virtual-Ps formation19,39: it is denoted by ΣΓ and involves the summed 
infinite ladder series of (screened) electron–positron interactions (the 
‘Γ block’; see Extended Data Fig. 1). The infinite ladder series is impor-
tant to the positron problem because successive diagrams in this series 
contribute to the positron–molecule self energy with the same sign, 
whereas for all-electron systems the series is sign alternating and gives 
a small overall contribution. We also consider the smaller positron–hole 
ladder series contribution, ΣΛ, shown in Fig. 1c. The construction of Σ and 
solution of the Dyson equation are detailed in Methods.

Positron binding energies and lifetimes
Table  1 shows our calculated binding energies at successively 
more sophisticated approximations to the correlation potential: 

Hartree–Fock, Σ(2) (bare polarization), ΣGW (polarization including elec-
tron screening and screened electron–hole interactions; Fig. 1a), ΣGW+Γ 
(Fig. 1a, b), and ΣGW+Γ+Λ (Fig. 1a–c). In the table, the first (second) number 
is the result using bare (dressed) Coulomb interactions in the ladders, 
and the third (our most sophisticated, in bold) is that using dressed 
interactions and energies. See also Fig. 2 for a graphical comparison 
of theory and experiment, and Extended Data Table 2 for more details.

Benchmarking and general trends
We benchmark our approach against ECG (εb = 1,043 meV)40 and QMC 
(εb = 1,015 meV)41 calculations for LiH, and against QMC for formalde-
hyde (εb = 25 ± 3 meV)42. The LiH results demonstrate the general trends 
seen in all the molecules considered. The Hartree–Fock binding energy 
(εb = 130 meV) is severely deficient. Including the bare polarization 
attraction Σ(2) considerably  increases the binding energy (to 
εb = 434 meV). The addition of short-range screening corrections 
reduces the polarizability and binding energy (to εb = 336 meV, see 
Extended Data Table 2), but this is compensated by the inclusion of the 
electron–hole attractions (ΣGW: εb = 518 meV). This is still, however, less 
than half of the ECG result. The previous CI calculation24 is similarly 
deficient. Notably, however, including the virtual-Ps formation cor-
relation potential (ΣGW+Γ) strongly enhances the binding, more than 
doubling it (to εb = 1,291 meV). Including the positron–hole ladder 
(ΣGW+Γ+Λ) slightly reduces binding (to εb = 1,106 meV); using screened 
interactions in the ladders reduces it slightly further (εb = 1,038 meV); 
additionally using the dressed energies in the diagram construction 
gives εb = 1,060 meV, agreeing with the ECG (QMC) result to within 
approximately 1% (approximately 4%). For formaldehyde, the addition 
of virtual-Ps again drastically enhances binding (by a factor of approx-
imately 5 over the GW result), and including the positron–hole interac-
tion results in a binding energy εb = 28 meV, within the error of the QMC 
calculation. Comparing to our method, the ECG and QMC approaches 
evidently account for virtual-Ps formation to a similar accuracy, 
although these methods cannot be scaled to larger molecules40, and 
provide relatively limited insight (see below). Additionally, the cor-
relations effect a strong localization of the positron wavefunction 
density at the negatively charged end of the molecule (see Fig. 2), 
although overall, the wavefunction is quite diffuse, asymptotically 
taking the form ψ ∝ e−κr where κ ε= 2 b. We also calculate the positron 
Dyson wavefunction renormalization constants a (see equation (7) in 
Methods and Extended Data Table 2). These represent the contribution 
of the positron plus molecule in the ground-state component to the 
bound state. Their closeness to unity suggests the picture of a positron 
bound to the neutral molecule (instead of a Ps atom orbiting a molec-
ular cation)43.

Comparison with experiment and previous theory
The best prior agreement between theory and experiment for any 
molecule was for acetonitrile (greater than approximately 25%). 
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Fig. 1 | Main contributions to the positron–molecule self energy. a, The ‘GW ’ 
contribution, which involves the positron Green’s function Gν and the (dynamic 
part of the) screened Coulomb interaction W. It describes the positron-induced 
polarization of the molecular electron cloud and corrections to it due to 
screening of the electron–positron Coulomb interaction by molecular 
electrons, and electron–hole attractions. b, The virtual-Ps contribution  
ΣΓ, which includes the summed infinite ladder series (‘Γ block’) of screened 

electron–positron interactions. c, The positron–hole ladder series (the 
‘Λ block’) contribution ΣΛ. Lines directed to the right (left) represent particles 
(holes) propagating on the N-electron ground-state molecule: red lines labelled 
ε represent the external positron state; other red (blue) lines represent positron 
(excited electron or hole) intermediate states that are summed over; single 
(double) wavy lines represent bare (screened) Coulomb interactions. See 
Methods and Extended Data Fig. 1 for details of their calculation via the BSE.
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Considering the polar molecules first (Table 1 and Fig. 2), we imme-
diately see that our full many-body theory (ΣGW+Γ+Λ) is superior, giving 
near-exact agreement (less than about 1% level) with experiment for 
propionitrile, propanal, acetaldehyde and formamide, and within 10% 
for acetonitrile and acetone (including the experimental error). (Overall 
we find excellent convergence in our calculation: see Methods and 
Extended Data Fig. 2). For all the polar molecules, the Hartree–Fock 
and bare (Σ(2)) and dressed (GW) polarization potentials substantially 

underestimate binding. The effect of virtual Ps is crucial: it enhances 
the binding energy by a factor of approximately 2 and is essential to 
bring theory into agreement with experiment. We note that the previ-
ous CI and APMO (‘REN-PP3’, which uses a diagonal approximation and 
does not explicitly account for virtual-Ps formation) calculations are 
severely deficient.

