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Abstract 

Background:  Osteolysis is one of the most prevalent clinical complications affecting people who undergo total joint 
replacement (TJR). Wedelolactone (WDL) is a coumestan compound derived from the Wedelia chinensis plant and has 
been demonstrated to exhibit anti-inflammatory properties. This study aimed to investigate the oral administration of 
WDL as a potential treatment for particle-induced osteolysis using a well-established mice calvarial disease model.

Methods:  Thirty-two C57BL/6 J mice were randomized into four groups: Sham, vehicle, osteolysis group with oral 
WDL treatment for 4 weeks (WDL 4w), and osteolysis group treated for 8 weeks (WDL 8w). Micro-CT was used to 
quantitatively analyze the bone mineral density (BMD), bone volume/tissue volume (BV/TV) and trabecular bone 
thickness (Tb.Th). Osteoclast numbers were also measured from histological slides by two investigators who were 
blind to the treatment used.

Results:  The results from micro-CT observation showed that BMD in the WDL 8w group improved significantly 
over the vehicle group (p < 0.05), but there was no significant difference between WDL 4w and 8w for BV/TV and 
Tb.Th. Osteoclast numbers in the WDL 4w group were also lower than the vehicle group (p < 0.05), but the difference 
between WDL 8w and 4w groups was not significant.

Conclusions:  Particle-induced osteolysis is an inevitable long-term complication after TJR. The results of this animal 
study indicate that an oral administration of WDL can help reduce the severity of osteolysis without adverse effects.
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Background
Artificial joint replacement (AJR) is considered an 
effective method of treating severe joint degeneration 
[1]. However, periprosthetic osteolysis resulting from the 
deposition of wear particles from the articulating joint 
is one of the major clinical complications following AJR 
[2]. Wear particles can stimulate inflammatory responses 

and osteoclastic resorption processes at the bone implant 
interface, which consequently often leads to implant 
loosening [3]. Although bearing materials have been 
introduced to reduce the generation of wear particles, 
osteolysis is still prevalent and is considered a major 
long-term complication of AJR.

Besides changing the base material of the implant, 
pharmaceuticals have also been investigated as a method 
for reducing osteolysis [4]. Bisphosphonates are well-
known drugs for treating osteoporosis, but have also 
been shown to be effective at suppressing osteolysis [5, 
6]. Similarly, statins, which are lipid-lowering agents, 
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have been reported to reduce particle-induced osteolysis 
in a murine calvarial model [5]. However, such drugs can 
also introduce considerable serious  side effects, such as 
atypical femoral bone fracture and osteonecrosis of the 
jaw [7–9].

Animal models are often used for investigating 
mechanisms that can lead to particle-induced osteolysis 
and for evaluating suitable treatment methods [5, 10–14]. 
A previous study by our institute investigated whether 
strontium ranelate (SR) [11], a drug for osteoporosis, 
could be effectively used to combat osteolysis. After 
gavage-feeding mice for up to 4  weeks, the results 
showed a significant increase in bone mineral density 
(BMD), bone volume/tissue volume (BV/TV) and 
trabecular thickness (Tb.Th), and a significant reduction 
in osteoclast numbers [11]. However, long-term use of SR 
may increase the risk of cardiovascular disease [15–17].

As an alternative to pharmaceuticals, Chinese herbal 
medicines are considered a more natural solution with 
fewer side effects [18]. The International Organization 
for Standardization has also assembled a technical 
committee (ISO/TC 249) to standardize medical fields 
derived from Chinese medicine. With the increasing 
popularity, more resources and attention have been given 
to the potential benefits for treating disease [19–21].

