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Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with
isoforms consisting of either 27 or 38 amino acids. PACAP is encoded by the
adenylate cyclase activating peptide gene, ADCYAP1, in humans and the highly
conserved corresponding rodent gene, Adcyap1. PACAP is known to regulate
cellular stress responses in mammals. PACAP is robustly expressed in both central
nervous system (CNS) and peripheral tissues. The activity of PACAP and its selective
receptor, PAC1-R, has been characterized within the hypothalamic-pituitary-adrenal
(HPA) axis and autonomic division of the peripheral nervous system, two critical
neurobiological systems mediating responses to stressors and threats. Findings from
previous translational, empirical studies imply PACAP regulation in autonomic functions
and high expressions of PACAP and PAC1 receptor in hypothalamic and limbic
structures, underlying its critical role in learning and memory, as well as emotion and
fear processing. The current review summarizes recent findings supporting a role of
PACAP/PAC1-R regulation in key brain areas that mediate adaptive behavioral and
neurobiological responses to environmental stressors and maladaptive reactions to
stress including the development of fear and anxiety disorders.

Keywords: trauma, peptides, stress, translational neuroscience, HPA—hypothalamic-pituitary-adrenal, fear and
anxiety, estrogen

INTRODUCTION

Pituitary Adenylate Cyclase Activating Polypeptide
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide biologically existing
as two variants, consisting of either 27 or 38 amino acids residues, named PACAP27 and PACAP38,
respectively (1). PACAP38 is 10–100-fold more plentiful in central and peripheral nervous tissue
than PACAP27 (2). It was isolated from ovine hypothalamic tissues over three decades ago and
named based on its ability to stimulate adenylate cyclase activity (and, in turn, cAMP) in rat
pituitary cells (3–5). PACAP belongs to the vasoactive intestinal peptide (VIP)-secretin-glucagon
family of bioactive peptides (6) with its short 27-amino acid form sharing 70% homology with
VIP (7). PACAP functions in a broad array, ranging from development to metabolism to cell
signaling mechanisms and shows remarkable evolutionary conservation across time and species
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(7–9). Expressed both centrally and peripherally in the nervous
system, it is known to regulate physiological and psychological
stress responses at the cellular level across species (10).

PACAP binds to three G-protein coupled receptors (GPCRs):
VPAC1, VPAC2, and PAC1 (see Figure 1). Only the PAC1
receptor is selective for both PACAP27 and PACAP38 with high
affinity (11) and more than 20 isoforms of this subtype have
been identified as of this writing (12). PACAP can presynaptically
and postsynaptically activate PAC1 receptors, behaving as both a
typical synaptic transmitter as well as a modulator of neuronal
activity (13). Once bound to its associated GPCRs, PACAP
activates Gs or Gq subunits to initiate either (1) adenylate
cyclase enzymatic activity which, in turn, stimulates conversion
of ATP to cAMP which then phosphorylates protein kinase A
(PKA) to produce secondary downstream effects (14–16) or (2)
phospholipase C (PLC) activity to stimulate protein kinase C
(PKC) or 1,4,5 inositol triphosphate (IP3) second messenger
cascades (17–19). Based on these postsynaptic actions, PACAP
is well positioned in mammalian CNS to influence numerous
processes related to neurodevelopment, neuroprotection, and
neuromodulation (16, 20).

Based on a myriad of studies, PACAP and its selective receptor,
PAC1-R, are associated with the regulation of the hypothalamic
pituitary adrenal (HPA) axis, which is the principle hormonal
stress response system in mammals. The HPA axis primarily
functions to induce the production and release of hormones
through the modulation of corticotrophin releasing hormone
(CRH, also termed corticotropin releasing factor, CRF). CRH is
essential to regulating physiological responses to stress exposure.
As such, CRH expression is highest in brain regions that respond
to stressors such as the brainstem locus coeruleus (LC), bed

FIGURE 1 | Pituitary Adenylate Cyclase Activating Peptide (PACAP) binds to
three G-protein coupled receptors (GPCRs): PACAP binds to three GPCRs:
VPAC1, VPAC2, and PAC1. PAC1 is specifically selective for PACAP27 and
PACAP38, binding with high affinity. Once bound to its associated GPCRs,
PACAP activates Gs or Gq subunits. This activation leads to the initiation of
adenylate cyclase activity to stimulate the conversion of ATP to cAMP or the
initiation of phospholipase C activity to stimulate protein kinase C. Adapted
from Rubio-Beltrán et al. (65).

nucleus of the stria terminalis (BNST), and the central nucleus
of the amygdala (CeA). Overactivity of CRH has been implicated
in the pathophysiology of the human psychiatric condition
post-traumatic stress disorder (PTSD) (21). The accumulating
body of literature regarding PACAP indicates similar regulatory
stress response activity that may occur upstream to CRH-
mediated processes.

