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Abstract: Our study assessed the influence of integrating 5% and 10% tricalcium phosphate (β-TCP-
Ca3(PO4)2.) nanoparticles into a dental adhesive on the adhesive’s bonding. To evaluate the filler
nanoparticles, scanning electron microscopy (SEM), Energy Dispersive X-Ray (EDX) spectroscopy,
Fourier-transform infrared (FTIR) spectroscopy, and micro-Raman spectroscopy techniques were used.
Shear Bond strength (SBS) testing, degree of conversion (DC) analysis, investigation of the adhesive–
dentin interface, and biofilm experiments were conducted. The SEM micrographs revealed non-
uniform agglomerates, while the EDX demonstrated the existence of oxygen ‘O’ (24.2%), phosphorus
‘P’ (17.4%) and calcium ‘Ca’ (60.1%) in the β-TCP nanoparticles. The FTIR and micro-Raman spectra
indicated characteristic bands for β-TCP containing materials. The 10 wt.% β-TCP adhesive presented
the highest SBS values (NTC-10 wt.% β-TCP: 33.55± 3.73 MPa, TC-10 wt.% β-TCP: 30.50 ± 3.25 MPa),
followed by the 5 wt.% β-TCP adhesive (NTC-5 wt.% β-TCP: 32.37 ± 3.10 MPa, TC-5 wt.% β-TCP:
27.75 ± 3.15 MPa). Most of the detected failures after bond strength testing were adhesive in nature.
The β-TCP adhesives demonstrated suitable dentin interaction by forming a hybrid layer (with few
or no gaps) and resin tags. The β-TCP adhesives (10 wt.%) revealed lower DC values compared to
control. The incorporation of 5 and 10 wt.% concentrations of β-TCP particles resulted in an increase
in SBS values. A linear decline in DC values was witnessed when the nanoparticle concentration was
increased. Further research focusing on exploring the influence of higher filler concentrations on
adhesive’s properties is recommended.

Keywords: adhesive; bonding; dentin; calcium; phosphate; β-TCP

1. Introduction

Dentin is an intrinsically humid tissue that makes adhesive bonding one of the most
puzzling tasks in dentistry [1]. Adhesive dentistry has seen a paradigm shift in the last two
decades, with new materials being available that are user-friendly and establish stronger
adhesion with dentin as compared to conventional adhesives [2]. Still, the longevity of
the adhesive–dentin bond is questionable, and it is dependent upon several factors. One
essential factor is the capability of the adhesive monomers to penetrate the spaces between
the collagen fibers in order to form strong resin tags, which consequently improves the
stability of the adhesive–dentin bond [3]. Another key factor that impacts the durability
of the adhesive–dentin bond is the composition of the adhesive that influences its various
properties [4]. Hence, it has been suggested in the literature that the inclusion of inorganic
nanofillers in the adhesive composition improves its bond strength, inhibiting its continuing
degradation over time [5,6]. A durable adhesive–dentin bond verifies that the restoration
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will endure the dynamic oral environment, which regularly experiences temperature and
pH fluctuations [7]. The literature shows that the addition of inorganic nanofillers in
the adhesive improves its various mechanical properties [5], subsequently enhancing the
longevity of the resin composite restorations [8]. The size of these nanofillers typically
ranges between 1 and 100 nm, and they possess encouraging antibacterial properties (owing
to their great chemical reactivity) [9,10]. As these fillers are nano-sized, they possess a
larger surface area to the mass ratio, which helps them to work with negatively charged
bacterial surfaces, improving the antibacterial potential of the material [11–13]. Although
nanoparticles based on bioactive glasses, hydroxyapatite, silica, and graphene oxide have
been added to adhesives previously [5], the quest to find a material that enhances various
mechanical and antimicrobial properties of dentin adhesives optimally continues. One such
filler material that can be used to enhance the properties of dentin adhesives is tricalcium
phosphate (TCP).

Conventionally, TCP has been used for osteogenic purposes in the case of bone re-
sorption [14]. Although this material has several polymorph phases [15], the α and β

polymorphs are the most commonly used for clinical applications, including enamel rem-
ineralization, prevention of enamel demineralization, and to augment properties of dentin
adhesives [16–18]. In comparison to the α-TCP, the β-TCP (Ca3(PO4)2 is comparatively
less soluble and can be produced at comparatively lower temperatures, hence being cost-
effective [19]. Furthermore, TCP nanoparticles are biocompatible, making them useful
for several dental applications [20]. In a former study, the integration of TCP filler in the
adhesive’s composition resulted in a higher polymerization rate and hardness [18]. In
another earlier study, the inclusion of β-TCP nanoparticles in the adhesive’s composition
caused an improvement in its bond strength without affecting the degree of conversion
(DC) significantly [21]. β-TCP nanoparticles have recently gained popularity in dentistry,
and it would be interesting to see the impact of their inclusion on numerous properties
of dentin adhesives. Keeping in mind all these benefits of β-TCP, it is added to dental
adhesive as this could possibly enhance several properties of the adhesive.

Therefore, our study was aimed at integrating 5% and 10% β-TCP nanoparticles
into CA and then observing the effect of its addition on adhesive bonding and degree of
conversion. It was assumed that the addition of β-TCP nanoparticles to the adhesive’s
composition would improve its mechanical properties.

2. Materials and Methods

Our study proposal was accepted by the ethics review board of the specialist dental
practice and research institute before commencement. Non-carious and defect-free ex-
tracted maxillary third molar teeth were obtained from Oral Surgery clinics. These teeth
were stored in 10% formalin and used within a month of their collection for the experiments
in our study.

2.1. Amalgamation of Nanoparticles with the Dental Adhesive

β-TCP nanoparticles were obtained (β-tricalcium phosphate- Sigma Aldrich, St. Louis,
MO, USA) and added in two concentrations (5% and 10%, m/m) to the control adhesive
(CA) (Prime and bond- Dentsply, Caulk, Tulsa, OK, USA) (di- and tri-methacrylate resins,
PENTA (dipentaerythritol penta acrylate monophosphate), and acetone), to yield 5 wt.%
β-TCP and 10 wt.% β-TCP adhesive groups. To guarantee homogenized dispersion of the
nanoparticles in the adhesives, they were shifted in a centrifuge and then sonicated. The
adhesives, which included CA (without nanoparticles), 5 wt.% β-TCP, and 10 wt.% β-TCP,
were stored at 4 ◦C and used within three weeks of their amalgamation.