Wedelolactone (WDL) is a coumestan compound 
extracted from the Wedelia Chinensis plant [22]. WDL 
is considered a traditional Chinese herbal medicine with 
strong anti-inflammatory properties [23–27]. Recent 
studies have shown that WDL can promote hair growth 
[28] and is hepatoprotective [29, 30], neuroprotective 
[31] and anti-carcinogenic [32, 33]. However, few studies 
have reported on the potential of WDL for treating 
diseases of the skeletal system. Based on the ability 
of WDL to reduce inflammation [23–27] and inhibit 
osteoclastogenesis [34, 35], it is hypothesized that WDL 
could also play a role in reducing the risk of particle-
induced osteolysis. This study used a well-established 
murine calvarial osteolysis model to investigate whether 
WDL administered orally could reduce the severity of 
osteolysis.

Methods
Establishing the calvarial particle‑induced osteolysis 
model
The protocol for this experiment was approved by the 
Institutional Animal Care and Use Committee at the 
institute where the study was performed. Thirty-two 
6-week-old C57BL/6  J female mice were supplied by 
BioLASCO (Taipei, Taiwan), an AAALAC certified bio-
technology company. The animals were kept in a room 
at 24℃, 50% humidity, and with a 12 h light/dark cycle 
(light from AM 7:00 to PM 7:00). The animals were 

randomly separated into four groups: (1) sham group 
(n = 8) (underwent surgery only) (2) vehicle group 
(n = 8) (implanted with PS particles) [36–38], (3) WDL 
4w (n = 8, implanted with PS particles and treated with 
WDL for 4  weeks. 7 animals remained at the end of 
the experiment) and (4) WDL 8w (n = 8, treatment for 
8  weeks). The vehicle group and WDL-treated groups 
were injected with 1 mg PS particles/100 μl HA [10, 25]. 
The polystyrene particles (Polystyrene Latex Spheres, 
610–38) were purchased from TED PELLA, Inc. (CA, 
USA). Three hundred particles were randomly selected 
and SEM was used to measure the particle size and 
aspect ratio (Fig.  1a). The particles were found to be 
1.03 ± 0.04  μm and 0.99 ± 0.03, respectively (Fig.  1b, 
c). The particles were also confirmed to have an endo-
toxin level below 0.25 EU/mL using a Limulus Ambo-
cyte Lysate assay kit (ToxinSensor™ gel clot endotoxin 
assay kit, GenScript, NJ, USA) and then suspended in 
hyaluronic acid.

To inject the particles, the mice were anesthetized 
with 100  mg/kg of Zoletil 50 and 10  mg/kg Rompun 
by intraperitoneal injection. A 0.5 × 0.5 cm area of the 
middle calvaria was exposed by sagittal incision. After 
removing the periosteum intact, the particle suspension 
was spread over the area and the incision was closed 
with sutures. After 2  week post-surgery, the WDL 4w 
and 8w groups were gavage-fed with Wedelolactone 
(Y0001599, European Pharmacopoeia Reference 
Standard, Sigma-Aldrich, USA) at a dose of 4  mg/kg/
day for 5 days/week [21]. WDL was dissolved by DMSO 
as stock solution and diluted with phosphate-buffered 
saline (PBS) into 10 volumes to attain a dosage of 
4 mg/kg. The vehicle group was gavage-fed the vehicle 
solution (10% DMSO in PBS). The sham group, vehicle 
group and WDL 4w group were then sacrificed after 
4 weeks of feeding either the vehicle or WDL, and the 
WDL 8w group was sacrificed after 8 weeks of feeding 
WDL.

Micro‑CT imaging analysis
The calvarias were fixed in 10% buffered formalin for 
24 h, and then transferred to 70% ethanol for 24 h. The 
specimens were scanned with the micro-CT system 
Skyscan 1076 (Bruker micro-CT, Kontich, Belgium) at 
a resolution of 2048 × 2048. Three-dimensional images 
were reconstructed in Skyscan with a voxel size of 9 μm 
[10, 25]. A spherical volume of interest (VOI) with a 
diameter of 5 mm was then defined with the bregma as 
the center. Within this VOI, the bone mineral density 
(BMD, mg/cc), the ratio of bone volume to tissue volume 
(BV/TV, %) and trabecular thickness (Tb.Th) were 
recorded for each group.
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Histological analysis
The calvarias were decalcificated in 10% 
ethylenediaminetetraacetic acid (EDTA) for 2 weeks, and 
then embedded in paraffin. Each section with a thickness 
of 5  μm were taken in the sagittal plane centered over 
the particle-treated area. The sections were then stained 
with hematoxylin and eosin (H&E stain) to observe the 
morphology of cellular inflammatory responses from the 
connective tissue. A tartrate-resistant acid phosphatase 
(TRAP) stain was performed using a commercial TRAP 
kit (#386A, Sigma-Aldrich). The number of osteoclasts 
was determined by counting the number of TRAP-
positive multinucleated cells by two coauthors to 
eliminate intra- and inter-observer error.

