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Difluorocarbene enables to access 2-fluoroindoles
from ortho-vinylanilines
Jianke Su1, Xinyuan Hu1, Hua Huang1, Yu Guo1 & Qiuling Song 1,2✉

2-Fluoroindoles as an important structural scaffold are widely existing in many bioactive or

therapeutic agents. Despite their potential usefulness, efficient constructions of

2-fluoroindole derivatives are very sparce. The development of straightforward synthetic

approaches to access 2-fluoroindoles is highly desirable for studying their fundamental

properties and applications. Herein, we report an efficient and general strategy for the

construction of 2-fluoroindoles in which a wide variety of 2-fluoroindoles were accessed with

high efficiency and chemoselectivity. Instead of starting from indole skeletons, our strategy

constructs indole scaffolds alongside the incorporation of fluorine atom on C2 position in a

formal [4+1] cyclization from readily accessible ortho-vinylanilines and difluorocarbene. In

our protocol, commercially accessible halodifluoroalkylative reagents provide one carbon and

one fluorine atom by cleaving one C-N tertiary bond and forming one C-N bond and one C-C

double bond with ortho-vinylanilines. Downstream transformations on 2-fluoroindoles lead to

various valuable bioactive molecules which demonstrated significant synthetic advantages

over previous reports. And mechanistic studies suggest that the reaction undergoes a cas-

cade difluorocarbene-trapping and intramolecular Michael addition reaction followed by

Csp3-F bond cleavage.
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The introduction of fluorinated groups (including fluorine
atom) into a target molecule would have significant
influence on the parent molecule’s reactivity, selectivity,

physical and biological properties1–7. Therefore, it becomes a
critical strategy in pharmaceuticals for finding therapeutical
agents8–16, where fluorine atom is often employed as a bioisostere
of hydrogen atom based on the above features.

Indoles, as one of most important heterocyclic scaffolds, are
widespread in a broad variety of natural products17–20 and
bioactive compounds17,21,22 (Fig. 1A, Top). Meanwhile,
2-fluoroindoles are also key structural motifs which are widely
existing in some biologically active compounds and demonstrate
unique bioactivities23–25(Fig. 1A, Bottom). Because of the
importance of C2-fluorine-containing indoles in medicinal
chemistry, great attention has been devoted to the synthesis of
2-fluoroindoles26–35. However, efficient synthetic methods for the
construction of this type of indole derivatives are very rare.
Generally, there are three ways to access the target molecules
(Fig. 1B): (a) copper-mediated aminoquinoline-directed fluor-
ination of aromatic C–H bonds. However, there were only 3
examples about 2-fluoroindole synthesis with moderate

yields26,27, and they are limited to 3-aminoquinolineindole deri-
vatives, which seriously limits the application of indole skeleton.
(b) pre-functionalization of indoles is mandatory to install some
active functional groups, such as –COOH28 or –SnMe329, to C2
position of indoles for further fluorination, which require multi-
step synthesis and need toxic organotin reagents, thus severely
restrict the substrate scope. (c) silver or base-promoted C–N bond
formation from ortho-amino-gem-difluorostyrenes to construct
2-fluororindoles30–32, this tactic requires complicated substrates
with both gem-difluorostyrene and ortho-aromatic secondary
amino functionalities, which are demanding and difficult to
access, thus set a severe restriction on their applications in che-
mical field. Given the paucity of efficient synthetic methods and
the huge challenges in the synthesis of 2-fluoroindole derivatives,
the development of a convenient approach to synthesize
2-fluoroindole derivatives from simple and readily available
starting materials is highly appealing and desirable.