2.2. Characterization of the Filler Nanoparticles

Multiple methods were used to characterize the filler nanoparticles. The morphology of
the β-TCP nanoparticles was assessed using scanning electron microscopy (SEM). A small
quantity of the filler nanoparticles was placed on the aluminum stubs and then covered with a
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gold layer. Using an SEM (JEOL JEM-1400 series 120kV- USA), these β-TCP nanoparticles were
then observed. The accelerating voltage of SEM was set at 30 kV while different magnifications
were used to notice the morphological features of the filler nanoparticles. Using the energy-
dispersive X-ray (EDX) spectroscopy technique, elemental analysis of the newly produced
β-TCP nanoparticles was carried out. We also used the Fourier-transform infrared (FTIR)
spectroscopy technique to further characterize the filler nanoparticles. The filler nanoparticles
were applied to the potassium bromide disc of the spectroscope. While the connection with
FTIR (Thermo Scientific Nicolet IS10 FTIR spectrometer, Waltham, MA, USA) sensors was
maintained, the data were collected over a range of 500–1500 cm−1 (wavenumber). The
last characterization of the filler nanoparticles involved using micro-Raman spectroscopy. A
Raman spectrophotometer (Thermo Scientific Nicolet IS10 FTIR spectrometer, Waltham, MA,
USA) and Raman reader® software was used to collect the spectra. The laser beam was held
using an objective lens, and a power of 600 mW was used. The 1 min scans were completed
three times, and the results were averaged.

2.3. Tooth Specimens Preparation and Bonding Protocol

Ninety teeth (n = 90) were secured in orthodontic resin (Opti-Cryl, South Carolina,
Columbia) at the level of the cemento–enamel junction (CEJ) with a 15 mm (height) segment
of polyvinyl pipes (4mm) and then placed in deionized water. The dentin of these teeth was
uncovered using a high-speed handpiece (KaVo Dental Corp., Biberach, Germany) with
a 0.15-mm-thick diamond disc (D943-080, Kerr-Rotary, USA). These teeth were assigned
randomly to three groups (CA, 5 wt.% β-TCP, and 10 wt.% β-TCP), with each group
containing thirty-five teeth. Using distilled water (DW), the dentinal surface of these teeth
was cleaned, followed by their etching (with 35% orthophosphoric acid) for 1 min and then
washing with DW and drying. Using a micro-brush, the adhesives were applied to the
dentin of these teeth. Air thinning for 3 s was carried out following the adhesive application,
which was again followed by another use of the adhesive. Curing of the adhesive layer
was then carried out using a dental curing light (Eliphar S10; 600 mW·cm−2 output; 3M
ESPE, St. Paul, MN, USA), which was applied for 20 s from a distance of 10 mm. Post
curing, a 2-mm layer of resin composite (Filtek Universal; 3M ESPE, St. Paul, MN, USA)
was smeared onto each tooth, which was then photo-polymerized with the curing light.
These bonded tooth specimens were stored at 37 ◦C for 1 day in deionized water. From
each adhesive group containing thirty specimens, twenty specimens were analyzed for
shear bond strength (SBS) analysis, five specimens were used to assess the bond reliability
of the resin-dentin interface (by means of SEM) and five specimens were analyzed by FTIR
and DC.

2.4. SBS Testing and Investigation of the Failure Modes

The teeth involved in SBS assessment were sectioned (similar to the steps of dentinal
uncovering explained earlier) to form flat surfaces with an area of 5 mm × 5 mm. The
specimens were polished for #240, #300 and #400 grit sandpaper for 30 s. SBS was assessed
using Instron universal testing machine (Instron 5965 material testing system) using a
knife-shaped probe at a crosshead speed of 5 mm/min with a standard load cell until
specimen fracture. The SBS was presented in mega-pascals (MPa).

Pre-testing, ten tooth specimens from each adhesive group that was designated for
SBS assessment were thermocycled (TC) inside a thermocycler (THE-1100, SD Mecha-
tronik GmbH, Feldkirchen-Westerham, Germany). The remaining ten samples remained
non-thermocycled (NTC). The TC samples received 10,000 cycles in water baths with a
temperature range between 5–55 ◦C for 30 s, and a dwell time of 5 s was applied. All the TC
and NTC specimens were then retained in deionized water for 21 days. The failure modes
were investigated following the previous recommendations of Al-Hamdan et al. 2020 [22].
These failures were classified as adhesive, cohesive, or mixed type failures. Adhesive
failures were defined as failure at the interface between the bonding agent (adhesive) and
the adherend (dentin). A failure was considered cohesive when a layer or part of the
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adhesive remained on the dentin or resin surfaces. Mixed failures were identified when
part of the substrate, i.e., dentin or resin, remained attached to the other half after intended
bond failure.

2.5. Adhesive–Dentin Interface Analysis

The samples for the analysis of the adhesive–dentin interface (n = 5) were prepared
following the steps of our earlier study [23]. Teeth were sectioned in the bucco-lingual
direction using a slow-speed lubricated diamond saw (KaVo Dental Corp., Biberach, Ger-
many). Specimens were polished on 600 and 1200 grit abrasives, (Beuhler Polisher, Lake
Bluff, IL, USA), followed by ultrasonic bath cleaning in distilled water (Bandelin Digital,
Sigma-Aldrich Darmstadt, Germany). The specimens were then fixed on aluminum stubs,
coated with a gold layer, and viewed in an SEM (JEOL JEM-1400 series 120kV-USA).