Although similarly implicated in mammalian stress
responding as other hormones (e.g., adrenocorticotropic
hormone, ACTH), PACAP is unique in a number of key areas.
For example, PACAP possesses a basic charge, circulates within
ceruloplasmin complexes known to transfer positively charged
ions like copper (22), has no definitive target organ or tissue,
circulates in markedly lower plasma levels than other peptides
(American College of Physicians, Normal Laboratory Values),1

and appears to act as a “paracrine operator” more so than a
systemic “master regulator” (23). Its widespread expression
and function are exemplified by the role of this peptide in
CO2 chemosensitivity (24), neonatal stress responses in rodent
maternal separation paradigms (25) and human sudden infant
death syndrome (SIDS) (24), as well as in acute, autonomic, and
hypoxic stress responses (26).

PACAP and PAC1 receptors are richly and widely distributed
throughout the central nervous system (CNS) and peripheral
tissues. PACAP and its receptor, PAC1-R, have been identified in
the HPA axis and autonomic stress systems. PACAP is expressed
in nuclei of the brainstem and hypothalamus, amygdala, posterior
pituitary, and thalamic regions of the brain (27). In peripheral
organs, PACAP is expressed in the exocrine and endocrinal
glands as well as in the gonads. PAC1-Rs are broadly expressed
in cortex, hippocampus, brain stem, olfactory bulb, cerebellum,
and hypothalamus (28, 29).

The highest concentration of PACAP38 in the CNS is observed
in the paraventricular nuclei (PVN) of the hypothalamus (30).
PACAP-positive terminals can synapse with PVN CRH neurons
to trigger CRH production and secretion. The high expression
of PACAP in hypothalamic and limbic regions of the brain
support an integral role in learning and memory, including
emotion regulation and fear processing. The integration of
empirical research using animal models and human samples
implicate PACAPergic systems in stress neurobiology, specifically
how persistent changes in signaling and expression may result
in stressor- and fear-related psychopathologies (30–32). With
regard to learning and memory, PACAP possesses the ability
to activate signaling cascades that are closely tied to memory
formation (33, 34). Specifically, adenylate cyclase (the enzymatic
portion of PACAP’s namesake) signaling is critical to the cellular
basis of memory consolidation through the mediation of cAMP-
response-element-binding (CREB) protein on gene transcription
(35). It appears as though it is through such action that
PACAP mediates fear learning during highly salient, unpleasant
experiences and their subsequent development into adverse
psychopathology (36).

Clinically speaking, PACAP has been implicated in well over
40 medical and psychiatric disorders to date spanning migraine to
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stroke to PTSD (16, 23), however, the focus of the present review
will be on PTSD and its closely related co-morbidities.

POST-TRAUMATIC STRESS DISORDER

Posttraumatic stress disorder (PTSD) is a severe psychiatric
disorder that occurs in people who have witnessed or experienced
a psychologically distressing or traumatic event (e.g., motor
vehicle accident; military deployment to combat theater; violent
physical or sexual assault). PTSD is characterized according to
sign and symptom phenotypes: re-experiencing/intrusion (e.g.,
flashbacks), avoidance/negative alterations in mood or cognition
(e.g., distorted views of self or world), and alterations in arousal
and reactivity (e.g., irritability, hypervigilance, disturbed sleep).
PTSD has a prevalence of 8.3% according to a 2013 study
conducted by Kilpatrick (37) and colleagues comparing DSM-
IV and DSM-5 criteria of trauma exposure and PTSD in a
national sample of adults in the US. Clinical PTSD is typified
by a change in reactivity to stressful experiences, with a strong
prevalence in women (36). In general, women are twice as likely
as men to develop PTSD (38). The sex bias in stressor- and fear-
related disorders can be attributed not only to sex differences in
social, societal, and psychological factors, but to sex-dependent
divergence in the interactions of sex hormones within limbic
neurocircuitry (13).

MOVING FROM BENCH TO BEDSIDE:
PITUITARY ADENYLATE
CYCLASE-ACTIVATING POLYPEPTIDE
AND RESPONSES TO STRESSORS OR
THREAT

When an event or stimulus is perceived, consciously or
unconsciously, as stressful, there is feedback between glands
along the HPA axis that stimulate the release of stress hormones
and the subsequent recruitment of neural and somatic response
systems (39–42). Different types of stressful stimuli (i.e., physical,
emotional, or metabolic) activate specific neurocircuitry in the
stress-mediating axes. The degree of activation of the HPA axis,
adrenomedullary hormonal system, and sympathetic nervous
system is reflected in nerve firing patterns in cells that release
stress-mediating hormones such as ACTH, adrenaline, and
noradrenaline (43). Stress response circuits involve synchronized
activation of the HPA and neuroendocrine systems (44). All
stress responses are centrally integrated in the PVN of the
hypothalamus, which functions as a coordinating center (45),
peripherally affected by the adrenomedullary neuroendocrine
systems. The hormonal cascades initiated by stress responses led
to further investigation of PACAP and its putative role in the
stress axis (see Figure 2).

