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Fast image search with efficient additive kernels and kernel locality-sensitive hashing has been proposed. As to hold the kernel
functions, recentwork has probedmethods to create locality-sensitive hashing, which guarantee our approach’s linear time; however
existing methods still do not solve the problem of locality-sensitive hashing (LSH) algorithm and indirectly sacrifice the loss in
accuracy of search results in order to allow fast queries. To improve the search accuracy, we show how to apply explicit feature
maps into the homogeneous kernels, which help in feature transformation and combine it with kernel locality-sensitive hashing.
We prove our method on several large datasets and illustrate that it improves the accuracy relative to commonly used methods and
make the task of object classification and, content-based retrieval more fast and accurate.

1. Introduction

In Web 2.0 applications era, we are experiencing the growth
of information and confronted with the large amounts of
user-based content from internet. As each one can publish
and upload their information to the internet, it is urgent for
us to handle the information brought by these people from
internet. In order to organize and be close to these vision data
from Internet, it has caused considerable concern of people.
Therefore, the task of fast search and index for large video or
image databases is very important and urgent for multimedia
information retrieval such as vision search especially now
the big data in some certain domains such as travel photo
data from the website and social network image data or other
image archives.

With the growth of vision data, we focus on two impor-
tant aspects of problem including nearest neighbor search
and similarity metric learning. For metric learning, many
of the researchers have proposed some algorithms such as
Information-Theoretic metric learning [1]. As for nearest
neighbors search, the most common situation and task for us
is to locate the most similar image from an image database.
Among all the methods, given the similarity of example

and query item, the most common method is to find all
the vision data among the vision database and then sort
them. However time complexity of this algorithm is too large
and also impractical. When we handle image or video data,
especially, this complexity will not be calculated, because it is
very difficult for us to compute the distance of two items in
higher dimensional space and also vision datum is sparse, so
we cannot complete it by limited time.

Many researchers believe that linear scanning can solve
this problem; although we believe it is a common approach
and not suitable for computing in large-scale datasets, it
promotes the development of ANN. LSH was used in ANN
algorithms. To get fast query response for high-dimensional
space input vectors [1–5], when using LSH, we will sacrifice
the accuracy. To assure a high probability of collision for simi-
lar objects, randomized hash functionmust be computed; this
is also referred to in many notable locality-sensitive hashing
algorithms [6, 7].

Although, in object similarity search task, the LSH has
played an important role, some other issues and problems
have been neglected. In image retrieval, recognition, and
search tasks, we find that they are very common:
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(A) in the sample feature space, traditionally LSH ap-
proaches can only let us get a relatively high collision
probability for items nearby. As a lot of vision datasets
containedmuch rich information, we can find that the
category tags are attached to YouTube and Flickr data
and the class labels are attached toCaltech-101 images.
However the low-level and high-level of vision sam-
ples have great gap, which means that the gap low-
level features and high-level semantic information
exist. To solve this problem, we intend to utilize
the side additional information for constructing hash
table;

(B) As tomanipulate nonlinear datawhich is linear insep-
arable, we commonly use kernel method in vision
task because of its popularity. For instance, in vision
model, objects are often modeled as BOF and kernel
trick is an important approach in classifying these
data from low-dimension space to high-dimension
space. However, how to create hash table in kernel
spaces is a tough problem for us.

To verify our idea, we did several experiments in object
search task. For example, we show our results on the Caltech-
101 [8] dataset and demonstrate that our approach is superior
to the existing hashing methods as our proposed algorithm.

In order to test our algorithm performance on dataset,
we design some experiments on certain visual task such
as Caltech-101 [8] and demonstrate that the performance
of algorithm in our paper is beyond the traditional LSH
approaches on the dataset, as hash functions can be calculated
beyond many kernels. Arbitrary kernel in ANN is suitable
in our scheme; actually we can find that a lot of similarity
hashing functions can be accessed in the task of vision search
tasks based on content retrieval.

2. Homogeneous Kernel
In our paper, we mainly focus on some similar kernels like
intersection, Jensen-Shannon, Hellinger’s, and 𝜒2 kernels. In
the fields of machine learning and vision search, we often
use these kernels as learning kernels. These kernels have two
common attributes: being homogeneous and additive. The
idea of kernel signature has been smoothly connected to these
kernels in this section. Meanwhile we can use pure functions
to represent these kernels. Also these attributeswill be applied
in Section 3 to obtain kernel featuremaps.Through the kernel
feature map, we can get their approximate expression.

Homogeneous Kernels. A kernel 𝑘
𝑙
: R+
0
× R+
0

→ R is
𝛾-homogenous if

∀𝑚 ≥ 0 : 𝑘
𝑙
(𝑚𝑎,𝑚𝑏) = 𝑚

𝛾
𝑘
𝑙
(𝑎, 𝑏) . (1)

When 𝛾 = 1, we believe that 𝑘
𝑙
(𝑚𝑎,𝑚𝑏) is homogeneous. Let

𝑚 = 1/√𝑎𝑏; we can obtain a 𝛾-homogeneous kernel and we
can also write the formula as

𝑘
𝑙
(𝑎, 𝑏) = 𝑚

−𝛾
𝑘
𝑙
(𝑚𝑎,𝑚𝑏) = (𝑎𝑏)

𝛾/2
𝑘
𝑙
(√

𝑏

𝑎
,√

𝑎

𝑏
)

= (𝑎𝑏)
𝛾/2
𝜅 (log 𝑏 − log 𝑎) .