2.6. FTIR Spectroscopy and DC Investigation

FTIR spectroscopy was employed to evaluate DC of adhesives (CA, β-TCP 5 wt.%
and β-TCP 10 wt.%). Spectra were obtained and analyzed before and after curing the
group resins. Adhesives were applied on the potassium bromide disc of the spectroscope
(Thermo Scientific Nicolet 6700 FTIR spectrometer, MA, USA). Peaks for C-C double bonds
were recorded for the unpolymerized and photo polymerized resin (40 s). Aromatic (C-C)
and aliphatic (C=C) reference peaks recorded at 1607 cm−1 and 1638 cm−1 were collected.
The percentages of unreacted double bonds (absorbance intensities of C=C and C-C) were
evaluated using the following formula.

DC = [1′ − (C aliphatic/C aromatic)/(U aliphatic/U aromatic)] × 100% (1)

where, C aliphatic is at the 1638 cm−1 peak of the cured resin, C aromatic is at the 1607 cm−1

peak of the cured resin, U aliphatic is at the 1638 cm−1 peak of the uncured resin, and U
aromatic is at the 1607 cm−1 peak of the uncured resin.

2.7. Statistical Analysis

The results of the SBS testing and DC analysis were assessed using SPSS-20.0 (IBM,
Chicago, IL, USA). ANOVA and post hoc multiple comparison tests were used for the
analysis (significance level < 0.01).

3. Results
3.1. Outcomes of the Filler Nanoparticle’s Characterization

The morphological characteristics of the β-TCP nanoparticles are shown in Figure 1A,B
(low- and high-magnification SEM micrographs). The β-TCP nanoparticles demonstrated
agglomeration with irregular shapes (Figure 1A,B). These agglomerated β-TCP nanoparti-
cles were of various sizes, ranging between 500 and 1000 nm. The EDX analysis demon-
strated the existence of oxygen (O) (24.2%), phosphorus (P) (17.4%), and calcium (Ca)
(60.1%) (Figure 1C). The FTIR analysis of the filler nanoparticles demonstrated the stretch-
ing mode of PO43− which formed a strong band observed at 1041 cm−1. The vibration
peaks of PO43− were observed at 561 cm−1, and 607 cm−1 (Figure 2A). The characteristic
micro-Raman spectra of the β-TCP nanoparticles showed (Figure 2B) that symmetric (v1)
and asymmetric stretching (v3) were detected. The v1 vibration of the P-O bonds of tetrahe-
dron is associated with peaks witnessed near 950–970 cm−1. The asymmetric stretching
was at low intensity and observed at the 1015–1090 cm−1 peaks (Figure 2B).
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Figure 1. Representative (A) low- and (B) high-magnification SEM images of β-tricalcium phosphate
particles (β-TCP). The particles indicated agglomerated morphology of irregular sized polygonal crystals
ranging from 300 nm to 600 nm. (C) Representative electron spectrum particles showing no impurities
and mainly containing oxygen ‘O’ (24.2%), phosphorus ‘P’ (17.4%) and calcium ‘Ca’ (60.1%).

Figure 2. The FTIR analysis of the β-tricalcium phosphate is shown in (A). The band at 1041 cm−1

indicates the stretching mode of PO4
3− group and peaks at 561 and 607 cm−1 represent PO4

3− in
β-TCP. (B) Raman spectrum of tricalcium phosphate indicates the internal vibration of the PO4

3−

groups. The symmetric stretching (ν1) of P-O bonds show peaks at around 950 cm−1 and 970 cm−1.
At 1015—1090 cm−1 range, asymmetric stretching (ν3) was observed.
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3.2. Outcomes of the SBS and Failure Mode Analysis

The outcomes of the µTBS are shown in Table 1. The 10 wt.% β-TCP adhesive pre-
sented the highest µTBS values (NTC-10 wt.% β-TCP: 33.55 ± 3.73 MPa, TC-10 wt.%
β-TCP: 30.50 ± 3.25 MPa) followed by the 5 wt.% β-TCP adhesive (NTC-5 wt.% β-TCP:
32.37 ± 3.10 MPa, TC-5 wt.% β-TCP: 27.75 ± 3.15 MPa), while the CA presented relatively
low µTBS values (NTC-CA: 27.34 ± 3.11 MPa, TC-CA: 24.70 ± 3.64 MPa) (Table 1). All
the comparisons within the same group demonstrated statistically significant differences
(p < 0.01). Among the inter-group evaluations, statistically significant differences (p < 0.01)
were only observed when the CA values for both NTC and TC samples were compared
with both the nanoparticle reinforced adhesive groups (Table 1).

Table 1. Means and standard deviations for bond strength and failure modes among the study groups.

SBS (MPa) (Mean ± SD) Failure Mode Analysis (%)

Group (n = 10) NTC TC p-Value Adhesive Cohesive Mixed

Unmodified CA
27.34 ± 3.11 a A -

<0.01

100 0 0

- 24.70 ± 3.64 b A 100 0 0

5.0 wt.% nano-β-TCP
32.37 ± 3.10 a B - 80 0 20

- 27.75 ± 3.15 b B 80 0 20

10.0 wt.% nano- β-TCP 33.55 ± 3.73 a B - 90 0 10

- 30.50 ± 3.25 b B 80 0 20

Dissimilar superscript small alphabets in the same row denote statistical difference. Dissimilar superscript capital
alphabets in the same column denote statistically significant difference.

Adhesive type failure was most commonly found in our study (>80%) (Table 1). None
of the adhesive groups presented any cohesive failure. The CA group did not demonstrate
any mixed failure, while the nanoparticle-reinforced groups demonstrated mixed type
failures as well (ranging between 10–20%).

3.3. Outcomes of the Analysis of the Adhesive–Dentin Interface

SEM micrographs showing the bonded resin dentin interface are presented in Figure 3A
(CA), Figure 3B (5 wt.% β-TCP), and Figure 3C (10 wt.% β-TCP). It can be observed that
all the specimens were able to form a thick uniform adhesive layer that bonded well to
the composite resin. For the CA sample, comparatively shorter resin tags with few gaps
were seen over the hybrid layer (Figure 3A). For the 5 wt.% β-TCP adhesive, resin tags that
were greater in both length and number were seen, with fewer gaps within the hybrid layer
(Figure 3B). For the 10 wt.% β-TCP adhesive, a uniform hybrid layer without any gaps at
the resin dentin interface was seen with a smaller number of resin tags (Figure 3C).