For the nonpolar molecules, we find that binding is exclusively ena-
bled by correlations. For CS2 a considerable binding energy of 75 meV 

Table 1 | Calculated positron–molecule binding energies

Present many-body theory (meV) Other calculations (meV)

μ (D) α (Å3) I (eV) HF Σ(2) ΣGW ΣGW+Γ ΣGW+Γ+Λ† Exp.‡ Benchmark CI APMO

Polar molecules

LiH 5.9 3.50 8.3 130 434 518 1,291 1,106 1,038 1,060 – 1,043 (ECG)40 46324 –

Formaldehyde 2.3 2.43 11.2 0.3 9 10 51 27 25 28 – 25 ± 3 (QMC)42 1526 329

Acetonitrile 3.9 4.24 12.6 15 120 109 301 210 195 207 180 ± 10 – 13628 6529

Propionitrile 4.1 5.90 12.4 16 140 129 341 245 230 243 245 ± 10 – 16425 –

Acetone 2.9 5.75 10.2 3 67 69 221 147 138 152 174 ± 10 – 9628 3629

Propanal 2.5 5.70 10.4 1 44 45 170 108 100 108 118 ± 10 – 5826 –

Acetaldehyde 2.7 4.12 10.6 2 35 38 135 86 81 89 88 ± 10 – 5528 1629

Formamide 3.7 3.68 11.0 12 105 109 255 186 178 189 ~200* – – –

Nonpolar molecules

CS2 0 8.00 10.5 <0 <0 <0 171 68 46 63 75 ± 10 – <027 –

CSe2 0 10.7 9.7 <0 9 <0 276 139 101 131 – – 1827 –

Benzene 0 9.85 9.5 <0 11 2 252 120 92 116 150 – – –

Dipole moment μ from ref. 55; isotropic polarizabilities α and ionization energies I calculated at the GW level (see Extended Data Table 1 for anisotropic polarizabilities). Binding energy  
calculations are presented in the Hartree–Fock (HF), Σ(2) (bare-polarization) and GW@BSE (bare-polarization plus screening and electron–hole corrections) approximations, and additionally 
including virtual-Ps formation ΣGW+Γ and the positron–hole ladder contribution ΣGW+Γ+Λ. 
†For ΣGW+Γ+Λ, the first (second) number is that using bare (dressed) Coulomb interactions in the Γ and Λ blocks, and the third (our most sophisticated calculation, in bold) additionally uses GW 
energies in the diagrams. Their difference gives a measure of the theoretical uncertainty. 
‡Experimental values from refs. 1,4,5, except for formamide. 
*Experimental value for formamide is preliminary (J. R. Danielson, S. Ghosh & C. M. Surko, unpublished material). 
Other calculations: ECG, explicitly correlated Gaussian; QMC, quantum Monte Carlo; CI, configuration interaction; APMO, any-particle-molecular orbital, at the best, ‘REN-PP3’ level. See also 
Fig. 2 for a graphical comparison.
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Fig. 2 | Positron–molecule binding energies and bound-state Dyson 
wavefunction densities. a, The comparison of the present many-body 
calculations (red circles) with experiment (error bars for the calculations  
show the largest difference between the three ΣGW+Γ+Λ calculations in Table 1). 
Also shown are the CI and APMO calculations (blue squares and green crosses, 
respectively). MBT, many-body theory. b–l, Positron wavefunction densities.  
b, LiH, with Li atom at origin and H at approximately 3 a.u. along the molecular 
axis, showing the positron wavefunction density isosurface at 70% of the 
maximum (red lobe), the electron HOMO wavefunction density isosurface 

(blue lobe is the negative region at 40% of maximum, and brown is the positive 
region at 10% of the maximum). Also shown is the positron wavefunction 
calculated along the molecular axis in the Hartree–Fock approximation (black 
curve) and at the ΣGW+Γ+Λ level of many-body theory (red curve). c–i, The positron 
wavefunction density isosurfaces at 80% of maximum for formaldehyde (c), 
acetonitrile (d), propionitrile (e), acetone (f), propanal (g), acetaldehyde (h), 
and formamide (i). j–l, Nonpolar molecules with isosurfaces at 90% of 
maximum CS2 ( j), CSe2 (k), and benzene (l). a.u., atomic units.
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was measured, whereas the CI calculation failed to predict binding27. 
We see that polarization (GW) alone is insufficient to support binding. 
Notably, however, including the virtual-Ps contribution results in a 
prediction of large binding: our ΣGW+Γ+Λ result of εb = 63 meV is close to 
experiment. For the nonpolar molecules the positron wavefunction 
is delocalized around the molecule (Fig. 2j–l), making the accurate 
description of virtual-Ps more computationally demanding. For CSe2 
and benzene, in contrast to the molecules already considered, we have 
not optimized the bases (accurate calculation for these molecules 
require computational resources currently beyond our disposal) and 
our values for εb should be considered as lower bounds. Nevertheless, 
the results further elucidate the essential role of virtual-Ps formation 
in enabling (large) binding, and the positron wavefunctions provide 
fundamental insight that may prove instructive to refine ab initio and 
model calculations (see "Predicting binding in larger molecules: nucle-
obases").

Prediction for formamide
For formamide, the archetypal molecule for the investigation of pro-
tein and peptide chemistry, we are unaware of any prior calculation. 
We predict binding (εb ≈ 189 meV). Preliminary experiments see evi-
dence of εb ≈ 200 meV, although a final value has yet to be determined  
( J. R. Danielson, S. Ghosh & C. M. Surko, unpublished material).