(2)

Here the pure function

𝜅 (𝜆) = 𝑘
𝑙
(𝑒
𝜆/2
, 𝑒
−𝜆/2

) , 𝜆 ∈ R (3)

is called the kernel signature.

Stationary Kernels. A kernel 𝑘
𝑠
: R+
0
× R+
0
→ R is called

stationary kernels if

∀𝑙 ∈ R : 𝑘
𝑠
(𝑙 + 𝑎, 𝑙 + 𝑏) = 𝑘

𝑠
(𝑎, 𝑏) . (4)

Let 𝑙 = −(𝑎 + 𝑏)/2; the 𝑘
𝑠
(𝑎, 𝑏) is represented as

𝑘
𝑠
(𝑎, 𝑏) = 𝑘

𝑠
(𝑙 + 𝑎, 𝑙 + 𝑏)

= 𝑘
𝑠
(
𝑏 − 𝑎

2
,
𝑎 − 𝑏

2
) = 𝜅 (𝑏 − 𝑎) ,

(5)

𝜅 (𝜆) = 𝑘
𝑠
(
𝜆

2
, −
𝜆

2
) , 𝜆 ∈ R. (6)

Here we call formula (6) kernel feature.
In the field of machine learning or computer vision, most

of the homogeneous kernels are composed of the Jensen-
Shannon, intersection, 𝜒2, and Hellinger’s kernels. So we can
also view them as additive kernels. In the next section, we will
focus on these kernels and their kernel maps. Table 1 shows
the details [9].

𝜒
2 Kernel. We define 𝑘(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏) as the 𝜒2 kernel

[10, 11]. Here the 𝜒2 distance is then defined as 𝐷2(𝑎, 𝑏) =
𝜒
2
(𝑎, 𝑏).

Jensen-Shannon (JS) Kernel.We define 𝑘(𝑎, 𝑏) = (𝑎/2)log
2
(𝑎+

𝑏)/𝑎 + (𝑏/2)log
2
(𝑎 + 𝑏)/𝑏 as the JS kernel. Here the JS kernel

distance 𝐷2(𝑎, 𝑏) can be obtained by 𝐷2(𝑎, 𝑏) = 𝐾𝐿(𝑎 |

(𝑎 + 𝑏)/2) + 𝐾𝐿(𝑏 | (𝑎 + 𝑏)/2), where we import the concept
of Kullback-Leibler divergence computed by 𝐾𝐿(𝑎 | 𝑏) =

∑
𝑑

𝑙=1
𝑎
𝑙
log
2
(𝑎
𝑙
/𝑏
𝑙
).

Intersection Kernel. We defined 𝑘(𝑎, 𝑏) = min{𝑎, 𝑏} as the
intersection kernel [12]. The distance metric 𝐷2(𝑎, 𝑏) = ‖𝑎 −
𝑏‖
1
is 𝑙1 distance between variants 𝑎 and 𝑏.

Hellinger’s Kernel. We defined 𝑘(𝑎, 𝑏) = √𝑎𝑏 as the Hellinger’s
kernel and specified distance metric 𝐷2(𝑎, 𝑏) = ‖√𝑎 − √𝑏‖2

2

as Hellinger’s distance between variants 𝑎 and 𝑏.The function
expression 𝜅(𝜆) = 1 is the signature of the kernel, which is
constant.

𝛾-Homogeneous Parameters. In previous research paper, we
can see that the homogeneous kernels are used by parameters
𝛾 = 1 and 𝛾 = 2. When 𝛾 = 2, the kernel becomes 𝑘(𝑎, 𝑏) =
𝑎𝑏. Now, in our paper, we can derive the 𝛾-homogeneous
kernel by formula (2).

3. Homogeneous Kennel Map

When handling low-dimensional data which is inseparable,
we should create kernel feature map 𝜓(𝑥) for the kernel
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Table 1: Common kernels, signature, and their feature maps.