Figure 3. Cont.
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Figure 3. SEM images of the bonded resin and dentin interface using (A) control dentin adhesive,
(B) 5 wt.% and (C) 10 wt.% tricalcium phosphate dental adhesive. All specimens formed a uniform
adhesive layer that bonded well to the composite resin (CR). The formation of a hybrid layer (HL)
was observed along with resin tags (RT). Gaps within the hybrid layer and the adhesive can also
be observed in the unmodified dentin adhesive specimen. 5 wt.% adhesive exhibited longer and
more numerous resin tags, with the formation of fewer gaps within the hybrid layer. (B) The 10 wt.%
presented a uniform hybrid layer with gaps at the resin–dentin joint and shorter resin tags.

3.4. Outcomes of the FTIR and DC Analysis

The representative FTIR spectra of the polymerized and unpolymerized adhesives
belonging to the three groups (CA, 5 wt.% β-TCP, and 10 wt.% β-TCP) were collected and
then merged together in Figure 4. The estimation of the DC was performed by calculating
the discrepancies in the peak height ratio of the absorbance strengths of aliphatic C=C
peak at 1638 cm−1 and that of a standard inner peak of aromatic C=C at 1608 cm−1 during
polymerization, as related with the unpolymerized adhesive, represented by a lined box
in Figure 4. As can be seen from the DC results (Table 2 and Figure 5), the CA group
demonstrated the highest DC (41.3± 4.5), followed by the 5 wt.% β-TCP group (39.4 ± 6.2),
while the lowest DC was observed for the 10 wt.% β-TCP group (35.5± 3.9). No statistically
significant findings (p > 0.01) were perceived when comparing the DC values of the CA and
5 wt.% β-TCP adhesive groups or when comparing those of the 5 wt.% β-TCP and 10 wt.%
β-TCP adhesive groups. Significant differences (p < 0.01) were only observed when the DC
values of the CA group were compared with those of the 10 wt.% β-TCP group (Table 2).
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Figure 4. FTIR spectra of polymerized and unpolymerized groups from unmodified and BTCP
nanocrystal-modified adhesive. The degree of conversion was calculated by estimating the changes
in peak height ratio of the absorbance intensities of aliphatic C=C peak at 1638 cm−1 and that of
an internal standard peak of aromatic C=C at 1608 cm−1 during polymerization, in relation to the
uncured adhesive as indicated with the box.

Table 2. Degree of conversion (DC) displayed by CA, β-TCP 5%, and β-TCP 10% adhesive.

Group Degree of Conversion (Mean ± SD) Tukey Test (p < 0.01) *

Unmodified CA 41.3 ± 4.5 A

5.0 wt.% β-TCP 39.4 ± 6.2 AC

10.0 wt.% β-TCP 35.5 ± 4.5 C
β-TCP: β-tricalcium phosphate-modified experimental adhesive; CA: experimental adhesive (control). * Dissimilar
uppercase letters in this column indicate statistically significant difference among the groups (CA, 5 wt.% β-TCP,
and 10 wt.% β-TCP).

Figure 5. Comparison of DC among the study groups. CA: control adhesive.
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4. Discussion

On the basis of our study findings, the hypothesis that the integration of β-TCP
nanoparticles in the adhesive composition would improve its adhesive bonding, dentin
bond strength, and degree of conversion was partly accepted. We observed an improved
SBS and dentin penetration, and a compromise in DC for the adhesives containing β-TCP
nanoparticles. Several earlier studies have conveyed similar findings and reported that the
incorporation of inorganic fillers into adhesives results in an improvement in its mechanical
properties [23–25]. Two important ions that are part of the normal tooth structure and play
a vital role in reinforcing its structural integrity are calcium and phosphate [26]. In the case
of demineralization, the presence of these two ions ensures that the tooth structure can
be remineralized promptly [27]. As composite restoration regularly suffers from micro-
leakage, the occurrence of calcium and phosphate ions ensures efficient remineralization of
the tooth, thus averting the effects of micro-leakage [28]. The β-TCP nanoparticles enjoy
high biocompatibility and perform optimally when in a physiological environment like the
oral cavity [20]. In line with these advantages, it was decided in our study to incorporate
these filler nanoparticles in the adhesive and to appraise the effect of their integration on
different properties of the adhesive.

On SEM, the filler nanoparticles demonstrated an irregular shape with agglomeration
(Figure 1A,B). This morphology is typical for β-TCP nanoparticles, as demonstrated by
previous studies [21,29]. The EDX analysis of these nanoparticles demonstrated the pres-
ence of oxygen, phosphorus, and calcium (Figure 1C). As explained earlier, calcium and
phosphorus are part of the composition of the tooth [30], and they can remineralize the
tooth instantaneously after acidic challenge [26]. The FTIR spectra (Figure 2A) displayed
characteristic bands for β-TCP nanoparticles, and the micro-Raman spectra (Figure 2B)
also displayed characteristic peaks related to these filler nanoparticles, similar to several
previous studies [21,30,31].

The characterization of the adhesive–dentin interface yielded interesting results. It
was seen that all the adhesives (CA, 5 wt.% β-TCP, and 10 wt.% β-TCP) formed a thick
adhesive layer, which bonded well with the composite resin (Figure 3A–C). However,
several gaps were seen in the hybrid layer observed for the CA, while the nanoparticle-
reinforced adhesives demonstrated no to only a few gaps in the hybrid layer. The CA
sample also demonstrated shorter resin tags compared to the other two adhesives (on
visual observation). Though we did not evaluate the resin tags length inside the tubules in
our study, it should be kept in mind that their dissemination depth does not significantly
impact the adhesive’s bond strength [32].