Considering the difficulty in accessing the starting materials
and limitations of substrates in the previous strategies, we won-
dered whether a strategy could be developed by using readily
accessible starting materials in a one-step protocol. Retrosynthetic
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analysis of 2-fluoroindole is oriented to the o-alkenylanilines and
a reagent which provides both C and F atoms (Fig. 1C). At this
point, halodifluorinated reagents were considered due to their
structural motif and their wide applications as fluorinated
sources36,37. In addition, our recent research efforts culminated in
discovery and development of several transformations featuring
in situ generated difluorocarbene (:CF2) as C1 synthons to
assemble various valuable N-containing compounds38–44. More-
over, the intramolecular capture of difluorocarbene by a
thiolate and Frustrated Lewis Pairs was also developed45,46.
Therefore, halodifluorinated reagent might be an ideal source to
accomplish our goal. Inspired by our pioneering work38 and the
previous research on interaction of tertiary amines with
difluorocarbene47–49, and considering that difluoromethyl
ammonium salt as the key intermediate from tertiary amine is
readily decomposed to lead to a difluoromethyl anion in the
reaction, we envisage that if a suitable electrophilic group is
introduced into the substrate, difluorocarbene can be inserted
into the targeted molecule via a nucleophilic attack with both
carbon and fluorine atoms on, thus 2-fluoroindole framework
might be resulted. There is a challenge in this hypothesis:
maintenance of fluorine atom, since fluorine atoms from
difluorocarbene are completely discarded and could not be reused
in previous reactions, and it is an inevitable shortcoming for such
transformations. To our delight, when we installed Michael
reaction acceptors (MRAs)50,51 as electrophilic site on the sub-
strates, a series of 2-fluoroindole derivatives were constructed
smoothly (>90 examples). This strategy will open an avenue for
difluorocarbene-involved transformations and will add significant
synthetic values to fluorine chemistry.

Herein, we report the first general and highly efficient strategy
for the synthesis of 2-fluoroindoles. This method would allow
facile entry to construction of 2-fluoroindoles from simple and
readily available starting materials under the mild conditions in
the absence of transition-metal catalysis, and readily elaborate the
late-stage modifications of pharmaceuticals and natural products
with broad substrate scope and excellent functional group toler-
ance, and it will be a groundbreaking synthesis for 2-fluoroindole
compounds, which will greatly promote the rapid development of
fluorine chemistry and pharmaceutical chemistry52–54.

Results
Investigation of reaction conditions. To validate our conjecture,
3-(2-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one (1a) and
BrCF2COOEt (2a) were chosen as the model substrates using
K2CO3 as base. To our delight, without any other additives in
CH3CN, the desired 2-flurorindole product 3a was obtained in
76% isolated yield. Replacing K2CO3 with K3PO4 resulted in a
superior result (Table 1, entry 7), and further base screening
indicated that K3PO4 was the best one in comparison with KOH,
Cs2CO3, Na2CO3, NaOH as well as Na3PO4 (entries 2–7).
Encouraged by this promising result, we further screened other
solvents (THF, 1,4-dioxane, DME and toluene), and CH3CN was
found still to be the most effective one (entries 7–11). Difluori-
nated reagents were subsequently examined and the results sug-
gested that among BrCF2COOEt (2a), BrCF2PO(OEt)2 (2b)55,
TMSCF2Br (2c)56 ClCF2COONa (2d), BrCF2COOK (2e),
BrCF2COONa (2f), the best reaction efficiency was endowed by
2a and 2b (entries 12–16). Given the price and the ready acces-
sibility of raw materials, we finally chose 2a as the source of
difluorocarbene (See Supplementary Tables 1–5 in Supplemen-
tary Information for details).

Synthetic scope. With the optimized conditions in hand, we sys-
tematically investigated the scope of the difluorocarbene-enabled