Molecular orbital contributions to binding
At the static Hartree–Fock level, we find εb to be (monotonically and 
nonlinearly) related to the permanent dipole moment (expected from 
the dipole-potential model)44. Ultimately the correlation potential 
is anisotropic (see Extended Data Table 1 for calculated anisotropic 
polarizabilities), and depends nonlinearly on the polarizabilities and 
ionization energies of the individual molecular orbitals. Moreover, 
the binding energy depends nonlinearly on the correlation potential 
(for example, see Extended Data Fig. 3). The ordering of εb with respect 
to dipole moment persists to the Σ(2+Γ+Λ) calculation, with the excep-
tion of acetaldehyde and propanal, and we note that for acetone, 
correlations considerably enhance εb. It is instructive to consider the 
dimensionless quantity45 S ε ν Σ ν= −∑ ⟨ | | ⟩ν ν>0

−1  (where the sum is over 

excited Hartree–Fock positron basis states of energy εν, see Methods), 
which gives an effective measure of the strength of the correlation 
potential Σ. The magnitudes of the strength of Σ(2), (2)S  ranges from 
4–15 (see Extended Data Table 2), and follows the ordering of the 
isotropic polarizability, with the exception of acetone and propanal 
(acetone has a larger polarizability and smaller ionization energy 
than propanal), and benzene and CSe2 (owing to benzene’s π bonds; 
see below). This suggests that (the short-range contributions to) Σ(2) 
cannot be parametrized solely by the polarizability. Similarly, the 
magnitudes of S (Γ) (ranging from 2–5) do not strictly follow the order-
ing of the ionization energies. To illuminate this, note that at the bare-
polarization approximation, Σ(2), and polarization plus virtual-Ps 
formation approximation, Σ(2+Γ) = Σ(2) + Σ(Γ), we can delineate the con-
tribution of individual molecular orbitals to positron binding.  
Figure 3a shows the partial S Γ( ) and S Γ(2+ ) for individual occupied 
molecular orbitals against their respective ionization energies, and 
the ratio S Sg ≡ /Γ(2+ ) (2), where S S S= −Γ Γ(2) (2+ ) ( ). Both Γ( )S  and S Γ(2+ ) 
decrease from the Ps-formation threshold to higher ionization ener-
gies: it is more difficult to perturb more tightly bound electrons. 
However, the decrease is not monotonic: we see that despite having 
larger ionization energies, π-type electronic molecular orbitals below 
the highest occupied molecular orbital (HOMO) can contribute con-
siderably more than a σ-type HOMO to S Γ( ) and Γ(2+ )S —for example, 
in acetone, propanal and acetaldehyde, the strength of the π-type 
(H−1)OMO is larger than the σ-type HOMO, and in propanal, the (H−3)
OMO of π type contributes more strongly than the (H−2)OMO, and 
so on. It was previously speculated3 that π bonds were important due 
to the ability of the positron to more easily access electron density 
that is delocalized from (repulsive) nuclei. This is borne out by our 
calculations, and we see in Fig. 3b that considerable positron density 
protrudes into the region of the π bond. Acetonitrile and propionitrile 
have a doubly degenerate π HOMO of large strength. For acetonitrile 
this results in a larger strength parameter than formamide.

Predicting binding in larger molecules: nucleobases
The ratio S Sg ≡ /Γ(2+ ) (2) depends weakly on the ionization energy, with 
a value of approximately 1.4–1.5 for the HOMOs (I ≈ 10 eV). We propose 
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that binding energies of large molecules (for example, 15–100 atoms, 
for which a converged calculation of the virtual-Ps diagram (Fig. 1b) may 
be too computationally demanding) can be calculated by approximat-
ing Σ ≈ gΣ(2) + ΣΛ. As well as accounting for virtual-Ps formation, this 
model potential reflects the anisotropy of the true interactions. For 
the molecules considered in Table 1, this works well (see Fig. 3c and 
Extended Data Fig. 3). Using this approximation, we calculate the 
positron binding energy in the five primary nucleobases (Fig. 3d). Our 
results are larger than the previous APMO calculations, mirroring the 
results for the molecules in Table 1. Notably, we predict binding in 
adenine.

Positron lifetimes
We also calculate the annihilation lifetime of the bound positron (see 
Methods and Extended Data Figs. 4, 5), finding that the correlations 
reduce it by approximately 2–3 orders of magnitude to τ ≈ 1 ns. The par-
tial annihilation rates on individual occupied electron orbitals are also 
calculated and are shown to depend strongly on the symmetry relative 
to that of the positron molecular orbital, with the HOMO not necessarily 
dominating, for example in acetonitrile and formamide. Such partial 
annihilation rates are required to properly interpret materials science 
experiments—for example, positron-annihilation-induced Auger elec-
tron spectroscopy7,8—and define the initial cationic wavepackets in 
positron-annihilation-induced charge migration46, relevant to, for 
example, base-selective oxidization of nucleobases47.

Future perspectives
Many-body theory has elucidated the long-standing correlation- 
dominated problem of positron binding to molecules. Benchmarking 
against ECG and QMC calculations for LiH and formaldehyde showed 
the many-body theory to be similarly accurate, but its power is that 
it can be extended to large molecules and provides additional funda-
mental insight. Importantly, the effects of correlations were quanti-
fied and delineated. In particular, the key role of virtual-Ps formation 
in greatly enhancing binding in polar molecules and exclusively ena-
bling binding in nonpolar molecules, the near-cancellation of screen-
ing corrections to the bare polarization, and the non-negligible role of 
the positron–hole interaction were all identified. The contribution of 
individual molecular orbitals to the (anisotropic) correlation potential 
was quantified, and the importance of electronic π orbitals (previ-
ously speculated)3 was confirmed. For polar molecules the many-body 
theory gave binding energies in excellent (near exact, or within small 
error bars for most cases) agreement with the long-standing experi-
ments. For nonpolar molecules, binding was predicted for CS2, CSe2 
and benzene, with larger discrepancy (within less than approximately 
20%) owing to slower convergence of the virtual-Ps contribution due 
to the delocalized positron wavefunction. We also predicted bind-
ing in formamide and the primary nucleobases. The excellent level 
of agreement with experiment reaffirms that for these molecules 
binding is dominated by correlations, and that vibrational effects 
are relatively small1,28–32. Complementary laser-assisted photore-
combination experiments48 would provide direct comparison with 
our results, elucidating the problem in the absence of vibrations. 
Coupled-cluster34 and ADC36 calculations should also be possible 
and instructive.