Statistical analysis
The data was analyzed using one-way analysis of variance 
(ANOVA) to show the difference between groups. 
Multiple comparisons were adjusted with a Bonferroni 
post hoc test. Results were reported as mean ± standard 

deviation (SD). Any p value less than 0.05 was considered 
significantly different.

Results
Micro‑CT imaging analysis
A visual analysis of the three dimensional (3D) recon-
structed micro-CT images showed clear differences 
between the sham group, vehicle group, and WDL 
groups (Fig.  2a). The images showed typical osteoly-
sis with pores in the sham group, but both the size and 
number of pores decreased in WDL-treated groups. The 
presence of PS particles significantly decreased the BMD 
in the vehicle group by 7.8% when compared to the sham 
group (0.74 ± 0.03 for vehicle group and 0.801 ± 0.03 
for sham group, p < 0.01). Both WDL groups showed an 
increase in BMD (Fig.  2b), with the 8w group showing 
a significant increase of 5.1% in comparison to the vehi-
cle group (0.78 ± 0.01 for 8w group and 0.74 ± 0.03 for 
vehicle group, p < 0.05). The BV/TV in the vehicle group 
decreased by 4.1% in comparison to the sham group 

Fig. 1  SEM image (× 12,000) of polystyrene (PS) particles (a). The particle size distribution by light-scattering analysis (b). The particle size 
distribution (c) and the aspect ratio (d) of the particles from SEM images
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(21.23 ± 1.43 in vehicle group versus 22.1 ± 1.54 in sham 
group) but increased in the WDL 4w group (22.96 ± 2.07) 
and WDL 8w group (22.44 ± 2.78). However, there were 
no significant differences in BV/TV and Tb.Th between 
the WDL 4w and WDL 8w groups (Fig. 2b).

Histomorphometric analysis
Histological analysis with H&E staining was used to eval-
uate the inflammatory response. Pseudomembrane pro-
liferation occurred in the vehicle and WDL groups. The 
morphology of the cells in the periosteum was observed 
to change to a circle-shaped contour, while the cells 
resembled a flat contour in the sham group. Multinu-
cleated giant cells were found in the surrounding peri-
osteum (Fig.  3). TRAP staining was used to highlight 

polymer particles in the periosteal cells and multinucle-
ated giant cells (Fig. 4a, b).

Osteoclasts around the bone perimeter
TRAP stain was used to highlight osteoclasts around 
the calvaria to calculate the osteoclast numbers in each 
group. The results showed the osteoclast numbers in 
the vehicle group increased significantly in compari-
son to the sham group (43.7 ± 10.1 in vehicle group 
versus 18.2 ± 14.5 in sham group, p < 0.05), demon-
strating that the polymer particles likely induced oste-
olysis. Furthermore, there was a significant reduction in 
osteoclast numbers in the WDL 4w group in compari-
son to the vehicle group (21.1 ± 9.8 in WDL 4w group 
versus 43.7 ± 10.1 in vehicle group, p < 0.05). However, 

Fig. 2  Reconstructed image of the VOI with the bregma at the center. The VOI is defined with a diameter of 5 mm (a). Micro-CT image of bone 
formation in a particle-induced osteolysis model measured at 4 and 8 weeks after feeding WDL (b) (*p < 0.05; ** p < 0.01, as determined using 
ANOVA testing)
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osteoclast number in WDL 8w group (30.6 ± 4.0) was no 
significantly different to the WDL 4w group (Fig. 5b).

