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Purpose: To develop a neural network (NN)–based approach, with limited training
resources, that identifies and counts the number of retinal pigment epithelium (RPE)
cells in confocal microscopy images obtained from cell culture or mice RPE/choroid flat-
mounts.

Methods: Training and testing dataset contained two image types: wild-type mice
RPE/choroid flat-mounts and ARPE 19 cells, stained for Rhodamine-phalloidin, and
imagedwith confocalmicroscopy. After imagepreprocessing for denoising and contrast
adjustment, scale-invariant feature transform descriptors were used for feature extrac-
tion. Training labels were derived from cells in the original training images, annotated
and converted to Gaussian density maps. NNs were trained using the set of training
input features, such that the obtained NN models accurately predicted corresponding
Gaussian densitymaps and thus accurately identifies/counts the cells in any such image.

Results: Training and testing datasets contained 229 images from ARPE19 and 85
images fromRPE/choroid flat-mounts.Within twodata sets, 30%and 10%of the images,
were selected for validation.Weachieved96.48%±6.56%and96.88%±3.68%accuracy
(95% CI), on ARPE19 and RPE/choroid flat-mounts.

Conclusions: We developed an NN-based approach that can accurately estimate the
number of RPE cells contained in confocal images. Our method achieved high accuracy
with limited training images, proved that it can be effectively used on images with
unclear and curvy boundaries, andoutperformedexisting relevantmethods bydecreas-
ing prediction error and variance.

Translational Relevance: This approach allows efficient and effective characterization
of RPE pathology and furthermore allows the assessment of novel therapeutics.

Introduction

As artificial intelligence-based techniques are
getting more popular in ophthalmology, assessing
retinal pathology using this approach has gained
more attention.1 Screening, diagnosis, and treat-
ment outcomes of major retinal diseases, including
age-related macular degeneration (AMD), diabetic
retinopathy (DR), and diabetic macular edema
(DME), nowadays depend significantly on novel
imaging technologies that are amenable to automa-
tization. Machine learning (ML),2 a branch of AI,

and the corresponding neural networks (NNs)3 have
been integrated into the diagnosis of retinal diseases
and have demonstrated utility to improve diagnostic
efficiency and accuracy.1,4 For several years, convolu-
tional neural networks (CNNs),5 a subclass of NNs,
have been applied successfully in the detection and
classification of retinal pathology.6,7

Unlike clinical research in ophthalmology, the use
of NNs has attracted less attention in basic ophthalmic
research. There is an unmet need for a universal,
automated tool that facilitates the recognition of
various retinal cell types. This type of innovation
would make retinal basic research easier and would
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spare scientists from time-consuming, manual cell
counting.

The retinal pigment epithelium cells are specialized
(RPE), monolayer, hexagonal cells that playmany roles
crucial for retinal health.8–11 There are a variety of
retinal disorders in which the primary site of pathogen-
esis is RPE, andAMD is themost prevalent one.Analy-
sis of theRPE fromdifferent in vivo and in vitromodels
has provided us with valuable insight into the retinal
pathology. Regardless of their shortcomings, work
with ARPE-19 allows us to investigate the morphol-
ogy and very complex dynamics of these cells. Analy-
sis of the tissue obtained from the human donor eyes,
or different animal models of retinal diseases, is still
the principal way to investigate changes in morphol-
ogy associated with different retinal diseases affecting
the RPE.

In this study, we were focusing on the automated
detection of RPE cells in an animal model (wild-type
mice RPE/Choroid flat-mounts) and the cell culture
(ARPE19). Although some existing approaches may
be able to address this problem, they either require
enormous training resources (i.e., a very large number
of labeled images) or they cannot produce precise
predictions due to limited expressiveness. Specifically,
fully convolutional neural networks (CNNs), such as
UNet,12 can be applied to mapping the input images to
the corresponding feature maps, which are then post-
processed to identify RPE cells. However, a substantial
number of training images is required for the CNN to
learn an accurate mapping, even with transfer learn-
ing.13 On the other hand, linear regression models, as
proposed by Lempitsky et al.14 andHoerl et al.,15 fail to
capture the desired input-output relation accurately, as
we show in the results section. To resolve these issues,
we propose a novel approach to detect RPE cells effec-
tively and precisely with limited training resources, but
without compromising the expressiveness of themodel.
Moreover, we validate our approach with two differ-
ent types of RPE cells – ARPE19 and wild-type mice
RPE/Choroid flat-mounts. Specifically, following the
proposed methodology, we trained two NN models on
the two different types of RPE cell images. Finally, we
demonstrated that our method outperforms the exist-
ingmethods, proposed by Lempitsky et al. 14 andHoerl
et al.,15 on both types of RPE cell images.