The present calculations support resonant annihilation experi-
ments and the related theory to which binding energies and anni-
hilation lifetimes enter as parameters1. Beyond the fundamental 
insight immediately provided, the step-change in capability enables 
calculations of positron scattering and molecular-orbital-resolved, 
Doppler-broadened annihilation γ-ray spectra (underway), required 
to, for example, properly interpret positron-based ultrasensitive 
materials science techniques7,8, provide insight on molecular frag-
mentation10, and understand positron interactions in the Galaxy11 

and living tissue (relevant to developing next-generation PET)49,50. It 
also provides a foundation for the implementation of inelastic38 (to 
include real Ps formation) and time-dependent51 molecular processes, 
to, for example, model positron-annihilation-induced Auger-electron 
spectroscopy8, interatomic Coulomb decay52, charge migration46 
(including that relevant to medicine)47 and luminescence53, and for 
the study of vibrational effects via coupling of the nuclear and elec-
tronic degrees of freedom54. Finally, the difficulty of the positron–
molecule problem presents a rich testbed for the development of 
other approaches to the many-body problem, for which our results 
can serve as benchmarks.
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Article
Methods

The Dyson equation in a Gaussian basis
We calculate the positron–molecule binding energy ε and quasiparti-
cle wavefunction ψε by solving the Dyson equation. We take the 
zeroth-order Hamiltonian H(0) to be that of the positron in the Hartree–
Fock field of the frozen-target N-electron ground-state molecule. The 
self-energy diagrams thus begin at second order in the Coulomb inter-
action. Instead of computing the self energy Σ(r,r′) in the coordinate 
basis, it is more convenient to work with its matrix elements in the 
Hartree–Fock basis. Specifically, we expand the electron (−) and posi-
tron (+) Hartree–Fock molecular orbitals rφ ( )a

±  in distinct Gaussian 
basis sets as r rφ C χ( ) = ∑ ∑ ( )a A

N
k
N

aAk A
±

=1
± ±c A

k

± ±

, where A labels the Nc
± basis 

centres, k labels the N A
± different Gaussians on centre A, each taken to 

be of Cartesian type with angular momentum lx + ly + lz, and with 
Nχ x x y y z z ζ( ) = ( − ) ( − ) ( − ) exp{ − | − | }A A A

l
A

l
A

l
Ak A

2
k k

Ak
x

Ak
y

Ak
z

r r r , where Ak
N  is 

a normalization constant, and C are the expansion coefficients to be 
determined (see later in this section). Molecular geometries are deter-
mined via minimization of the total electronic Hartree–Fock energy 
in the Molpro56,57 package, for the respective basis set (see next para-
graph), ensuring an internally consistent ab initio calculation.

For both electrons and positrons, we use the diffuse-function- 
augmented correlation-consistent polarized aug-cc-pVXZ (X = T or Q) 
Dunning basis sets centred on all atomic nuclei of the molecule, which 
enables accurate determination of the electronic structure including 
cusps58 and expulsion of the positron density from the nuclei. To cap-
ture the long-range correlation effects, for the positron we also addi-
tionally include at least one large even-tempered set at the molecular 
centre or region of maximum positron density of the form Ns(N − 1) 
p(N − 2)d(N − 3)f(N − 4)g with N ≈ 10–15 (where it should be understood 
that the full degenerate set of nonzero angular momentum functions 
is used) and exponents ζ ζ β=A A

k−1

k 1
, k = 1, …, N, for each angular momen-

tum type, where ζ > 0A1
 and β > 1 are parameters. The value of ζA1

 is 
important because the bound positron wavefunction behaves asymp-
totically as ψ ∝ e−κr, where κ ε= 2 b. Thus, to ensure that the expansion 
describes the wavefunction well at r ≈ 1/κ—that is, that the broadest 
Gaussian covers the extent of the positron wavefunction—one must 
have ≲ζ κ ε= 2A

2
b1

. In practice we performed binding energy calcula-
tions for a range of ζA1

 and β for each molecule, finding that there are 
broad ranges of stability. The optimal ζA1

 was typically found to be in 
the range of 10−4–10−3 for s- and p-type Gaussians and 10−3–10−2 for d- and 
f-type Gaussians, whereas g-type Gaussian exponents usually had 
ζ = 10A

−1
1

 (atomic units are assumed throughout unless otherwise 
specified). The optimal β ranges from 2.2 to 3.0 depending on the num-
ber of functions N in a given shell. Finally, to simultaneously describe 
the expulsion of the positron wavefunction from the nuclei, and accu-
rately describe positron density maxima away from the molecule, we 
strategically place additional (H atom) aug-cc-pVXZ (X = T, Q) basis 
sets on ‘ghost’ centres close to the regions of maximum positron den-
sity. These additional Gaussians provide additional flexibility in the 
basis, enabling a better description of the positron wavefunction. In 
particular, they play an important role in enabling the accurate descrip-
tion of virtual-Ps formation, which occurs several atomic units away 
from the molecule, and which would require high angular momentum 
functions to resolve the electron–positron distance in Ps away if a sin-
gle basis centre was used19. By placing Gaussian basis functions of 
angular momentum (we use l ≤ 4) on multiple ghost centres, higher 
angular momentum functions can be effectively generated in the inter-
stitial regions (see appendix B of ref. 59 for details). In practice, for each 
molecule, we perform calculations with successively increasing num-
ber of ghost centres, whose locations are optimized manually until the 
binding energy stabilizes . The optimum locations are found iteratively: 
the calculation with zero ghosts generally indicates the region of 
maximum positron density, around which the ghosts are targeted in 
subsequent calculations, thus improving the density. As a general rule, 

we found that the optimal distance of the ghost centres from the atom 
closest to the maximum of positron density is about 1 Å. For some larger 
or nonpolar molecules, we use multiple ghost centres surrounding the 
molecule. To check convergence with respect to the number and loca-
tion of these ghost centres, for each molecule we performed calcula-
tions including TZ or QZ bases on a successively increasing number of 
ghost centres in different arrangements until the increase in binding 
energy fell below a few per cent. We found that including ghosts can 
increase binding energies by ~10% in the polar molecules, and easily 
by ~30% for the nonpolar ones—for example, for CS2 we obtained 
εb = 39 meV at GW@BSE+Γ+Λ level with no ghosts, rising to εb = 68 meV 
with 16 additional ghosts. The use of higher angular momenta and 
more ghosts could be expected to further increase the binding energies 
of the nonpolar molecules. We also investigated the difference of using 
aug-cc-pVXZ for X = T, Q in the atomic-centred and ghost bases, and 
higher angular momenta in the even-tempered basis. Some improve-
ment was noted moving from X = T to Q, and also when g states were 
included in addition to f, to a level of a 5%–10% in polar molecules, and 
10%–30% in nonpolar molecules. Overall, good convergence with 
respect to both the electron and positron bases was observed (see for 
example, Extended Data Fig. 2).