Discussion
Osteolysis is one of the major long-term complications 
affecting patients who undergo AJR. Chinese herbal 
medicine is generally considered to be milder than 
pharmaceutical treatments and does not produce 
strong adverse effects.  This study aimed to investigate 
the potential use of the Chinese herbal medicine 
wedelolactone for reducing the incidence of particle-
induced osteolysis.

Bisphosphonates (BPs) are commonly used to treat 
conditions of metabolic bone loss, such as osteoporosis 
[7], but have also been shown to inhibit particle-induced 
osteolysis [39]. However,  the long-term use of BPs and 
other pharmaceuticals often results in serious adverse 
effects, such as an increased risk of osteonecrosis of 
the jaw, atypical femur fractures, atrial fibrillation, 
and esophageal cancer [6]. Statins, a drug usually used 
to lower blood cholesterol levels and reduce the risk 
of symptoms related to atherosclerosis, targets the 

mevalonate pathway of osteoclasts, which affect the 
same inhibition mechanism as bisphosphonates. Statins 
have been shown to markedly reduce the severity of 
particle-induced osteolysis in a murine calvarial model 
[5]. However, as with BPs, the use of statins can present 
a number of side effects when used long-term, such 
as rhabdomyolysis, cognitive loss, neuropathy, hepatic 
dysfunction, and sexual dysfunction [8].

There is increasing interest in alternative methods 
such as traditional Chinese medicine for treating 
diseases as clinicians look to reduce long-term 
complications associated with conventional medicine. 
It has reported that postmenopausal Chinese women 
with greater fruit intake have a significantly higher 
BMD than comparable women with a lower fruit intake 
[40]. Flavonoids, found in a wide diversity of food 
derived from fruit, have been recognized as potential 
dietary components to promote bone health [41, 
42]. Nam et  al. also indicated that traditional mixed 
extracts of medicinal herbs can effectively inhibit 
the expression of inflammatory mediators in gouty 
arthritis on monosodium urate (MSU) crystals-induced 

Fig. 3  Hematoxylin and eosin (H&E) staining of periosteum in mice calvarial section. Multinucleated giant cells were observed in the groups 
injected with PS particles (Magnification: × 40; scale bar: 100 μm)
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gouty inflammation, demonstrating its potential for 
treating gouty arthritis [43]. Phytoestrogens, which are 
natural compounds that act to maintain healthy bones, 

have been shown to protect against postmenopausal 
bone loss [20]. This protective mechanism has been 
demonstrated with flavones [44, 45], flavanones [46, 

Fig. 4  TRAP staining indicated that PS particles exist in the periosteal cells and multinucleated giant cells in mice calvarial tissue (a) 
(Magnification × 40 Scale bar: 100 μm). Different shapes of PS particles and melanin granules observed in TRAP staining. Arrow, PS particle; Arrow 
head, melanin granule (b) (Magnification × 100 Scale bar: 20 μm)
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47], flavonols [48], coumestans [49], and triterpenoids 
[46, 50]. Some phytoestrogens also have the ability to 
reduce osteolysis by blocking some modules in the 
RANKL signaling pathway, and subsequently reducing 
the release of cytokines [44, 45, 47, 51].