The goal of this work was to address an urgent need
in RPE cell analysis and develop an essential tool for
future studies that rely on the retinal cell morphology to
investigate the onset and progression of retinal diseases
and response to the treatment. We introduce an NN-
based approach, which can be used even with limited
training data, to train an NN model with rich enough
expressiveness, capable of successfully reconstructing

the ground-truth cell density distribution; and thus
automatically accurately identify and count the number
of RPE cells.

Methods

ARPE-19 cell lines in cell culture and RPE/Choroid
flat mounts from wild-type mice (C57BL/6J) were used
for the RPE cell count. Handling and staining proce-
dures were described in Appendix A. All procedures
were approved by the Institutional Animal Care and
Use Committee of the Duke University and complied
with the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research.

Fluorescence Microscopy

Fluorescence microscopy was performed using
Nikon Eclipse 90i confocal microscope equipped with
×20 air objective. For the quantification, maximum
intensity projection images were extracted from each
z-stack using Fiji, an open-source image processing
software 36. The number of RPE cells was counted
using Fiji software within the corresponding area.

NNModel Design
Our NN-model design method, illustrated in

Figure 1, contained the following three phases: (1)
image annotation (Step I) and preprocessing (Step
II); (2) forming the training dataset—i.e., convert-
ing images into suitable image features (Step III)
and training labels (Step IV); and (3) NN training
through optimization—i.e., stochastic gradient descent
(Step V).

Image Annotation and Preprocessing (Steps I and II
in Fig. 1). We started from a training set, containing
either raw RGB images of RPE/Choroid flat-mounts
or ARPE19 cells, as shown in Figure 2 (A1 and A2). In
Step I, these images were first annotated by humans;
specifically, each cell in a raw image was labeled by
a cross within the cell boundary, as in Figure 2 (B1
and B2). Furthermore, in Step II, each image was
automatically converted into a greyscale image and
processed (i.e., filtered) to adjust contrast (details are
presented in Appendix B); this allowed for the use
of images obtained under different exposure condi-
tions. For example, Figure 2 shows the results from
this method on a sufficiently exposed (C1) and under-
exposed image (C2).

Forming the Training Dataset. In the next step (Step
III), we derived a suitable set of image features that
were to be used as training inputs for the learning
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Figure 1. Overview of the presented neural network (NN) design methodology. After image preprocessing for denoising and contrast
adjustment, scale-invariant feature transform descriptors were used for feature extraction. The set of training labels was derived from cells
in the original training images, annotated, and converted to Gaussian density maps as a sum of fixed-variance Gaussians centered at each
annotation. An NN was trained using the set of training input features and labels such that the obtained NN model accurately predicts the
corresponding Gaussian density maps and thus identifies/counts the cells for any image.

algorithm. We applied a common computer vision
approach as previously described.14,,16,17 Specifically,
we used the scale-invariant feature transform (SIFT)
to convert each grayscale image Ik into a set of feature
vectors f j

Ik , where the number of vectors is equal to the
number of pixels in the initial grayscale image; and thus
such vectors could capture a large number of hidden
features that are not explicitly shown in the image.Note
that the SIFT descriptors are used to replace the convo-
lutional layers in CNNs. Although both can be used to
extract features of images, CNNs required substantial
training data,13 whereas SIFT descriptors did not need
to be trained.

Furthermore, to obtain suitable training labels for
the annotated images, (in Step IV) for each annotated
image, we generated normalized two-dimensional
discrete Gaussian kernels centered at every annotated
cell position in an image (i.e., crosses in Figs. 2B1
and 2B2); the covariance of these kernels was chosen
such that the center part of each resulting Gaussian
was included in the cell. This waywe formed aGaussian
mixture (GM) sIk , for each image Ik from the annotated
image set, as illustrated in Figure 3.