In the present study, the bond strength of the adhesive was tested using SBS testing.
This is a reliable technique for testing the material attachment strength with the dentin
and has been used in several previous studies [33,34]. Previously, a former study rec-
ommended that although the addition of inorganic fillers in the adhesive is useful, their
wt.% when being added should not be >10%, as that would result in a compromised bond
strength [35]. In line with this recommendation, we did not surpass the 10 wt.% of filler
nanoparticles in our adhesives. The inclusion of TCP-based nanoparticles in the adhesive
triggered an increase in the bond strength for these reinforced adhesives [36]. Materials
with remineralizing ions in their composition discharge them sporadically [37], and this
could possibly have enhanced the µTBS of the β-TCP-containing adhesive in the present
study. It has been shown before that remineralizing ions containing materials can biomin-
eralize with the collagen fibers of the dentin [8], producing a stronger adhesive–dentin
bond, and this could be attributed to the increased SBS of the β-TCP containing adhesive
in our study. Concerning interfacial fractures, most of the failures observed in our study
were of the adhesive type. This outcome is in agreement with a previous study, which
also demonstrated adhesive type failure to be most common following integration of the
filler nanoparticles in the adhesive [38]. Dentin is a collagenous wet tissue, and bonding
with it is challenging [39], and this could also have played a part in the observance of this
type of failure. The oral cavity is dynamic, and it regularly faces temperature fluctuations;
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therefore, to replicate this, we thermocycled specimens prior to SBS testing. ISO standard
number 11,405 mentions that a temperature range of 5 to 55 ◦C is appropriate for inflicting
aging on dental materials for a restricted time period [40]. Earlier studies have shown that
TC causes a decline in the bond strength of the adhesive [41,42], and our µTBS findings are
in harmony with these previous results.

The DC investigation revealed that the highest values were observed for CA, followed
by 5 wt.% β-TCP and 10 wt.% β-TCP adhesives. Few previous studies have verified that
the inclusion of filler nanoparticles in the adhesive, despite causing an appreciation in
bond strength, also results in a lower DC in the nanoparticle-containing adhesives [23,43].
The results of the present study are in agreement with these previous findings, as we
also observed a negative linear relationship between the DC and filler concentration. An
increased DC is desirable in CA, as it guarantees that a sufficient quantity of monomers
is polymerized [44], subsequently decreasing the micro-leakage and the possibility of the
development of secondary caries. A plausible justification of this result could be that
inorganic fillers are opaque and thus do not offer an adequate opportunity to the curing
light to penetrate, thus producing a hindrance in the sufficient change of monomers into
polymers, causing a lower DC [45,46].

One of the limitations of our study is that biocompatibility and antimicrobial activity
of the nano particles used was not assessed. Biocompatibility and antimicrobial function
are critical for dentin interaction and prevention of recurrent caries at the resin dentin
interface. In addition, the oral cavity is dynamic and could present numerous challenges to
foreign materials (adhesive or restoration). As the present study was in vitro in nature, the
outcomes of the study should be regarded in light of the study setting. Therefore, further
investigations assessing the cellular and bacterial interaction of β-TCP compositions in a
dynamic environment are recommended

5. Conclusions

The incorporation of 5 and 10 wt.% concentrations of β-TCP particles resulted in an
increase in SBS values. A linear decline in DC values was witnessed when the nanoparticle
concentration increased. Further research focusing on exploring the influence of higher
filler concentrations on adhesive properties are recommended.

Author Contributions: Conceptualization, M.M.A., A.S.A.-Q., K.A.A.-A. and M.B.; methodology,
M.M.A.; H.I.T., A.S.A.-Q., S.S. and K.A.A.-A.; validation, A.S.A.-Q., S.S., M.B. and T.A.; formal
analysis, M.M.A., H.I.T., S.S. and K.A.A.-A.; investigation, M.M.A., A.S.A.-Q., M.B. and T.A.; data
curation, K.A.A.-A., H.I.T. and M.M.A.; writing—original draft preparation, T.A., S.S. and K.A.A.-A.;
writing—review and editing, M.B. and T.A.; supervision T.A.; funding acquisition, T.A. All authors
have read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R6), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: The research ethics review committee of the Specialist Dental
and Research Center approved the study protocol with No. UDRC-011/2021). All the recommenda-
tions of the Helsinki Declaration and its later amendments were strictly followed. The teeth extracted
for orthodontic treatments, which were free from any apparent defects, were gathered after attaining
the patients’ written informed consent and were used for the experiments in our study.

Informed Consent Statement: All the recommendations of the Helsinki Declaration and its later
amendments were strictly followed. The teeth extracted for orthodontic treatments, which were free
from any apparent defects, were gathered after attaining the patients’ written informed consent and
were used for the experiments in our study.

Data Availability Statement: Data of the study is available on request form the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Nanomaterials 2022, 12, 853 11 of 12

References
1. Perdigao, J. Current perspectives on dental adhesion: (1) Dentin adhesion—Not there yet. Jpn. Dent. Sci. Rev. 2020, 56, 190–207.

[CrossRef] [PubMed]
2. Perdigao, J.; Araujo, E.; Ramos, R.Q.; Gomes, G.; Pizzolotto, L. Adhesive dentistry: Current concepts and clinical considerations. J

Esthet. Restor. Dent. 2021, 33, 51–68. [CrossRef] [PubMed]
3. Huang, B.; Siqueira, W.L.; Cvitkovitch, D.G.; Finer, Y. Esterase from a cariogenic bacterium hydrolyzes dental resins. Acta Biomater.

2018, 71, 330–338. [CrossRef] [PubMed]
4. Perdigao, J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent. Mater. 2010, 26, e24–e37.