To our best knowledge, no studies to date have 
investigated whether WDL can reduce the risk of 
particle-induced osteolysis using an in-vivo murine 
calvarial model. The concentration of WDL used in this 
study was adopted from Tsai et  al. [21] who showed 

Fig. 5  Typical samples from micro-CT with purple staining showing TRAP-positive osteoclasts (a) (Magnification: × 40; Scale bar: 100 μm). Average 
number of TRAP-positive cells from each group are presented as the mean ± SD (b) (*p < 0.05)
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that a low oral dose of WDL (4  mg/kg) administered 
for 4  weeks significantly suppressed the growth of 
prostate cancer cells. The results of our study showed 
that the BMD was significantly greater in the WDL 8w 
group (0.784 ± 0.014  mg/cc) than in the vehicle group 
(0.744 ± 0.032  mg/cc) (Fig.  2b). However, there was 
no significant difference between the WDL 4w and 
8w groups in terms of the mean values of BV/TV and 
Tb.Th. On the other hand, the osteoclast numbers were 
significantly lower in the WDL 4w group (21.1 ± 9.8) 
and WDL 8w group (30.6 ± 4.0) than the vehicle group 
(44.1 ± 9.8) (Fig. 5).

Multinucleated giant cells are typically generated 
after implantation of medical advices, artificial joint 
or biomaterials, taking the form of foreign body giant 
cells. The formation of these giant cells is the end-stage 
of the inflammation or wound healing response [52]. 
Osteoclasts are specialized multinuclear giant cells 
derived from monocyte/macrophage lineage cells [53]. 
In this study, multinucleated giant cells were observed 
in the groups injected with polymer particles (Fig. 3). In 
addition, TRAP staining indicated that polymer particles 
were present in the periosteal cells and multinucleated 
giant cells in the mouse calvarial tissue (Fig. 4a, b).

Wear particles have been found in surrounding tissue 
after implantation of many different materials used in 
TJR, including ultra-high molecular weight polyethylene 
(UHMWPE) [54], poly(methyl methacrylate) (PMMA) 
[54], ceramics [54], metallic CoCrMo [55] and titanium 
alloy [55, 56]. Some studies used titanium particles to 
create particle-induced osteolysis animal models [44, 46, 
53, 57, 58]. However, when used in joint replacements, 
titanium or its  alloys generate fewer wear particles 
than polymers because of the relatively low mechanical 
strength of polymeric materials. In the authors’ previous 
animal studies, UHMWPE wear debris-induced animal 
models were developed to analyze the in vivo biological 
response to highly cross-linked and vitamin E-stabilized 
polyethylene [10] and to evaluate the potential role 
of strontium ranelate-contained medicine to treat 
osteolysis [11]. However, considerable time was spent 
preparing enough wear debris for these animal models, 
while polystyrene (PS) particles are readily available and 
are widely used both commercially and for biomedical 
research [59, 60]. PS particles have been used in many 
animal studies to create particle-induced osteolysis 
animal models [36–38]. Furthermore, given that the 
size distribution and shape of PS particles are easier to 
control, this study used PS particles for the animal model.

Previous studies treated murine calvarial osteolysis 
with bioactive compounds for 10–14  days after 
implantation of foreign particles [12, 44, 45, 47, 50, 61]. 
For instance, icariin, a bioactive flavonoid, has been 

proven to inhibit postmenopausal osteoporosis. Shao 
et al. gavage-fed mice with icariin at doses of 0.1 mg/g and 
0.3 mg/g for 14 days to examine the effects on osteolysis 
in a particle-induced murine calvarial model. The results 
showed an increase in BMD and BV/TV over the control 
model, and the number of TRAP positive cells decreased 
[12]. Similarly, ursolic acid is an abundant triterpenoid 
present in over one hundred species of plants. It has been 
reported that ursolic acid isolated from loquat leaves can 
reduce bone loss in OVX mice [46]. Jiang et  al. treated 
mice with 10 mg/kg and 40 mg/kg doses of ursolic acid 
administered through intraperitoneal injections for 
14 days and found that ursolic acid protects against wear 
particle-induced osteolysis by suppressing osteoclast 
formation and function [50]. The treatment period in this 
current study, 4 weeks and 8 weeks, was longer than the 
referenced studies which only treated for a short-term of 
2 weeks. No adverse effects were observed in this study 
after treating the mice for 8 weeks with WDL.