The coefficients C in the expansion of the positron wavefunction in 
Gaussians are found by solving the Roothaan equations F±C± = S±C±ε±, 
where F± is the Fock matrix and S is the overlap matrix. The one-body 
and two-body Coulomb integrals of the Fock matrix are calculated 
using the McMurchie–Davidson algorithm60. We eliminate linearly 
dependent states by excluding eigenvalues <10−5 of the overlap matri-
ces (typically ≲5% of the states). In practice, to minimize the basis 
dimensions we transform all quantities to a spherical harmonic Gauss-
ian basis (for a given angular momentum, the number of Cartesian 
Gaussians is greater than or equal to the number of spherical harmonic 
Gaussians)61. Solution of the Roothaan equations yield bases of electron 
and positron Hartree–Fock molecular orbitals φ{ ( )}α

± r  (which include 
ground and other negative energy states, and discretized continuum 
states) with which the self-energy diagrams can be constructed (see 
the next section for details).

Expanding the positron Dyson wavefunction in the positron Har-
tree–Fock molecular orbital basis as ψ D φ( ) = ∑ ( )ε ν

ε
νν
+r r  transforms the 

Dyson equation to the linear matrix equation HD = εD, where 
ν H ν ε δ ν Σ ν⟨ | | ⟩ = + ⟨ | | ⟩ν ν ν ε1 2 1 21 1 2

. Note that we calculate the full self-energy 
matrix including off-diagonal terms. Such a non-perturbative approach 
is essential for nonpolar molecules, where binding is enabled exclu-
sively by correlations. In practice, to obtain the self-consistent solution 
to the Dyson equation, we calculate the self energy at a number of dis-
tinct energies Ei spanning the true binding energy εb, with the latter 
determined from the intersection of the εb(Ei) data with the line εb(E) = E.

The positron–molecule self energy
As discussed in the main text (Fig. 1), we consider three contributions 
to the irreducible self energy of the positron in the field of the molecule: 
ΣGW (which describes polarization, screening and electron–hole interac-
tions); ΣΓ (which describes the non-perturbative process of virtual-Ps 
formation); and ΣΛ (which includes the infinite ladder series of posi-
tron–hole interactions). In practice, we construct the individual con-
tributions by first solving the respective Bethe–Salpeter equations 
(BSE; see Extended Data Fig. 1) for the electron–hole polarization 
propagator Π, the two-particle positron–electron propagator GII

ep and 
the positron–hole two-‘particle’ propagator33 GII

ph. Their general form 
is L(ω) = L(0)(ω) + L(0)(ω)KL(ω), where the L(0) are non-interacting 
two-body propagators and K are the interaction kernels33,62,63 (for exam-
ple, see Extended Data Fig. 1e for the BSE for the electron–hole polariza-
tion propagator Π). In the excitation space of pair product Hartree–Fock 
orbitals L = (Cω − H)−1 = ξ(ω − Ω)−1ξ−1C −1, where the pair transition ampli-
tudes ξ are the solutions of the pseudo-Hermitian linear-response gen-
eralized eigenvalue equations63–65 Hξ = CξΩ, ξ †Cξ = C, where



H A B
B A

ξ X Y
Y X

C= ; = ; = 1 0
0 −1

; Ω =
Ω 0
0 Ω

, (1)+

−


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
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∗

for excitation energies Ωα
+ and Ωα

−, which are labelled by α = 1, …, dim(A). 
Here the A and B matrices depend on the particular two-particle prop-
agator L under consideration and the approximation used for it (see 
Extended Data Table 4 for the explicit matrix elements): note that B = 0 
for the two-particle propagators involving the positron, because the 
vacuum state for the diagrammatic expansion is that of the N-electron 
molecule, and thus there are no positron holes and only time-forward 
positron propagators. To determine the amplitudes, we use the parallel 
diagonalization algorithm of a previous work66, which exploits a similar-
ity transform that gives the eigenvalues of C−1H as the square roots of 
the eigenvalues of (A + B)(A − B) (thus requiring matrices of dimension 
of the A block, that is, half of the full BSE matrix dimension) to obtain 
X L U L V Ω= ( + )1

2 2 1 +
−1/2  and Y L U L V Ω= ( − )1

2 2 1 +
−1/2 , via the Cholesky  

decompositions A B L L+ = 1 1
T  and A B L L− = 2 2

T , and the singular value 
decomposition L L UΩV=2 1

T T , where T indicates the transpose. The 
positron–molecule self-energy matrix elements can then be written as:
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where ν1, ν2 and ν3 denote positron indices and μ and n denote electron 
excited states and holes respectively, Σ(2)—which results from the Π(0) 
contribution to ΣGW and is present in both GII

ep and GII
ph—is subtracted to 

prevent double counting, and
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where chemists’ notation for Coulomb matrix elements (ν1ν3|μn) and so 
on is used (see Extended Data Table 4). The total self energy is calculated 
as Σ = ΣGW + ΣΓ + ΣΛ. Such addition of the individual channels is routine in 
atomic many-body theory calculations19,67,68 and in condensed matter, 
for example, the fluctuation-exchange (‘FLEX’) approximation69–71. We 
note that the above approach is restricted to molecules with ioniza-
tion energies larger than the ground-state energy of Ps (6.8 eV). For 
these, the Ps-formation channel is closed, and Ps formation proceeds 
as a virtual process (with the electron temporarily tunnelling to the 
positron). For molecules for which the ionization is smaller than the 
energy of ground-state Ps, the inelastic Ps-formation channel is open. 
The above approach does not account for such inelastic channels. We 
note, however, that there are methods proposed to include inelastic 
channels in a many-body formalism38. Its implementation is beyond 
the scope of this paper, but would be a worthwhile future endeavour.