[CrossRef] [PubMed]
5. Farooq, I.; Ali, S.; Al-Saleh, S.; AlHamdan, E.M.; AlRefeai, M.H.; Abduljabbar, T.; Vohra, F. Synergistic Effect of Bioactive Inorganic

Fillers in Enhancing Properties of Dentin Adhesives—A Review. Polymers 2021, 13, 2169. [CrossRef]
6. Kim, J.S.; Cho, B.H.; Lee, I.B.; Um, C.M.; Lim, B.S.; Oh, M.H.; Chang, C.G.; Son, H.H. Effect of the hydrophilic nanofiller loading

on the mechanical properties and the microtensile bond strength of an ethanol-based one-bottle dentin adhesive. J. Biomed. Mater.
Res. B Appl. Biomater. 2005, 72, 284–291. [CrossRef] [PubMed]

7. Stewart, C.A.; Finer, Y. Biostable, antidegradative and antimicrobial restorative systems based on host-biomaterials and microbial
interactions. Dent. Mater. 2019, 35, 36–52. [CrossRef] [PubMed]

8. Zhou, W.; Liu, S.; Zhou, X.; Hannig, M.; Rupf, S.; Feng, J.; Peng, X.; Cheng, L. Modifying Adhesive Materials to Improve the
Longevity of Resinous Restorations. Int. J. Mol. Sci. 2019, 20, 723. [CrossRef]

9. Balhaddad, A.A.; Garcia, I.M.; Mokeem, L.; Alsahafi, R.; Collares, F.M.; Sampaio de Melo, M.A. Metal Oxide Nanoparticles and
Nanotubes: Ultrasmall Nanostructures to Engineer Antibacterial and Improved Dental Adhesives and Composites. Bioengineering
2021, 8, 146. [CrossRef] [PubMed]

10. Saafan, A.; Zaazou, M.H.; Sallam, M.K.; Mosallam, O.; El Danaf, H.A. Assessment of Photodynamic Therapy and Nanoparticles
Effects on Caries Models. Open Access. Maced. J. Med. Sci. 2018, 6, 1289–1295. [CrossRef]

11. Cao, W.; Zhang, Y.; Wang, X.; Li, Q.; Xiao, Y.; Li, P.; Wang, L.; Ye, Z.; Xing, X. Novel resin-based dental material with anti-biofilm
activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J.
Mater. Sci. Mater. Med. 2018, 29, 162. [CrossRef] [PubMed]

12. Li, F.; Chen, J.; Chai, Z.; Zhang, L.; Xiao, Y.; Fang, M.; Ma, S. Effects of a dental adhesive incorporating antibacterial monomer on
the growth, adherence and membrane integrity of Streptococcus mutans. J. Dent. 2009, 37, 289–296. [CrossRef] [PubMed]

13. Kozmos, M.; Virant, P.; Rojko, F.; Abram, A.; Rudolf, R.; Raspor, P.; Zore, A.; Bohinc, K. Bacterial Adhesion of Streptococcus
mutans to Dental Material Surfaces. Molecules 2021, 26, 1152. [CrossRef] [PubMed]

14. Bohner, M.; Santoni, B.L.G.; Dobelin, N. beta-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater.
2020, 113, 23–41. [CrossRef] [PubMed]

15. Al-Sanabani, J.S.; Madfa, A.A.; Al-Sanabani, F.A. Application of calcium phosphate materials in dentistry. Int. J. Biomater. 2013,
2013, 876132. [CrossRef]

16. Hamba, H.; Nakamura, K.; Nikaido, T.; Tagami, J.; Muramatsu, T. Remineralization of enamel subsurface lesions using toothpaste
containing tricalcium phosphate and fluoride: An in vitro microCT analysis. BMC Oral Health 2020, 20, 292. [CrossRef]

17. Ji, H.; Huang, Z.; Xia, Z.; Molokeev, M.S.; Chen, M.; Atuchin, V.V.; Fang, M.; Liu, Y.G.; Wu, X. Phase transformation in
Ca3(PO4)2:Eu2+ via the controlled quenching and increased Eu2+ content: Identification of new cyan-emitting α-Ca3(PO4)2:Eu2+
phosphor. J. Am. Ceram. Soc. 2015, 98, 3280–3284. [CrossRef]

18. Schiroky, P.G.; Garcia, I.M.; Noal, F.C.; Leitune, V.C.B.; de Araújo, F.B.; Collares, F.M. Adhesive system with alpha-tricalcium
phosphate addition for mineral deposition on caries-affected dentin. Int. J. Adhes. Adhes. 2021, 105, 102790. [CrossRef]

19. Kang, K.R.; Piao, Z.G.; Kim, J.S.; Cho, I.A.; Yim, M.J.; Kim, B.H.; Oh, J.S.; Son, J.S.; Kim, C.S.; Kim, D.K.; et al. Synthesis and
Characterization of beta-Tricalcium Phosphate Derived from Haliotis sp. Shells. Implant Dent. 2017, 26, 378–387. [CrossRef]

20. Mangano, C.; Sinjari, B.; Shibli, J.A.; Mangano, F.; Hamisch, S.; Piattelli, A.; Perrotti, V.; Iezzi, G. A human clinical, histological,
histomorphometrical, and radiographical study on biphasic HA-Beta-TCP 30/70 in maxillary sinus augmentation. Clin. Implant
Dent. Relat. Res. 2015, 17, 610–618. [CrossRef]

21. AlRefeai, M.H.A.E.M.; Al-Saleh, S.; Alqahtani, A.S.; Al-Rifaiy, M.Q.; Alshiddi, I.F.; Farooq, I.; Vohra, F.; Abduljabbar, T. Application
of β-Tricalcium Phosphate in Adhesive Dentin Bonding. Polymers 2021, 13, 2285. [CrossRef] [PubMed]

22. Al-Hamdan, R.S.; Almutairi, B.; Kattan, H.F.; Alsuwailem, N.A.; Farooq, I.; Vohra, F.; Abduljabbar, T. Influence of Hydroxyapatite
Nanospheres in Dentin Adhesive on the Dentin Bond Integrity and Degree of Conversion: A Scanning Electron Microscopy
(SEM), Raman, Fourier Transform-Infrared (FTIR), and Microtensile Study. Polymers 2020, 12, 2948. [CrossRef] [PubMed]

23. AlFawaz, Y.F.; Almutairi, B.; Kattan, H.F.; Zafar, M.S.; Farooq, I.; Naseem, M.; Vohra, F.; Abduljabbar, T. Dentin Bond Integrity of
Hydroxyapatite Containing Resin Adhesive Enhanced with Graphene Oxide Nano-Particles-An SEM, EDX, Micro-Raman, and
Microtensile Bond Strength Study. Polymers 2020, 12, 2978. [CrossRef] [PubMed]