Several lines of evidence derived from rodent studies
aided in the revelation of PACAPergic activity in mammalian
stress responding [e.g., (46)]. PACAP-38 was found to induce
catecholamine release from the adrenal medulla via action of
sympatho-adrenal projections as part of threat-related activation

of the autonomic nervous system (47, 48). In short, PACAP
is expressed in preganglionic sympathetic neurons within the
intermediolateral cell column of the thoracolumbar spinal cord.
As such, PACAPergic innervation of sympathetic ganglia and
the dense expression of PAC1 receptors on postganglionic
sympathetic neurons provides a mechanism for PACAP to
robustly stimulate stress-associated catecholamine release [for
review see (21)].

Further, significant PACAP-38 and PAC1-R expression occurs
in several limbic regions mediating stress responses including
the extended amygdala (and bed nucleus of the stria terminalis,
BNST), hippocampus, and medial prefrontal cortex (mPFC) (49–
53). Further, PACAP-38 was not only found to be expressed in
projections onto CRH neurons in the hypothalamic PVN (53)
but the peptide could also increase CRH expression (54) and
mediate prolonged stress responses through modulation of CRH
release (43).

In addition to the molecular evidence discussed in the
preceding section, there are several behavioral studies of note
related to PACAP and its increasingly understood role in
rodent stress responses. For example, Legradi et al. (55)
assessed the modulatory role of PACAP in fear responses
through action at the central nucleus of the amygdala
(CeA) in male Sprague-Dawley rats. In this study, the
experimental group was microinfused with 50–100 pmol of
PACAP via intra-CeA cannulae, then shock-stressed. Results
demonstrated that intra-CeA PACAP injections increased
the likelihood of fear and anxiety related behaviors (e.g.,
withdrawal and freezing) in shock-stressed rats compared
to controls. Later, in 2010 and 2011, Stroth and Eiden
identified PACAP as a major contributor to the process of
stimulus-secretion-synthesis coupling. Male mice (PACAP−/−
and PACAP + / +) were subjected to continuous restraint
for varying lengths (1, 3, or 6 h). Their results further
implicated the involvement of PACAP signaling in sustained
corticosterone secretion, synthesis of CRH in the hypothalamus,
and production of adrenaline in the adrenal medulla (43, 56).
Compared to wildtypes, the concentrations of corticosterone in
PACAP deficient mice were reduced by more than 60% (56).
This reduction was greater in mice that experienced longer
durations of restraint.

Tsukiyama et al. (57) also explored the association between
PACAP and emotional stress-induced corticosterone responses
in PACAP-deficient mice by examining consequences of
four contrasting types of acute stressors: open-field exposure
(emotional), cold exposure (metabolic), ether inhalation
(physical), and restraint stress (physical). The latter group
demonstrated reduced corticosterone release under two of the
four conditions: open-field exposure and restraint stress (57).

Relevant to maladaptive responses to stressors and threat,
PACAP has also been implicated in the development, expression,
and maintenance of conditioned fear; an associative learning
process believed to underlie many fear- and anxiety-related
disorders (58). Prior work has shown that PACAP-38 has
profound short- and long-term effects on the consolidation of
learned fear through activity within the BNST, amygdala, and
PFC (59–61), presumably at PAC1-Rs (62).

Frontiers in Psychiatry | www.frontiersin.org 3 July 2022 | Volume 13 | Article 861606

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-861606 June 30, 2022 Time: 14:14 # 4

Riser and Norrholm PACAP and Post-traumatic Stress Disorder

Transgenic PACAP- or PAC1 receptor-deficient rodents have
been generated across multiple studies to better understand
the physiological and psychological functions of PACAP in
responses to stressors and threats. In a series of experiments
using classical fear conditioning, Ressler et al. (63) showed
an association between fear consolidation and PAC1 receptor
genomics when comparing peak freezing behaviors. mRNA
expression of Adcyap1r1 was significantly increased in the
amygdala during consolidation of fear. An analogous trend was
observed in mPFC. Evidence from these rodent models support
the connection between PACAP/PAC1 receptor signaling, activity
in the amygdala and BNST, and PTSD symptomatology (41).

It has been demonstrated that PACAP is clearly implicated
in fear learning processes and that these processes recruit limbic
brain regions as part of the expression and catabolism of learned
fear. A brain region that encapsulates the interplay between
this neuropeptide and fear learning is the hippocampus and,
more specifically, the dentate gyrus (DG) hippocampal subfield
(11). For example, the PACAP-selective receptor, PAC1, is highly
expressed in the granule cell layer of DG specifically (28, 64) and,
as such, well positioned to influence fear behaviors mediated by
hippocampal function.