We implement the above in the massively parallelized EXCITON+ 
code developed by us, adapting the EXCITON code72–74 to include 
positrons. EXCITON employs density-fitting (of the electronic density) 
methods74–79 in a Gaussian-orbital basis for calculation of the electronic 
self-energy and four-centre integrals that appear in the A and B matri-
ces of the BSE for finite73 and periodic72,74 systems. The EXCITON+ code 
developed at Queen’s University Belfast adapts EXCITON to 

additionally solve the positron–molecule Hartree–Fock problem, con-
struct the full (nondiagonal) positron–molecule self energy (calculat-
ing wΠ, wΓ and wΛ via density fitting of the electronic density, and 
including screening terms in the ladders), and solve the Dyson equation 
and calculate the positron–electron contact density (lifetime with 
respect to annihilation). The use of density fitting reduces four-centre 
Coulomb integrals to products of three-centre Coulomb integrals and 
matrix elements of the Coulomb operator between atomic orbital basis 
functions. Thus, the memory scaling is approximately N M−

2
−, where N− 

is the total number of electron basis functions, and M N≳ 3− − is the num-
ber of electron auxiliary basis functions. The most computationally 
demanding part of our approach is in the calculation of the virtual-Ps 
self-energy contribution ΣΓ. For this, dimA = dimXΓ = Nν × Nμ, the prod-
uct of total number of positron molecular orbitals and excited electron 
molecular orbitals. For the calculations considered here, Nν ranged 
from 400–500 and Nμ from 300–400, resulting in dimXΓ = 120,000–
200,000; thus, diagonalizing the matrix of (dimXΓ)2 elements 
demanded between ~100 GB and 1.5 TB of random access memory 
(RAM). The calculations were performed on two AMD EPYC 128 CPU @ 
2 GHz, 768 GB RAM nodes of the United Kingdom Tier-2 supercomputer 
‘Kelvin-2’ at Queen’s University Belfast. By contrast, the GW calculations 
involve dimA = dimXΠ ≤ Nν × Nn, that is, a maximum equal to the product 
of the number of occupied and excited electron molecular orbitals. In 
practice, not all occupied orbitals need to be included because the 
tightly bound lowest occupied molecular orbitals (LOMOs) are less 
susceptible to perturbation by the positron and have negligible con-
tribution to the self energy. Thus, because Nn ≪ Nμ < Nν, ab initio GW@
RPA/TDHF/BSE calculations (RPA, random phase approximation; TDHF, 
time-dependent Hartree–Fock; BSE, Bethe–Salpeter equation) are 
considerably less computationally expensive, and can be performed 
for molecules or clusters with ~100 atoms, providing at least lower 
bounds on the positron binding energies. Moreover, as discussed (see 
Fig. 3c and Extended Data Fig. 3) and demonstrated for nucleobases 
(Fig. 3d), the virtual-Ps formation contribution can be approximated 
by scaling the Σ(2) self energy by the strength parameter ratio 
g ≡ /Γ(2+ ) (2)S S , namely Σ ≈ gΣ(2) + ΣΛ, thus enabling computationally 
relatively inexpensive binding-energy calculations that account for 
virtual-Ps formation for molecules of ~100 atoms. Ab initio calculations 
for larger molecules including the virtual-Ps self energy will be feasible 
with additional computational resources, as would calculations using 
different truncated product spaces of excited electron and positron 
molecular orbitals and extrapolating to the basis set limit.

Improving the accuracy of calculations
As mentioned in the previous section, the computationally intensive 
calculations presented here were performed using relatively modest 
computational resources. Access to national supercomputing facili-
ties would enable more complete basis sets and further exploration 
of the effect of ghost basis centres. Numerical accuracy can also be 
systematically improved in a number of ways. Exploiting the molecular 
point group symmetry via symmetry-adapted bases and using integral 
screening techniques would improve the efficiency of the calculations, 
enabling more complete basis sets to be used. This would ultimately 
improve the description of the correlations (particularly in generating 
higher angular momenta for improved description of the virtual-Ps 
formation process). The calculation of the positron–molecule self 
energy can be improved by implementing a self-consistent diagram 
approach in which the positron–molecule self energy is built from GW 
calculated electron and positron Dyson orbitals instead of Hartree– 
Fock ones33,80, and/or by coupling the three self-energy channels  
ΣGW, ΣΓ and ΣΛ by approximating the three-particle propagators via the 
Faddeev81, parquet69 or ADC(3)36 methods (expected to be computa-
tionally feasible for small molecules using national supercomputing 
facilities). Moreover, the diagrammatic series should be amenable to 
a diagrammatic Monte Carlo82,83 prescription, a powerful stochastic 
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simulation method that enables the effective summation of many more 
(classes of) diagrams than considered here.