24. Yoshida, T.; Yamaguchi, K.; Tsubota, K.; Takamizawa, T.; Kurokawa, H.; Rikuta, A.; Ando, S.; Miyazaki, M. Effect of metal
conditioners on polymerization behavior of bonding agents. J. Oral Sci. 2005, 47, 171–175. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jdsr.2020.08.004
http://www.ncbi.nlm.nih.gov/pubmed/34188727
http://doi.org/10.1111/jerd.12692
http://www.ncbi.nlm.nih.gov/pubmed/33264490
http://doi.org/10.1016/j.actbio.2018.02.020
http://www.ncbi.nlm.nih.gov/pubmed/29496621
http://doi.org/10.1016/j.dental.2009.11.149
http://www.ncbi.nlm.nih.gov/pubmed/20005565
http://doi.org/10.3390/polym13132169
http://doi.org/10.1002/jbm.b.30153
http://www.ncbi.nlm.nih.gov/pubmed/15484258
http://doi.org/10.1016/j.dental.2018.09.013
http://www.ncbi.nlm.nih.gov/pubmed/30301624
http://doi.org/10.3390/ijms20030723
http://doi.org/10.3390/bioengineering8100146
http://www.ncbi.nlm.nih.gov/pubmed/34677219
http://doi.org/10.3889/oamjms.2018.241
http://doi.org/10.1007/s10856-018-6172-z
http://www.ncbi.nlm.nih.gov/pubmed/30357538
http://doi.org/10.1016/j.jdent.2008.12.004
http://www.ncbi.nlm.nih.gov/pubmed/19185408
http://doi.org/10.3390/molecules26041152
http://www.ncbi.nlm.nih.gov/pubmed/33670043
http://doi.org/10.1016/j.actbio.2020.06.022
http://www.ncbi.nlm.nih.gov/pubmed/32565369
http://doi.org/10.1155/2013/876132
http://doi.org/10.1186/s12903-020-01286-1
http://doi.org/10.1111/jace.13787
http://doi.org/10.1016/j.ijadhadh.2020.102790
http://doi.org/10.1097/ID.0000000000000559
http://doi.org/10.1111/cid.12145
http://doi.org/10.3390/polym13172855
http://www.ncbi.nlm.nih.gov/pubmed/34502894
http://doi.org/10.3390/polym12122948
http://www.ncbi.nlm.nih.gov/pubmed/33321699
http://doi.org/10.3390/polym12122978
http://www.ncbi.nlm.nih.gov/pubmed/33327410
http://doi.org/10.2334/josnusd.47.171
http://www.ncbi.nlm.nih.gov/pubmed/16415560


Nanomaterials 2022, 12, 853 12 of 12

25. Almutairi, B.; Kattan, H.F.; BinMahfooz, A.M.; Qutub, O.A.; Basunbul, G.; ArRejaie, A.S.; Farooq, I.; Vohra, F.; Abduljabbar, T.
Synergistic effect of graphene oxide/calcium phosphate nanofiller in a dentin adhesive on its dentin bond integrity and degree of
conversion. A scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared, micro-Raman,
and bond strength study. Microsc. Res. Tech. 2021, 84, 2082–2094.

26. Farooq, I.; Bugshan, A. The role of salivary contents and modern technologies in the remineralization of dental enamel: A
narrative review. F1000Res 2020, 9, 171.

27. Alhussain, A.M.; Alhaddad, A.A.; Ghazwi, M.M.; Farooq, I. Remineralization of artificial carious lesions using a novel fluoride
incorporated bioactive glass dentifrice. Dent. Med. Probl. 2018, 55, 379–382. [CrossRef]

28. Abou Neel, E.A.; Bozec, L.; Perez, R.A.; Kim, H.W.; Knowles, J.C. Nanotechnology in dentistry: Prevention, diagnosis, and
therapy. Int. J. Nanomed. 2015, 10, 6371–6394. [CrossRef]

29. Ruiz-Aguilara, C.O.-P.U.; Aguilar-Reyes, E.A.; López-Juárez, R.; Alfonso, I. Characterization of β-tricalcium phosphate powders
synthesized by sol–gel and mechanosynthesis. Bol. Soc. Esp. Ceram. Vidr. 2018, 57, 213–220. [CrossRef]

30. Abou Neel, E.A.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.M.; Bozec, L.; Mudera, V. Demineralization-
remineralization dynamics in teeth and bone. Int. J. Nanomed. 2016, 11, 4743–4763. [CrossRef]

31. Arbez, B.; Libouban, H. Behavior of macrophage and osteoblast cell lines in contact with the beta-TCP biomaterial (beta-tricalcium
phosphate). Morphologie 2017, 101, 154–163. [CrossRef] [PubMed]

32. Ge, Y.; Ren, B.; Zhou, X.; Xu, H.H.K.; Wang, S.; Li, M.; Weir, M.D.; Feng, M.; Cheng, L. Novel Dental Adhesive with Biofilm-
Regulating and Remineralization Capabilities. Materials 2017, 10, 26. [CrossRef] [PubMed]

33. Anchieta, R.B.; Oliveira, F.G.; Sundfeld, R.H.; Rahal, V.; Machado, L.S.; Alexandre, R.S.; Sundefeld, M.L.; Rocha, E.P. Analysis of
hybrid layer thickness, resin tag length and their correlation with microtensile bond strength using a total etch adhesive to intact
dentin. Acta Odontol. Latinoam. 2011, 24, 272–278. [PubMed]

34. Vohra, F.; Labban, N.; Al-Hussaini, A.; Al-Jarboua, M.; Zawawi, R.; Alrahlah, A.; Naseem, M. Influence of Er; Cr: YSGG laser on
shear bond strength and color stability of lithium disilicate ceramics: An in vitro study. Photobiomodul. Photomed. Laser Surg. 2019,
37, 483–488. [CrossRef]

35. Alnassar, T.; Vohra, F.; Abualsaud, H.; Al-Thobity, A.M.; Flinton, R. Efficacy of novel cleansing agent for the decontamination of
lithium disilicate ceramics: A shear bond strength study. J. Adhes. Sci. Technol. 2017, 17, 202–210. [CrossRef]

36. Wagner, A.; Belli, R.; Stotzel, C.; Hilpert, A.; Muller, F.A.; Lohbauer, U. Biomimetically- and hydrothermally-grown HAp
nanoparticles as reinforcing fillers for dental adhesives. J. Adhes. Dent. 2013, 15, 413–422.