access to 2-fluoroindoles from ortho-vinylanilines (Fig. 2). First, we
explored the scope of α,β-unsaturated ketone moiety, which sug-
gested that our reaction was compatible to both aryl and aliphatic
α,β-unsaturated ketones. For aromatic ones, substrates bearing
electron-neutral (1a–1b), electron-deficient (1c–1d), as well as
electron-rich substituents (1e–1g) at the para-position of the aro-
matic rings all furnished the desired 2-fluoroindole products (3a–3g)
smoothly. And with electronically neutral bis-methyl (1h) and ortho-
methyl (1i) substrates, the corresponding products 3h–3i were
procured in 81 and 93% yields respectively. The accommodation of
iodine substituents (1j) signified the further potential structural
elaborations as a handle. Fused ring reactant like 1-naphthaldehyde
(1k) was also a suitable candidate for this transformation. This study
was auspiciously and effortlessly extendable to a series of hetero-
aromatic ketone-containing furan (3l) and thiophene (3m) cores.
And for cyclic aryl ketone (1o–1r), these targeted products could be
obtained successfully under the standard conditions as well (3o–3r).
Notably, this protocol also featured an admirable scope with respect
to aliphatic ketone substrates. No matter that it was a chain ketone
or a cyclic ketone, the corresponding desired products 3s–3ae were
all smoothly delivered (52–80% yields), including four-membered
(3ab), six-membered (3ac), eight-membered cyclic ketones (3ad) as
well as bicyclic ketone (3ae). Interestingly, substrates tethered with
two moieties of reaction sites (1n, 1af) underwent this transforma-
tion very well to deliver the products which contain two
2-fluoroindole skeletons (3n, 3af) by simple increasing the equiva-
lent of BrCF2COOEt. We next surveyed the scope of R2 group on
the aromatic ring of aniline skeleton. To our delight, a wide range of
functionality was compatible under our standard conditions, and
alkyl (1ag, 1aj), trifluoromethyl (1ah), alkoxyl (1ak) and halo (1ai,
1al–1an) substituted substrates were all converted into the corre-
sponding products (3ag–3an) in moderate to excellent yields
(39–81%). To assess the susceptibility of different C–N bonds
towards scission, a panel of N-substituted tertiary amines was
examined under the standard conditions. N-methylanilines with a
different N-substituents (1ao, 1ap) were inspected, and when the R3

was ethyl group, N-ethylindole (3ao) was obtained in a satisfied
yield. Interestingly, when the R3 is allyl group, contrary to expec-
tations, it was cleaved prior to the Cmethyl–N bond and 3a was
procured in 51% yield.

We next evaluated the scope of other Michael acceptors
(Fig. 3), expectedly, these substrates were equipotent to afford the
corresponding 2-fluoroindole products in moderate to excellent
yields under marginally reoptimized conditions as follows: diethyl
BrCF2PO(OEt)2 (2b) as the source of difluorocarbene, K2CO3 as
the base and acetonitrile as the solvent at 90 °C for 12 h under N2

atmosphere (See Supplementary Tables 6–7 in Supplementary
Information for details).

We then first explored α, β-unsaturated esters50,51. In addition
to methyl acrylates, ethyl, tert-butyl and benzyl acrylates were
also competent substrates to give the corresponding products
(5a–5d) in moderate yields. Moreover, this system could also
enable the synthesis of 2-fluoroindole scaffolds with other
Michael acceptors such as acrylonitrile (4e) and para-quinone
methides57 (6a–6e) with good efficiency, generating functional
products (5e, 7a–7e) that are highly valuable structural motifs in
medicinal chemistry. In order to further prove the universality of
this reaction, we introduced other alkyl groups (like benzyl and
allyl group) as substituents on N-atom, and also tried phospho-
nates (including phosphonic acid) as electron withdrawing
groups. However, only trace amount of the corresponding
products (7f–7i) was detected. We then tried several other
difluoroalkylating reagents which could serve as the sources of
difluorocarbene, but no good results were obtained.

We also paid our attention to the substrates with different
cyclic tertiary amines, if successful, N-tethered long chain
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aliphatic halides would be rendered, which would add more
values for further structural elaborations as a functional handle.
The results were summarized in Fig. 4. It turned out that both
four-membered (8a) and five-membered (8b–8u) cyclic tertiary
amines were well-suited for this transformation, exhibiting
insensitivity toward aryl substitutions (alkyl, alkoxyl, phenyl,
halo, fused, thiophene and furan etc.). The corresponding target
products (9a–9u) were procured in moderate yields. Remarkably,
when KI as a nucleophile was added into the reaction system, the
N-aliphatic-tethered-iodinated-2-fluoroindoles were obtained (9c,
9l, 9p) in decent yields accordingly.