Positron annihilation rate in the bound state
The solution of the Dyson equation also yields the positron bound-state 
wavefunction ψε. Using it, the 2γ annihilation rate in the bound state 
Γ r cδ= π 0

2
ep (Γ [ns−1] = 50.47δep [a.u.])—the inverse of which is the lifetime 

of the positron–molecule complex with respect to annihilation—can 
be calculated. Here r0 is the classical electron radius, c is the speed of 
light and δep is the electron–positron contact density,

∫∑δ γ ψ= |φ ( )| | ( )| d , (6)
n

N

n nep
=1

2
ε

2
e

r r r

Here the sum is over all Ne occupied electron molecular orbitals with 
wavefunctions φn, and γn are molecular-orbital-dependent enhance-
ment factors that account for the short-range electron–positron attrac-
tion20,84. Recent many-body calculations for atoms by one of us 
determined them to follow a physically motivated scaling with the 
ionization energy20,84 γ ε ε= 1 + 1.31/| | + (0.834/| |)n n n

2.15 (where quanti-
ties are in a.u.), which we assume to hold here. The positron Dyson 
wavefunction is a quasiparticle wavefunction that is the overlap of the 
wavefunction of the N-electron ground state molecule with the fully 
correlated wavefunction of the positron plus N-electron molecule 
system33. It is normalized as

r r∫ ψ ε E a| ( )| d = (1 − ∂ /∂ | ) ≡ < 1, (7)ε ε
2 −1

b

which estimates the contribution of the ‘positron plus molecule in the 
ground state’ component to the positron–molecule bound-state wave-
function, that is, the degree to which the positron–molecule bound state 
is a single-particle state, with smaller values of a signifying a more strongly 
correlated state. Extended Data Figs. 4, 5 present contact density data. 
Extended Data Fig. 4a shows the individual molecular orbit contribution 
to the contact density as a function of the molecular orbit ionization 
energy. As in Fig. 3 (contribution of strength parameters from individual 
molecular orbits), overall the contact density increases as the ionization 
energy decreases: the positron overlap is greater with the more diffuse 
electronic HOMOs. However, molecular orbitals below the HOMO can in 
fact dominate, for example, acetonitrile, as shown further in Extended 
Data Fig. 5a–c, and Extended Data Fig. 6 for the primary nucleobases.

Data availability
Additional relevant data are available at https://doi.org/10.17034/ 
04a9ffbe-e0c6-44e4-98bc-a2d30df3424c. Source data are provided 
with this paper.

Code availability
The results presented in this study were generated using the EXCITON+ 
program, which was developed by the Queen’s University Belfast group, 
adapting the EXCITON code (authored by C.H.P.) to incorporate posi-
trons and extending its many-body theory capabilities. The version of 
EXCITON+ used to generate the current results is available at https://
doi.org/10.17034/04a9ffbe-e0c6-44e4-98bc-a2d30df3424c. The latest 
EXCITON and EXCITON+ source codes are currently available under an 
Open Source license from C.H.P. (EXCITON) and D.G.G. (EXCITON+) 
on reasonable request, but we intend to detail them in subsequent 
publications.
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Extended Data Fig. 1 | The main contributions to the positron–molecule 
self energy, including the two-particle propagators. a, The GW diagram 
involves the positron Green’s function Gν and the dynamic part (due to the 
absence of an electron–positron exchange interaction) of the screened 
Coulomb interaction Wd = vΠv (bold denotes operator form), where Π is the 
electron–hole polarization propagator (see b). It satisfies the BSE (e) with 
kernel K = v − WRPA (f), where WRPA = v + Wd,RPA is the screened electron–hole 
Coulomb interaction calculated in the random phase approximation (RPA). 
Setting K = 0 results in the bare polarization entering W only, and gives the  
Σ(2) approximation, so-called as it is a second-order diagram in the electron–

positron Coulomb interaction. Setting K = v, the direct part of the Coulomb 
interaction only, gives the random phase approximation (GW@RPA). Setting 
K = v − vexch—that is, including exchange which gives rise to interactions within 
the bubbles—yields the ‘time-dependent Hartree–Fock’ approximation  
(GW@TDHF). Using screened Coulomb interactions in the exchange term is the 
Bethe–Salpeter approximation (GW@BSE). c, The virtual-positronium 
contribution including the summed infinite ladder series of screened 
electron–positron interactions (‘Γ block’) shown in g. The contribution  
d contains the Λ block that is the ladder series of positron–hole interactions, 
which satisfies a linear integral equation of the same form as that shown in g.
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Extended Data Fig. 2 | Convergence of positron binding energies in 
acetonitrile and CSe2 with respect to electron and positron basis size. 
Positron binding energy calculated using the ΣGW@BSE+Γ+Λ self energy for varying 
number of electron (positron) Hartree–Fock molecular orbitals (whose 
energies are shown as blue and red crosses, respectively) included in the basis. 
For acetonitrile, the varying electron (positron) molecular orbital calculations 
included all positron (electron) molecular orbitals. For CSe2, the varying 

electron molecular orbital calculations included all positron molecular 
orbitals, whereas the varying positron molecular orbital calculation included 
113 electron molecular orbitals (indicated by the lowest blue circle). The 
binding energy reaches convergence when the electronic orbital with energies 
up to ~150–200 eV are included. Similar behaviour was also observed for the 
other molecules considered.



Extended Data Fig. 3 | Nonlinearity of the binding energy and strength of 
correlation potential. Binding energy calculated approximating the positron 
self energy Σ as Σ ≈ gΣ(2) + ΣΛ as a function of the scaling parameter g ≡ /(2+Γ) (2)S S  
(circles; see text for more details). Experiment (squares) is from refs. 4,5; for 
formamide preliminary measurements find a binding energy of εb ≈ 200 meV, 
but a final result is yet to be determined. See also Fig. 3c.
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Extended Data Fig. 4 | Calculated electron–positron contact density.  
a, Contact density for individual electronic molecular orbitals as a function of 
their ionization energy, calculated including vertex enhancement factors at 
GW@BSE+Γ+Λ level (see equation (6)). Red dashed line: positronium ground 
state energy at |EPs| = 6.8 eV. Grey line: δep = 0.008/(I − |EPs|) (for a guide). Also see 
Extended Data Table 3 and Extended Data Fig. 5. b, Contact density calculated 

at the Hartree–Fock (circles) and various levels of many-body theory 
(diamonds: GW@BSE; squares: GW@BSE+Γ+Λ) against the square root of the 
binding energy. For nonpolar systems the s-type bound-state contact density is 
expected to show linear dependence (see equation 36 of the methods in ref. 1). 
For polar molecules there is no strict theoretical basis for this, although it is 
interesting that the data show an approximate linear dependency.