NNTraining.For ourNNmodel, we used a network
with two fully connected layers, each containing 2000

neurons, where all the hidden layers use the rectified
linear activation whereas the output layer uses linear
activation functions. The goal of the NN training was
to find parameters of the NN (denoted by θ ), such that
the functionality of the NN F(UI; θ ) closely enough
approximates the GMs for all images; here, we denoted
by F(UI; θ ) the output of the NN with parameters
(i.e., weights) θ , and input features UI obtained from
the image I in Step III. (A formal [mathematic] review
of the NN, as well as the input-output relation, is
discussed in Appendix C.) Specifically, in our case,
the inputs to the NN were the feature vectors f j

Ik of
each training images Ik, whereas the outputs should
closely approximate the corresponding GM sIk . To
achieve this, we applied the stochastic gradient descent
method18–20 to minimize the average approximation
error on the training set with N images—i.e., we used
the following loss function during training:

min
θ

J (θ ) = 1
N

N∑
k=1

[
F (UIk; θ ) − sIk

]2
. (1)

Note that in our approach the training inputs were
the feature vectors instead of entire images as was in
the study by Xie et al.16 Consequently, a small train-
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Figure 2. Image annotation and preprocessing. Example of exposed and unexposed raw images (A1 and A2); annotated exposed and
unexposed images (B1 and B2); processed exposed and unexposed images (C1 and C2).

ing dataset that consists of only a few images could
be sufficient to train the NN because of the fact that
each image Ik was converted to a set of feature vectors,
whose number was equal to the number of pixels in the
initial image.

Performance Metrics
We considered the average error rate (AER) to

evaluate the performance of the trained NN on
available set of M test images, which was defined
as
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Figure 3. GMs of exposed and underexposed raw images (A and B).

AER = 1
M

M∑
t=1

∣∣F (UIt; θ ) − s∗t
∣∣

s∗t
× 100%. (2)

Here, F(UIt; θ ) was the number of cells estimated by
the trained NN with weights θ for the input features
coming from a test image It, whereas s∗t was the ground-
truth number of cells contained in It.

We also defined the accuracy (ACC) as

ACC = 1 − AER =
(
1 − 1

M

M∑
t=1

∣∣F (UIt; θ ) − s∗t
∣∣

s∗t

)

×100%. (3)

Experimental Setup
The dataset we used to train and validate our model

contained two different types of images: wild-typemice
RPE/choroid flat-mounts andARPE 19 cells in culture,
stained for rhodamine-phalloidin and imaged with
confocal microscopy, as previously described. Besides
the tissue nature and preparation, these two types
of images have significant dissimilarities, as shown
in Figure 4. Hence, we trained twoNNs using the previ-
ously discussed methodology, one for wild-type mice
RPE/Choroid flat-mounts and the other for ARPE 19
cells in culture.

The original cell culture dataset (OCCD) and origi-
nal mice flat-mount dataset (OMFD) contained 79
from cell culture and 13mice flat-mount images respec-
tively (Table 1, Figs. 5 A and 5B). We augmented both
datasets by randomly cropping 15 sub-images out of
the original images, containing greater than 350 cells
for cell culture and 300 cells for mice flat-mounts.
The resulting augmented cell culture dataset (ACCD)

and augmented mice flat-mount dataset (AMFD)
contained 229 and 88 images, respectively (Figs. 5C
and 5D).

Furthermore, we divided the ACCD and AMFD
into training sets and testing set for cell and mice
images, respectively. Specifically, from the ACCD we
randomly selected 70% of images to constitute the cell
image training set (C-Tr), with the remaining 30% used
as the cell image testing set (C-Te). From the AMFD,
we randomly selected 90% of images to form the mice
image training set (M-Tr), with 10% forming the mice
image testing set (M-Te). This increased the ratio of
training images to improve training performance due
to the small size of the AMFD. This has been captured
in Table 1. Then, two NNs were trained to count the
images in ACCD andAMFD, respectively. Specifically,
the first NNwas trained with images in C-Tr and evalu-
ated with C-Te, and the second NN was trained with
M-Tr and evaluated with M-Te.