Bone remodeling is a dynamic equilibrium with 
molecular mechanisms, such as RANK/RANKL/OPG 
[62], NF-κB [63], and Wnt/BMP  (bone morphogenic 
protein) [57, 64] signaling pathways playing critical 
roles in osteolysis. Although the trigger mechanisms 
for osteolysis are not yet fully understood, it is known 
that one of the mechanisms is the receptor activation 
of NF-κB ligand (RANKL) and osteoprotegerin (OPG) 
secreted from osteoblasts and osteogenic stromal cells, 
both of which act to maintain a balance between bone 
generation and resorption [62]. RANKL is required for 
the differentiation of osteoclast precursors into mature 
osteoclasts [58]. As the ratio of RANKL/OPG increases, 
the osteoclast precursors are easier influenced by 
RANKL signaling through the downstream activation 
of NF-κB/c-fos/NFATc1, subsequently causing the 
precursors to differentiate into mature osteoclasts. On 
the other hand, macrophages also plays a key role in 
wear particle-induced osteolysis [63, 65–68]. Cytokines 
(TNF-α and IL-1β, etc.) and other mediators of pro-
inflammation from activated macrophages can regulate 
or  stimulate  other tissue-resident macrophages to 
promote osteoclastogenesis [66]. These cytokines also 
regulate JNK and the p38/ERK signaling pathway to 
induce NFATc1, one of the downstream factors in the 
RANKL signaling pathway, which can lead to osteolysis.

Studies have shown that some compounds from 
Chinese herbal medicines can treat particle-induced 
osteolysis by inhibiting the modules in the NF-κB 
signaling pathway, the main mechanism in the regulation 
of osteolysis, to effect the balance of osteoclasts and 
osteoblasts [12, 45, 50, 61, 68]. WDL is known for its 
ability to block the phosphorylation of IκBα, which 
acts to regulate the transcription of NF-κB mediated 
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genes, inhibiting LPS-induced pro-inflammation [69]. 
Annie et al. demonstrated how an extract from Wedelia 
chinensis attenuated OVX-induced bone loss in mice 
[70]. WDL extracted from Ecliptae herba has been shown 
to inhibit osteoclastogenesis of RAW 264.7 cells treated 
with RANKL [35], and prevent OVX-induced bone loss 
by inhibiting osteoclast activity and enhancing osteoblast 
activity [34]. Furthermore, it has been confirmed that 
WDL can regulate the RANKL-related NF-κB/c-fos/
NFATc1 pathway to suppress osteoclastogenesis [26, 
71], and also regulate the Wnt/β-catenin signaling 
pathway to induce osteoblastogenesis [71, 72]. The 
authors concluded that oral WDL could improve bone 
formation and inhibit resorption by affecting the balance 
of osteoclasts and osteoblasts. However, the mechanism 
leading to the inhibition of osteolysis by WDL still needs 
to be determined.

Some limitations of this study should be mentioned. 
First, murine calvarial models allow for a low-cost 
study with relatively quick results, but the models use 
a flat bone instead of a long bone and the particles are 
injected on the cortical bone surface rather than into 
cancellous bone. Second, as detailed above, the WDL 
dose used in this study was adopted from other related 
publications. However, the most effective dose for 
treating osteolysis in vivo has yet to be determined and 
requires further study. Third, osteoclast numbers were 
counted through qualitative analysis, not quantitative 
analysis. When injected onto the calvaria, the particles 
randomly precipitated and then a section was chosen 
for histological staining. This sampling approach 
may not represent true osteoclast numbers. Further 
studies are recommended to investigate inflammatory 
makers. Accepting the above limitations, this animal 
study identified the potential role of wedelolactone for 
treating particle-induced osteolysis.

Conclusions
This study indicated that wedelolactone (WDL), a 
Chinese herbal medicine, could help to maintain bone 
quality. Oral WDL was shown to suppress osteoclast 
numbers and maintain the level of BMD over time in 
a particle-induced osteolysis murine clavarial model. 
Moving forward, WDL could be potentially developed 
as a functional food for lowering the risk of particle-
induced osteolysis after total joint replacement.
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