PITUITARY ADENYLATE
CYCLASE-ACTIVATING POLYPEPTIDE:
AT THE BEDSIDE

As described earlier, more than 20 PACAP receptor variants
have been reported in vertebrates with differing ligand selectivity
and second messenger cascade activation. As such, this peptide
is believed to have tissue-specific expression and signaling
with tissue-specific adaptive and maladaptive responses (23).
For example, PACAP signaling has been implicated in the
molecular underpinnings mediating, and the potential treatment
of, migraine (65, 66), ischemia/stroke (16), Alzheimer’s disease
(67), and PTSD (63). Evidence for a wide-ranging role for PACAP
in several neurological and psychological disorders stems from
the expression of this peptide along several nodes of the pathways
mediating pain, emotion, fear, anxiety, and stress including
sensory dorsal root and trigeminal ganglion neurons and lateral
amygdala (16, 68).

Pituitary Adenylate Cyclase-Activating
Polypeptide and Human Responses to
Stressors or Threat
Complementary to rodent models, recent research suggests that
changes in PACAP expression and signaling may give rise to
psychopathologies related to stress exposure and fear behaviors
in humans. PACAP signaling has been associated with numerous
psychiatric disorders and single nucleotide polymorphisms
(SNPs) along the PAC1 receptor gene, ADCYAP1R1. Even further,
there are differential interactions between stress, PACAP, and
hormonal responsiveness when comparing males and females
(13, 63). This distinctive sexually dimorphic hormonal regulation
may impact behaviors related to anxiety and fear, while driving

FIGURE 2 | PACAP is a regulator of stress circuits in the HPA axis: PACAP
modulates feedback between glands in the HPA axis mediating stress
response in the body. Adapted from Stroth et al. (56).

the sex-related disparities in the prevalence of psychiatric
disorders. One of the most essential hormones to consider is
estrogen. Estrogen and estrogen receptors have been shown
to exhibit modulatory control over several neurotransmitter
systems, while simultaneously influencing activity of the limbic
and HPA pathways and behavioral stress responses (13).
Interestingly, findings suggest that PACAP may be a mechanistic
pathway through which estrogen can mitigate the effects of
chronic stress in females.

High levels of PACAP38 were specifically associated with
PTSD symptomatology in African American females (with PTSD
diagnosis) according to a 2011 study by Ressler and colleagues.
When stratified according to three phenotypes of PTSD
symptoms (intrusions, avoidance, and hyperarousal), significant
associations were maintained, with the most robust association
being observed in the hyperarousal subscales. Additionally,
acoustic startle measures indicated that females with high PACAP
levels had enhanced startle responses to both fear and safety
cues, suggesting an impairment in fear discrimination. In an
aim to further understand these findings, Mercer et al. (69)
found a negative relationship between PTSD symptomatology
and the expression of the PACAP gene in blood mRNA of human
subjects. Their research demonstrated contrasting results, when
compared to the findings of Ressler et al. (63) in which the
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severity of PTSD symptoms was actually associated with lower
expressions of PACAP (69).

Investigators have examined 44 SNPs in the PACAP/PAC1-
R genetic coding (ADCYAP1/ADCYAP1R1), identifying only one
SNP, rs2267735, that was significantly associated with females in
PTSD cohorts. The risk genotype, rs2267735 with homogenous
“CC” allele, increased the risk of PTSD in a sample made up
of about 40% of African American females, evidenced by the
lack of association to other severe psychiatric disorders (2, 70).
However, associations between PACAP expression and PTSD
remains controversial. A study conducted by Almli et al. (37),
found an interaction between genotype and trauma, but failed to
replicate the findings from previous studies that found a main
effect of ADCYAP1R1 on PTSD risks in females.

FUTURE IMPLICATIONS

The severity and onset of many stressor- and fear-related
psychopathologies are associated with the type, degree, duration,
and chronicity of stress exposure. Further, abnormal expression
and functioning of PACAP and other hormones have been

implicated in these disorders (13). Understanding the genetic
and environmental interactions of PACAP (ADCYAP1) and
PAC1-R (ADCYAP1R1) on neural plasticity is essential for
comprehending the mechanistic pathways that underlie stress
and fear related pathologies. These data indicate that trauma
“dose” differentially interacts with PACAP/PAC1-R genetic
risk factors and may reflect conditional physiological and
psychological responses to traumatic experiences. Advancing
the development of treatment and preventative methods for
traumatized populations requires well-defined risk criteria
for intervention (37). Furthermore, understanding the key
components illustrated in this review builds the foundation
for therapeutic approaches to fear- and stressor-related
psychopathologies.
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