Extended Data Fig. 5 | Calculated electron–positron contact densities and 
positron lifetimes with respect to annihilation. a, Fractional contribution of 
individual molecular orbitals to the total electron–positron contact density 
(equation (6)). b, c, The electron–positron contact density (magenta) at the 
ΣGW+Γ+Λ level for the (doubly degenerate) HOMO and (H−2)OMO in acetonitrile 
(blue and brown show negative and positive electron wavefunction regions, 
respectively), compare with Fig. 2c (positron density). d, Positron lifetimes 

with respect to annihilation. τ(0): lifetime calculated in the Hartree–Fock 
independent particle approximation excluding the vertex enhancement 
factors and using a positron wavefunction normalized to unity; τGW and τ: 
lifetime calculated using the Dyson positron wavefunction at the ΣGW and ΣGW+Γ+Λ 
levels including vertex enhancement factors and renormalization constants 
(equations (6), (7)).
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Extended Data Fig. 6 | Calculated electron–positron contact densities and 
positron lifetimes with respect to annihilation for nucleobases.  
a, Fractional contribution of individual molecular orbitals to the total 
electron–positron contact density (equation (6)). b, Table of positron lifetimes 
with respect to annihilation. τ(0): lifetime calculated in the Hartree–Fock 

independent particle approximation excluding the vertex enhancement 
factors and using a positron wavefunction normalized to unity; τGW and τMBT: 
lifetime calculated using the Dyson positron wavefunction at the ΣGW and 
gΣ(2) + Σ(Λ) levels for g = 1.4 and 1.5 including vertex enhancement factors and 
renormalization constants (equations (6), (7)).



Extended Data Table 1 | Calculated polarizabilities (in Å3) and ionization energies (in eV)

*Reference values from ref. 85. 
Molecules are oriented such that the main axis of symmetry, or the main bond (C–O, C–N), above which the positron density is localized, is along z. The isotropic value is given by a sum of xx, yy, 
and zz terms multiplied by 2/3. Note that the zz components have larger differences between molecules than isotropic polarizabilities, for example, for propionitrile, acetone and propanal the 
isotropic polarizabilities are within 1% of each other, whereas the zz components differ by ~15%. Ionization energies calculated at the GW@RPA level were performed using the diagonal 
approximation for the electron–molecule self energy Σ(−), that is, ε ε Z μ Σ μ| |μ μ ε

( )
μ

� = + ⟨ ⟩− , where ≡ − ∂ ∂ −Z Σ E(1 / ) |E εμ
1  (ref. 69). HF, Hartree–Fock; RPA, random phase approximation; TDHF, 

time-dependent Hartree–Fock; BSE, Bethe–Salpeter equation.



Article
Extended Data Table 2 | Positron binding energies in the GW approximation (meV), dimensionless correlation-potential 
strength parameters and Dyson wavefunction renormalization constants a

Positron binding energies (in meV, complementary data to Table 1) calculated at the Hartree–Fock and various levels of the GW approximation (see Extended Data Fig. 1): Σ(2) (bare polarization 
propagator); RPA (random phase approximation); TDHF (time-dependent Hartree–Fock approximation); and BSE (Bethe–Salpeter equation). Dimensionless strength parameter of the correlation 
potential (defined in the text) in different approximations to the positron–molecule self energy (see Fig. 3). Positive (negative) strength parameters denote attractive (repulsive) positron– 
molecule interactions. The final column gives the calculated positron Dyson wavefunction renormalization constants a for the ΣGW+Γ+Λ calculation (see equation (7)).



Extended Data Table 3 | Positron–molecule annihilation contact densities (a.u.)

Electron–positron contact densities calculated from equation (6) including molecular-orbital-dependent enhancement factors and Dyson orbital renormalization constants a (equation (7)), in 
different approximations to the positron Dyson wavefunction: δep

(0), using Hartree–Fock positron wavefunction; δGW
ep , using the Dyson wavefunction calculated with the GW@BSE self energy; +δGW Γ

ep , 
using the Dyson wavefunction calculated with the GW@BSE plus virtual-Ps self energy; δGW Γ Λ

ep
+ + , using the Dyson wavefunction calculated with the GW@BSE plus virtual Ps plus positron–hole self 

energy with unscreened Coulomb interactions in the Γ and Λ ladders. Numbers in brackets indicate powers of 10; hyphens denote approximations in which the positron does not bind.
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Extended Data Table 4 | Matrix elements of the Bethe–Salpeter linear response Hamiltonian

Elements of the A and B blocks of the linear-response Hamiltonian matrices that result from the BSE equations (equation (1)) for the electron–hole propagator, the positron–electron propagator, 
and the positron–hole propagator. Chemists’ notation for Coulomb matrix elements in the molecular orbital basis is used, ∫′ ′ = ′ ′ ′ ′′′νμ ν μ φ φ v φ φrr rr rr rr rr rr rr rr( | ) d d ( ) ( ) ( , ) ( ) ( )μ νν μ

∗ ∗ , where (μ and μ′), (n and 
m) and (ν and ν′) denote electron particles, electron holes and positron particles, respectively. Factors of two arise from summation over spin, and tildes on energy eigenvalues for BSE denote 
that these are calculated at the level of GW@RPA. For the virtual-Ps and positron–hole matrices, B = 0 because there are no positron ‘holes’ in the N-electron ground-state molecule vacuum 
state, and thus only time-forward diagrams are present in the positron single-particle propagator and two-particle propagators (that is, here the ‘Tamm–Dancoff approximation’ is exact for 
positrons). Matrix elements of the dressed Coulomb interaction W = v + Wd (Extended Data Fig. 1b), where Wd = vΠRPAv is the dynamic part determined from the polarization propagator in the 
random phase approximation, are determined as = ′ + ∑ − + − + −′

− −
′ + +W μn μ m w w ω η ω η( | ) [( Ω i ) ( Ω i ) ]μn μ m α,

1 1
μn
α

μ m
α α α  in the static approximation (ω = 0), where wΠ (equation (5)) is analogous to w but 

for electrons.
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