Results

Our training results were noninferior to chosen
baseline approaches. We compared our algorithm to
two baseline approaches: (1) the method proposed by
Arteta et al.,21 where linear ridge regression (LRR),20
instead of NNs, was used to map the SIFT descriptors
to the GMs—we referred to it as LRR method, and
(2) a widely used counting method by Lempitsky and
Zisserman from theOxford, VisualGeometryGroup,14
which we referred to as the LZ method. A brief intro-
duction of the two baseline approaches is presented in
Appendix D. Then, two NNs were trained to map the
input images, from ACCD and AMFD, respectively,
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Figure 4. Photomicrographs show uneven image quality in cell culture (A–D) and animal tissue (E–H).

to corresponding GM densities. The performance was
quantified by the AER and ACC defined in (2) and (3),
respectively.

We first evaluated the performance of our approach
on all images (randomly cropped images + the origi-
nals) from the C-Te set. The AER over all images was
3.52% for our approach, a significant improvement
over 4.15% and 6.68% for the LRR and LZ, respec-
tively (Fig. 6A). The ACC over all images in the C-Te
test was 96.48%, 95.85%, and 93.32% with standard
deviation of 3.28%, 3.65% and 6.72% while training
with our approach compared to LRR and LZ, respec-
tively (Fig. 6B).

We also compared performance across the three
algorithms on the original images in the C-Te set.

Specifically, 2.97%, 3.56%, and 6.70% of AER was
attained by our algorithm, LRR and LZ, respec-
tively (Fig. 7A). Moreover, 97.03%, 96.44%, and 93.3%
of average ACC, with standard deviation of 1.94%,
2.12%, and 7.82%was achieved by our algorithm, LRR
and LZ, respectively (Fig. 7B).

We also evaluated the performance of our approach
and the two baseline approaches on the M-Te dataset.
Specifically, our approach attained a 3.12% AER,
whereas the LRR and LZ methods obtained AER of
3.62% and 8.51%, respectively (Fig. 8A).Moreover, our
approach achieved ACC of 96.88% with a standard
deviation of 1.84%, whereas the LRR and LZmethods
had ACC of 96.38% and 91.49%, respectively, with

Table 1. Distribution of Training-Testing Division

Overall Augmented Dataset Train Test

Original From From From From From
Type Name images cropping Total Name original cropping Total Name original cropping Total

Cell ACCD 79 150 229 C-Tr 61 100 161 C-Te 18 50 68
Mice AMFD 13 72 85 M-Tr 10 68 76 M-Te 3 6 9

The statistics of the ACCD and the AMFD are shown in the first column, C-Tr and M-Tr in the second column, and C-Te and
M-Te in the third column, where the number of original and cropped images contained in each set is shown as subcolumns
within each column.
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Figure 5. The histograms show the numbers of the original cell culture and original mice images before (A, B) and after augmentation
(C, D). The x-axis corresponds to the number of cells that are contained in an image, and y-axis captures the number of images contained in
the dataset.

Figure 6. TheAER andACCon all (randomly cropped images+ the originals) cell images in the C-Te, comparing three different approaches:
our approach, LRR15 and the LZ method.14 The AERs are 3.52%, 4.15% and 6.68%, respectively. The ACCs with 95% confidence intervals are
96.48% ± 6.56%, 95.85% ± 7.30%, and 93.32% ± 13.44%, respectively.

standard deviation of 2.94% and 11.94%, respectively
(Fig. 8B).

We summarized the results shown above in
Table 2 and observed that our approach outper-
forms both the LRR and the LZ methods. Specifically,

when evaluating with the entire C-Te test dataset, our
algorithm decreased the AER by 15.18% and 47.31%
compared with the two baseline methods. With the
entire M-Te test dataset, our approach decreased the
AER by 13.81% and 63.34% compared with the two
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Figure 7. The AER and ACC on original cell images in the C-Te, comparing three different approaches: our approach, LRR15 and the LZ
method.14 The AERs are 2.97%, 3.56%, and 6.70%, respectively. The ACCs with 95% confidence intervals are 97.03% ± 3.88%, 96.44% ±
4.24%, and 93.30% ± 15.64%, respectively.