The above results clearly demonstrated that our method has a
broad substrate scope and wide functional group compatibility,
which further prompted our endeavors to extrapolate this strategy
to late-stage modifications of bioactive molecules and therapeutic
agents (Fig. 5). Gratifyingly, a series of bioactive molecules
(Acetylferrocene, L-valine, DL-proline, Pregnenolone, Adaman-
tane, Progesterone, Geraniol, (-)-Nopol, DL-Menthol, (-)-β-
citronellol, Geraniol, Cholesterol) were all derivatized into the
corresponding Michael acceptors and installed into our substrates
(10a–o) which, upon treatment with BrCF2COOEt (2a) or
BrCF2PO(OEt)2 (2b) under the established standard conditions,
were all smoothly incorporated into the eventual 2-fluoroindole
derivatives (11a–o). Moreover, drug compounds, such as (s)-

Ibuprofen (10m, Antipyretic analgesics), Naproxen (10n, Anti-
inflammatory), Probenecid (10o, Anti-gout agents) were also
successfully introduced into the corresponding 2-fluoroindole
derivatives (11m–o) without loss of efficiency. By combining the
2-fluoroindole skeleton and bioactive structural motifs together, it
was thus envisioned that our system would simplify access to
discover more potential bioactive molecules.

Synthetic application. To further demonstrate the synthetic utility
of our strategy, we chose 5-chloro-N-methyl-2-fluoroindoles (13),
the key intermediate for the synthesis of Syk (Spleen tyrosine kinase)
inhibitors drug, as the target molecule (Fig. 6a). This reaction could
be readily scaled-up from substrate 12a to 5mmol without loss of
efficiency (13a, 80% yield). Of note, according to the existing
reports24, five-step synthesis was required for the construction of 5-
chloro-N-methyl-2-fluoroindoles (13): (1) protection of N-H in
indole with tosyl chloride, (2) trimethyltin was installed to activate
indole by Sn(Me)3Cl, (3) fluorination with selectfluor, (4) removal of
sufonamide by KOH, (5) dimethyl sulfate was introduced into the
product as a methylation reagent. And for the starting material 12, it
can be obtained by a sequential aromatic nucleophilic substitution
between ortho-fluorobenzaldehyes and dimethylamines and aldol
condensation between the aforementioned products and ketones.
The final product (the starting material 12 for our reaction) could be

Table 1 The condition screening for our difluorocarbene-enabled 2-fluoroindole synthesis.

Entries base solvent [:CF2] Yield (%)a

1 K2CO3 CH3CN 2a 76b

2 KOH CH3CN 2a 45
3 Cs2CO3 CH3CN 2a 60
4 Na2CO3 CH3CN 2a 61
5 NaOH CH3CN 2a trace
6 Na3PO4 CH3CN 2a 56
7 K3PO4 CH3CN 2a 93(90)b

8 K3PO4 THF 2a 15
9 K3PO4 1,4-dioxane 2a trace
10 K3PO4 DME 2a trace
11 K3PO4 toluene 2a n.r.
12 K3PO4 CH3CN 2b 88
13 K3PO4 CH3CN 2c 18
14 K3PO4 CH3CN 2d 66
15 K3PO4 CH3CN 2e 49
16 K3PO4 CH3CN 2 f 57