37. Garcia, I.M.; Leitune, V.C.B.; Samuel, S.M.W.; Collares, F.M. Influence of Different Calcium Phosphates on an Experimental
Adhesive Resin. J. Adhes. Dent. 2017, 19, 379–384.

38. Noorani, T.Y.; Luddin, N.; Rahman, I.A.; Masudi, S.M. In Vitro Cytotoxicity Evaluation of Novel Nano-Hydroxyapatite-Silica
Incorporated Glass Ionomer Cement. J. Clin. Diagn. Res. 2017, 11, ZC105–ZC109. [CrossRef]

39. Alqarawi, F.K.; Alkahtany, M.F.; Almadi, K.H.; Ben Gassem, A.A.; Alshahrani, F.A.; AlRefeai, M.H.; Farooq, I.; Vohra, F.;
Abduljabbar, T. Influence of Different Conditioning Treatments on the Bond Integrity of Root Dentin to rGO Infiltrated Dentin
Adhesive. SEM, EDX, FTIR and MicroRaman Study. Polymers 2021, 13, 1555. [CrossRef]

40. Peumans, M.; Kanumilli, P.; De Munck, J.; Van Landuyt, K.; Lambrechts, P.; Van Meerbeek, B. Clinical effectiveness of contempo-
rary adhesives: A systematic review of current clinical trials. Dent. Mater. 2005, 21, 864–881. [CrossRef]

41. International Organization for Standardization, ISO/TS 11405. Dentistry—Testing of Adhesion to Tooth Structure, 3rd ed.; Interna-
tional Organization for Standardization: Geneva, Switzerland, 2015.

42. Helvatjoglu-Antoniades, M.; Koliniotou-Kubia, E.; Dionyssopoulos, P. The effect of thermal cycling on the bovine dentine shear
bond strength of current adhesive systems. J. Oral Rehabil. 2004, 31, 911–917. [CrossRef] [PubMed]

43. Alhenaki, A.M.; Attar, E.A.; Alshahrani, A.; Farooq, I.; Vohra, F.; Abduljabbar, T. Dentin Bond Integrity of Filled and Unfilled
Resin Adhesive Enhanced with Silica Nanoparticles-An SEM, EDX, Micro-Raman, FTIR and Micro-Tensile Bond Strength Study.
Polymers 2021, 13, 1093. [CrossRef] [PubMed]

44. Aguiar, T.R.; de Oliveira, M.; Arrais, C.A.; Ambrosano, G.M.; Rueggeberg, F.; Giannini, M. The effect of photopolymerization on
the degree of conversion, polymerization kinetic, biaxial flexure strength, and modulus of self-adhesive resin cements. J. Prosthet.
Dent. 2015, 113, 128–134. [CrossRef] [PubMed]

45. Moldovan, M.; Balazsi, R.; Soanca, A.; Roman, A.; Sarosi, C.; Prodan, D.; Vlassa, M.; Cojocaru, I.; Saceleanu, V.; Cristescu, I.
Evaluation of the Degree of Conversion, Residual Monomers and Mechanical Properties of Some Light-Cured Dental Resin
Composites. Materials 2019, 12, 2109. [CrossRef] [PubMed]

46. Utneja, S.; Talwar, S.; Nawal, R.R.; Sapra, S.; Mittal, M.; Rajain, A.; Verma, M. Evaluation of remineralization potential and
mechanical properties of pit and fissure sealants fortified with nano-hydroxyapatite and nano-amorphous calcium phosphate
fillers: An in vitro study. J. Conserv. Dent. 2018, 21, 681–690. [CrossRef] [PubMed]

http://doi.org/10.17219/dmp/97311
http://doi.org/10.2147/IJN.S86033
http://doi.org/10.1016/j.bsecv.2018.04.004
http://doi.org/10.2147/IJN.S107624
http://doi.org/10.1016/j.morpho.2017.03.006
http://www.ncbi.nlm.nih.gov/pubmed/28506709
http://doi.org/10.3390/ma10010026
http://www.ncbi.nlm.nih.gov/pubmed/28772391
http://www.ncbi.nlm.nih.gov/pubmed/22550821
http://doi.org/10.1089/photob.2018.4582
http://doi.org/10.1080/01694243.2016.1206335
http://doi.org/10.7860/JCDR/2017/24753.9739
http://doi.org/10.3390/polym13101555
http://doi.org/10.1016/j.dental.2005.02.003
http://doi.org/10.1111/j.1365-2842.2004.01318.x
http://www.ncbi.nlm.nih.gov/pubmed/15369475
http://doi.org/10.3390/polym13071093
http://www.ncbi.nlm.nih.gov/pubmed/33808159
http://doi.org/10.1016/j.prosdent.2014.09.011
http://www.ncbi.nlm.nih.gov/pubmed/25432362
http://doi.org/10.3390/ma12132109
http://www.ncbi.nlm.nih.gov/pubmed/31262014
http://doi.org/10.4103/JCD.JCD_31_18
http://www.ncbi.nlm.nih.gov/pubmed/30546219

	Introduction 
	Materials and Methods 
	Amalgamation of Nanoparticles with the Dental Adhesive 
	Characterization of the Filler Nanoparticles 
	Tooth Specimens Preparation and Bonding Protocol 
	SBS Testing and Investigation of the Failure Modes 
	Adhesive–Dentin Interface Analysis 
	FTIR Spectroscopy and DC Investigation 
	Statistical Analysis 

	Results 
	Outcomes of the Filler Nanoparticle’s Characterization 
	Outcomes of the SBS and Failure Mode Analysis 
	Outcomes of the Analysis of the Adhesive–Dentin Interface 
	Outcomes of the FTIR and DC Analysis 

	Discussion 
	Conclusions 
	References