Figure 8. The AER and ACC on all mice flat-mount images in the M-Te, comparing three different approaches: our approach, LRR15 and the
LZ method.14 The AERs are 3.12%, 3.62% and 8.51%, respectively. The ACCs with 95% confidence intervals are 96.88% ± 3.68%, 96.38% ±
5.88%, and 91.49% ± 23.88%, respectively.

baselines, respectively. Our algorithm also achieved
significantly lower standard deviation than the two
baseline methods, indicating that the results provided
by our approach had lower variance and higher confi-
dence levels with limited training images, where the
training sets C-Tr and M-Tr only contained 161 and
76 images, respectively. On the other hand, we tested
our algorithm on the original images in the C-Te test
dataset to validate its performance on images that
were not augmented by cropping (the third column of
Table 2). Our approach again exhibited the lowest
AER and standard deviation in both cases.

We concluded that our method counted the number
of cells contained in cell culture and flat-mount images

effectively and accurately. Furthermore, considering
that both the OCD and OMD microscopy images
were of uneven qualities (as shown in Fig. 4), the
results above demonstrated that our approach was
capable of accurately counting various types of input
images.

Discussion

There is an unmet need, not only in ophthalmic
basic research but also generally for an automated cell
counting tool that can help researchers with informa-
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Table 2. Testing Results Summary

Entire C-Te Entire M-Te Only original
Dataset Dataset images in C-Te Dataset

Average Average Average Average Average Average
Approach SER/% ACC/% STD/% SER/% ACC/% STD/% SER/% ACC/% STD/%

1. Our Approach 3.52 96.48 3.28 3.12 96.88 1.84 2.97 97.03 1.94
2. LRR 4.15 95.85 3.65 3.62 96.38 2.94 3.56 96.44 2.12
3. LZ Method 6.68 93.32 6.72 8.51 91.49 11.94 6.70 93.30 7.82

Our approach achieved the highest ACC (or lowest SER) across the three test sets. Moreover, the predictions from the
proposed method have the lowest STD, which indicates higher confidence level.

tion processing and a better understanding of disease
processes (characterization, progression, response to
the treatment, etc.). Herein, we proposed an NN-based
approach to recognize and count RPE cells in images
obtained by confocal fluorescence microscopy from
two different specimens: ARPE-19 cell culture and
RPE/Choroid flat-mounts. Compared to the baseline
approaches proposed by Lempitsky et al.14 and Hoerl
et al.,15 our method achieved high accuracy even with
limited training datasets and without compromising
the expressiveness of the learning model. The CNN-
based counting approach proposed by Xie et al.16 and
Lu et al.34 cannot be applied in our instance because in
this case the counting was performed only through the
nucleus channel. Because of the nature of RPE cells,
the number of nuclei is not always in clear correlation
to the number of cells,22,23 and that is why we wanted
to avoid this approach. The image preprocessing proce-
dure that we designed can effectively standardize the
various input images taken under different lighting and
exposure conditions, which then ensures the perfor-
mance of the following learning step. As shown in
our results, the presented preprocessing and feature
extraction method combined even with a simple linear
estimator such as LRR (i.e., without the use of NN
models), outperformed the LZ method by Oxford,
Visual Geometry Group.14 When combined with an
ML approach, our methodology resulted in a highly-
accurately NN estimation model of the number of cells
in used images.

Prior work done by Lempisnky et al.14 solved the
density estimation problem using convex quadratic
programming. However, this approach is only suitable
with problems that can induce convex loss functions.
Instead, we explored the use of ML and introduced a
NN-based method that can be used to optimize non-
convex and non-linear loss functions by performing
stochastic gradient descent steps.24–26 Additionally, a
CNN method proposed by Xie et al.16 requires a large
number of training images. In contrast, we used the

feature vectors, extracted from the original images as
inputs toNN. In ourmethod, we first applied SIFT27,28

to transform each pixel in a cell image to a corre-
sponding feature vector, and then we used these feature
vectors to trainNNs to capture the underlying relations
between the input vectors and the ground-truth cell
density distributions. Combining the SIFT descrip-
tors with multilayer perceptron NNs allowed us to
accomplish the tasks that usually require deployment
of CNNs with significantly smaller training dataset.
Furthermore, in this work, SIFT descriptors, instead
of the convolutional layers in the CNNs, were used
to extract feature encodings from input images, and
the training performance was no longer correlated with
the size of training datasets. Hence, transfer learn-
ing was not necessary to be applied, because it is
usually used to warm-start the training of the convo-
lutional parts in the CNNs; on the other hand, in
this work we used SIFT descriptors which can extract
feature vectorswithout training. Considering the broad
applications of SIFT descriptors in robotic vision, 3D
modeling and gesture recognition,29–31 our approach
can be generalized to solve other open problems
related to medical images analysis by adjusting the
SIFT descriptors to extracting features for specific
types of images, along with designing suitable NN
architectures.