Reaction condition: a1a (0.2 mmol), 2 (3 equiv, 0.6 mmol), base (3 equiv.), H2O (0.1 mL), solvent (2 mL) under 90 °C for 12 h, N2; GC yields; bisolated yields; under 25 °C.
n.r. no reaction.
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obtained in the two-step synthesis with a total yield over 90%. And
the price of the substrates is very cheap (ortho-fluorobenzaldehye: 1
$/g, dimethylamine: 0.03 $/g). Compared with the previous method,
our route not only significantly decreases the step count (1 step vs.
5 steps), but also could avoid the use of strong base (KOH and
NaH), toxic organotin reagents and dimethyl sulfate58,59. Mean-
while, our strategy could introduce very valuable functional groups
in one step on C3 position of indoles as well. HYH42 is a highly

specific inhibitor for human non-small cell lung cancer cells (NCI-
H460, IC50 < 1 μM) which is commonly used in pharmaceutical
research25. Remarkably, starting from readily accessible ortho-viny-
laniline 15, our reaction enabled us to access the key intermediate 16
in a single step with a yield of 35% through the direct
2-fluoroindolylation reaction, then HYH42 can be obtained by
coupling25,60 from the key intermediate 16 (Fig. 6b). Moreover, we
utilized our methodology on the formal synthesis of 5a, which is the
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key intermediate of a potential plant growth hormone regulated
transcription factor23, and the reaction could be scaled up to 5mmol
and the targeted product 5a was obtained in 64% yield (Fig. 6c). Of
note, there is no other efficient report on its synthesis prior to our
method.

Mechanistic studies. Intrigued by the features of the presented
methodology, we next conducted several control experiments to
shed light on the reaction mechanism (Fig. 7). When water was

replaced by deuterium oxide, one deuterium atom was incorpo-
rated at α-position of carbonyl group of the final product 3a-D
with 95% deuterization rate in the crude mixture (Fig. 7, eq. a).
When diflurocarbene trapping reagent, namely, benzimidazole
(18), were added individually into this system, 1-(difluor-
omethyl)-1H-benzo[d]imidazole (19) was obtained in 78% yield
alongside a trace amount of 3a, suggesting the existence of
difluorocarbene species (Fig. 7, eq. b). We then considered
whether other dihalocarbene species (:CCl2) are compatible with
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the reactions, of note, no desired products 20 were detected,
which indicates that difluorocarbene species has some special
characteristics, which isn’t possessed by other dihalocarbenes
(Fig. 7, eq. c). In order to indicate the essence of tertiary amino
group on the substrate, primary amine 21 was subjected to the
reaction conditions, not surprisingly, no 2-fluoroindole formation
was detected owing to the rapid cyclization to render
2-phenylquinoline 22 (Fig. 7, eq. d). Moreover, the HRMS (high
resolution mass spectrometry) analysis of the mixture of the
standard reaction for 30 min showed the two peaks at m/
z= 303.1431 and m/z= 288.1199, which matched the ionic
compound form possible intermediates 23 and 24 (calcd mass:
303.1429 and 288.1194) (Fig. 7, eq. e).

Proposed mechanism. On the basis of the above results, a plausible
mechanism is proposed as depicted in Fig. 8. Tertiary amine A reacts
with the in situ generated difluorocarbene (:CF2) species which is
unmasked from halodifluoroalkyl reagents (BrCF2COOEt (2a) or
BrCF2PO(OEt)2 (2b)) in the presence of the base to deliver
ammonium salt B. Internal nucleophile (X−) attacks the α carbon of
ammonium salt B to break the C–N bond under mild and
transition-metal free and oxidant-free conditions38,47. The newly
formed difluoromethyl anion further attacks unsaturated double
bond intramolecularly to render intermediate C via Michael addition
and protonation. According to our previous work, the CF2 group on
the nitrogen atom is unstable and readily to undertake C–F cleavage
under the action of lone pair electrons of the nitrogen atom.
Meanwhile, the hydrogen atom adjacent to CF2 is base-sensitive and
easy to be deprotonated, thus a proposed E2cb mechanism is also
possible. Based on the above discussion, there might be two possible
paths to render products. One possible path is the Csp3–F bond
adjacent to N atom is vulnerable in basic conditions to lead to
intermediate D via a Csp3–F bond cleavage. Finally, with the

participation of base, the final product is produced by the driving
force to reconstruct the aromatic system (path a). Another way for
the formation of the final product is caused by a E2cb pathway with
the loss of H-F under basic conditions, once again, the driving force
should be the reconstruction of the aromatic ring—indoles (path b).