Automated image segmentation is a critical step
toward achieving a precise quantitative evaluation of
disease states with different imaging techniques. CNNs
proposed by LeCun et al.5 has been proved success-
ful in extracting hidden features of image data32–35
and therefore can be applied to cell-counting problems.
However, a great amount of training data is neces-
sary to train a CNN. Moreover, because of regula-
tory constraints and privacy concerns, access to patient
data is limited, and, as a result, CNN’s may not
perform well on the raw patient data. To resolve
this issue, Xie et al.16 generated synthetic data36 to
train the networks and use real images for fine-tuning.
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Lu et al.37 proposed a generic matching network with
an adapter that customizes the network to any class
of object by few-shot learning to perform training
on small datasets. In addition, Chiu et al.38 proposed
a cell boundary segmentation method using dynamic
programming and graph theory, where one of the
applications is cell counting. However, this approach
can only segment the cells with convex shape bound-
aries. In contrast, our approach does not limit the cell
shape of the input microscopy images. Furthermore,
our method can accurately count images with unclear
and curvy boundaries, e.g. images from OMFD which
are shown in Figures 4E to 4H.

Conclusion

In this work, we introduced a learning-based
methodology to develop NN-based models that
accurately estimate the number of RPE cells contained
in images obtained from cell culture and mice flat-
mounts. Moreover, we have presented an image
preprocessing and data augmentation methods to form
sufficient training images and improve the accuracy
of the learning algorithm, even when a small number
of training images were available. We have shown
that our approach outperformed relevant methods by
decreasing prediction error and variance significantly.
This methodology used on large data set will be time-
saving and possibly more precise and will allow for
better characterization of diseases involving the RPE.
The largest translation relevance of this approach
will be the evaluation of novel therapeutics on the
improvement of RPE health.
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Appendix A. RPE Cell Imaging
Procedure

In this appendix, we introduce the procedure of
preparing images that are used to train the NNmodels.

Cell Culture

ARPE-19 cells were obtained from American Type
Culture Collection (Manassas, VA, USA) and grown
to confluence in Dulbecco’s modified Eagle’s F12
medium (DMEM/F-12; Gibco 11039-021) supple-
mented with 10% fetal bovine serum (FBS), 100 U/mL
penicillin/streptomycin, and 0.38% Na2CO3 in a 5%
CO2 humidified air incubator at 37°C. For experi-
ments, cells were split and plated at sub-confluent
density in six-well trans-well plates (Sigma CLS3450;
Sigma-Aldrich, St. Louis, MO, USA) coated with 0.5
mg/mL collagen IV (Sigma C5533; Sigma-Aldrich),
5 mg/mL fibronectin (Sigma F0895; Sigma-Aldrich),
and 50 ug/mLLaminin (Sigma L6274; Sigma-Aldrich).
Cells were maintained in medium containing 5% FBS
until fully differentiated and melanized (>8 weeks).
To prepare samples for imaging, cells were fixed
first in cold 4% paraformaldehyde (PFA) for 0.5 hour.
Polyestermembraneswith bound cells were then placed
on the glass microscopy slides. After the brief perme-
abilization in PBT buffer (PBS + 0.1% Triton × 100 +
0.5% bovine serum albumin), cells were then blocked
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using 10% normal donkey serum in PBT for 1 hour
at room temperature. Samples were then incubated
with 1:500 rhodamine-phalloidin (ThermoFisher
Scientific R415; ThermoFisher Scientific, Waltham,
MA, USA) overnight at 4°C, followed by nuclei
staining with 1:5000 Hoechst 33258 (ThermoFisher
Scientific H3569) solution in water. Fluoromount-G
(ThermoFisher Scientific 00-4958-02), a clear liquid
medium, was used to mount slides.

Mice

BALBC and C57BL/6J wild type (WT) mice, 4
months of age or older, were obtained from The
Jackson Laboratory (Bar Harbor, ME, USA). All
procedures were approved by the Institutional Animal
Care and Use Committee of the Duke University and
complied with the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research.

RPE-choroid flat-mount
Immunofluorescence

RPE-choroid flat-mounts were generated by remov-
ing the anterior segment and the neurosensory retina
from the eye, followed by flattening of the eye cups
on a glass slide with four relaxing incisions. The eye
cups were then fixed first in cold 4% PFA for 0.5
hour, permeabilized briefly in PBST buffer (PBS +
0.1% Triton × 100) and blocked using 5% normal
donkey serum in PBST for 1 hour at room tempera-
ture. Staining with rhodamine-phalloidin and Hoechst
33258 was performed according to protocol described
for ARPE19 cells.

Appendix B. Filtering of the Grayscale
Images

The filtering procedure for the grayscale images,
which were automatically obtained from RGB raw
images is designed as follows. To process the images
with high exposure, which have clear cell boundaries
but significant noise in the background, we first applied
erosion29 to shrink white noise; however, the cell edges
may also fade as a side effect. Thus, to compensate
for this, we binarized all the values to augment the
cell boundaries (with a threshold equal to 0.5). Finally,
we used a 3 × 3 kernel filter to further reduce the
background noise. Specifically, for any pixels pIk in a
greyscale image Ik, if the average of the surrounding
pixels of pIk is smaller than 0.5, we sorted the array that
contains pIkand its surrounding pixels and assign the

smallest value that is greater than 0.5 as the new value
of pIk . Otherwise, we assigned the largest value that is
smaller than 0.5 as the new value of pIk . In Supplemen-
tary Figure S1, we illustrate how two example pixels,
p1 < 0.5 and p2 > 0.5, are processed by the above filter
and show that the proposed filter further reduces noise
and augment dim boundaries.

Appendix C. Input-Output Relation of
the NN

AnNN is a computationalmodel that can be used to
approximate an unknown mapping between the input
space Xi ⊂ R

m and the target space X ⊂ R
n , which

satisfies some desired properties. Its structure can be
decomposed layer by layer into matrix and function
operations as

Oi = φi (θiOi−1 + bi) , i ∈ [1, l ] , (4)

where Oi is the output of the ith layer, ϕi is the activa-
tion function, θ i is the weight matrix, bi is the bias
vector and l is the total number of layers. Particularly
we define O1 = ϕ1(θ1U + b1), where U denotes the
input to the NN, and Ol as the output from the NN.
As a result, the relation between the output Ol and the
input U can be derived as a function F , i.e.,

Ol = φl
(
θl

(
φl−1

(
θl−1 (· · ·φ1 (θ1U + b1) · · ·) + bl−1

))
+bl

) = F (U ; θ ) , (5)

where θ = {θ1,θ2,…, θ l} represents the weights.
In our NN model, for any image I and its corre-

sponding feature vectors f 1I , f 2I , . . . , f
m×n
I , wherem ×

n is the number of pixels in the image, without loss of
generality, we denote

F (I; θ ) =
m×n∑
i=1

F
(
f iI; θ

)
.

Appendix D. Overview of the Baseline
Methods

The LRR model21 optimizes a linear model with
weights w to minimize the loss JLRR(w), i.e.,

min
w

JLRR (w) = ∣∣UIkw − sIk
∣∣2 + λ|w|2, (6)

where λ is the normalizing constant and UIk and sIk
represent the matrix of feature vectors and the GM
density, respectively as in (1).
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The LZ method also proposes to optimize a linear
model, with weights w, but minimizing a different loss
function JLW(w), i.e.,

min
w

JLW (w) =
n∑

k=1

D
(
UIkw, sIk

) + λ|w|2, (7)

whereUIk is the matrix of feature vectors, sIk is the GM

density, and D(·, ·) represents the Maximum Excess
over SubArrays (MESA) distance function as defined
in Lempitsky and Zisserman.14 Note that the UIk and
sIk in (6) and (7) refer to the input features and the GM,
respectively, as in (1). The w refers to the weights of
the linear models, whereas in (1) the weight of the NN
is denoted by θ to differentiate the linearities among
models.