In summary, we have reported a straightforward synthesis of
2-fluoroindoles from readily accessible ortho-vinylanilines with
halodifluoroalkylative reagents as difluorocarbene sources, which
provide one carbon atom and one fluorine atom. This general and
highly selective transformation provides operationally simple and
robust access to versatile 2-fluoroindoles under a mild condition
without any transition metals or oxidants. The products obtained
can further engage in various derivatizations where the
2-fluoroindole motif functions as an ideal drug skeleton, enabling
a fast and orthogonal transformation to many useful building
blocks. In a broader context, these features emphasize the value of
the presented methodology for the versatile synthesis of
2-fluoroindoles derivatives which are ubiquitously found in
bioactive molecules. Further investigations to extend the reaction
scope and applications of this process are currently in progress.

Methods
General procedure for synthesis of 2-fluoroindoles from chalcones or p-Qui-
none Methide. In air, chalcones or p-Quinone Methide (0.2 mmol) and K3PO4 (3
eq, 0.6 mmol) were added to a Schlenk tube equipped with a stir bar. The vessel was
evacuated and filled with N2 (three cycles). BrCF2COOEt (3 eq, 0.6 mmol), H2O
(0.1 mL) and CH3CN (2 mL) added in turn by syringe under N2 atmosphere. The
resulting reaction mixture was stirred vigorously at 90 °C for 12 h. Upon com-
pletion of the reaction, the solvent was evaporated under reduced pressure and the
residue was purified by flash column chromatography to give the desired products.

General procedure for synthesis of 2-fluoroindoles from α, β-unsaturated
esters or acrylonitrile. In air, α, β-unsaturated esters (0.2 mmol) or acrylonitrile
and K2CO3 (3 eq, 0.6 mmol) were added to a Schlenk tube equipped with a stir bar.
The vessel was evacuated and filled with N2 (three cycles). BrCF2PO(OEt)2 (3 eq,
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0.6 mmol), H2O (0.1 mL) and CH3CN (2 mL) added in turn by syringe under N2

atmosphere. The resulting reaction mixture was stirred vigorously at 90 °C for 12 h.
Upon completion of the reaction, the solvent was evaporated under reduced
pressure and the residue was purified by flash column chromatography to give the
desired products.

General procedure for synthesis of N-tethered long chain aliphatic bromine.
In air, cyclic tertiary amines (0.2 mmol) and K3PO4 (3 eq, 0.6 mmol) were added to
a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with N2

(three cycles). BrCF2COOEt (3 eq, 0.6 mmol), H2O (0.1 mL) and CH3CN (2mL)
added in turn by syringe under N2 atmosphere. The resulting reaction mixture was
stirred vigorously at 90 °C for 24 h. Upon completion of the reaction, the solvent
was evaporated under reduced pressure and the residue was purified by flash
column chromatography to give the desired products.

General procedure for synthesis of N-tethered long chain aliphatic iodine. In
air, cyclic tertiary amines (0.2 mmol), KI (3 eq, 0.2 mmol) and K3PO4 (3 eq,
0.6 mmol) were added to a Schlenk tube equipped with a stir bar. The vessel was
evacuated and filled with N2 (three cycles). BrCF2COOEt (3 eq, 0.6 mmol), H2O
(0.1 mL) and CH3CN (2 mL) added in turn by syringe under N2 atmosphere. The
resulting reaction mixture was stirred vigorously at 90 °C for 24 h. Upon com-
pletion of the reaction, the solvent was evaporated under reduced pressure and the
residue was purified by flash column chromatography to give the desired products.

Data availability
The data that support the findings of this study are available within the article and
its Supplementary Information files. The X-ray crystallographic coordinates for
structures reported in this article have been deposited at the Cambridge Crystallographic
Data Centre (CCDC), under deposition number 2049500 (3c), 2049496 (3j), 2066928
(3af) and 2054216 (9k). The data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via http:// www.ccdc.cam.ac.uk/data_request/cif.
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