Kernel 𝑘(𝑎, 𝑏) Signature 𝜅(𝜃) 𝜅(𝑤) Feature 𝜓
𝜔
(𝑎)

Hellinger’s √𝑎𝑏 1 𝛿(𝜔) √𝑎

𝜒
2

2𝑎𝑏

𝑎 + 𝑏
sech(𝜃

2
) sech(𝜋𝜔) 𝑒

𝑖𝑤 log 𝑎
√𝑎 sech(𝜋𝜔)

Intersection min{𝑎, 𝑏} 𝑒
−|𝜃|/2

2

𝜋

1

1 + 4𝜔2
𝑒
𝑖𝑤 log 𝑎√

2𝑎

𝜋

1

1 + 4𝜔2

JS 𝑎

2
log
2

𝑎 + 𝑏

𝑎
+
𝑏

2
log
2

𝑎 + 𝑏

𝑏

𝑒
𝜃/2

2
log
2
(1 + 𝑒

−𝜃
) +

𝑒
−𝜃/2

2
log
2
(1 + 𝑒

𝜃
)

2

log 4
sech(𝜋𝜔)
1 + 4𝜔2

𝑒
𝑖𝑤 log 𝑎

√
2

log 4
sech(𝜋𝜔)
1 + 4𝜔2

so that we can map our input data information in low-
dimensional space to relatively high-dimensional (Hilbert)
information space with ⟨⋅, ⋅⟩:

∀𝑎, 𝑏 ∈ 𝑅
𝐷
: 𝐾 (𝑎, 𝑏) = ⟨𝜓 (𝑎) , 𝜓 (𝑏)⟩ . (7)

In order to compute the featuremaps and get approximate
kernel feature maps expression for the homogeneous kernels,
we should use Bochner’s theorem by expanding the configu-
ration of 𝛾-homogeneous expression. Here we notice that if
a homogeneous kernel is Positive Definite [13], its signature
will also be Positive Definite expression. The assumption
condition is suitable for a stationary kernel. So, depending on
formulae (2) and Bochner’s theorem (9), we can derive the
𝑘(𝑎, 𝑏) and closed feature map.

We can compute the kernel density and feature map
closed form [9] for most machine learning kernels. Table 1
illustrates the results. Consider

𝑘 (𝑎, 𝑏) = (𝑎𝑏)
𝜃/2
∫

+∞

−∞

𝑒
−𝑖𝑤𝜆

𝜅 (𝜔) 𝑑𝜔, 𝜃 = log 𝑏
𝑎

=∫

+∞

−∞

(𝑒
−𝑖𝑤 log 𝑎√𝑎𝜃𝜅 (𝜔))

∗

(𝑒
−𝑖𝑤 log 𝑏√𝑏𝜃𝜅 (𝜔)) 𝑑𝜔,

(8)

𝜓
𝑤
(𝑎) = 𝑒

−𝑖𝑤 log 𝑎
√𝑎𝛾𝜅 (𝜔). (9)

4. Kernelized Locality-Sensitive Hashing

To create and conduct the data association, we take the
approach of Kernelized LSH [14] which is also a hash
table-based algorithm. KLSH is proposed based on LSH
algorithm, which is more efficient and accurate for query
search and matching. When searching the input query, the
KLSH approach can quickly locate the possible similar and
nearest neighbor items in the hash table and match it. In
addition, KLSH has another characteristic: traditional LSH
methods can only find a part of hashes in the kernel space,
while KLSH can locate all the possible hash tables in kernel
space. Moreover KLSH has been applied in the vision search

tasks by large scale datasets such as Tiny Image and other
datasets [14].

Similar to LSH, constructing the hash functions for KLSH
has been the key problem for us. That means if we intend
to compute the collision probabilities of input query and the
database points, we should compute the extent of similarity
between them in the database as proposed by [15].

KLSH Principle. Any locality-sensitive hashing algorithm is
based on the probability of distribution of hash function
clusters. So we should compute the collision probability of a
bundle of points, for example,𝑚 and 𝑛:

𝑃
𝑟
(ℎ (𝑚) = ℎ (𝑛)) = sim (𝑚, 𝑛) . (10)

We can also view the problem as the issue of computing
the similarity of objects between 𝑚 and 𝑛. Here sim(𝑚, 𝑛)
in the algorithm is the measure function of calculating the
similarity, while ℎ(𝑚) and ℎ(𝑛) are randomly selected from
the hash function cluster 𝐻. The instinct beyond this is that
we find the fact that 𝑚 and 𝑛 will collide in the same hash
bucket. So those objects which are significantly similar will
be more possible to be memorized in the hash table and this
eventually results in confliction [1].

We can derive the similarity function expression accord-
ing to the vector inner product:

sim (𝑚, 𝑛) = 𝑚
𝑇
𝑛. (11)

In [15, 16], the definition of LSH function has been extended
from formula (10) as

ℎ
⃗𝑟
(𝑚) = {

1, if ⃗𝑟
𝑇
𝑚 ≥ 0,

0, else.
(12)

Here we create a random hyper plane vector ⃗𝑟. The distribu-
tion of ⃗𝑟 fit has a zero-mean multi-Gaussian𝑁(0, Σ

𝑝
) distri-

bution. The dimensionality of ⃗𝑟 is the same with the input
vector𝑚. This demonstrates that the statistical characteristic
of input vector is uniquely matched with each hash function.
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Meanwhile this verification has been detailedly reported in
the LSH attribute in [17]. When we project on a point 𝑚,
actually the sigh function we obtain in this process is a hash
function and then we repeat it 𝑘 times; a couple of hashes can
be created.We can also call this couple of hashes hash bucket.
The hash bucket can be formed as

𝑔 (𝑚) = ⟨ℎ
1
(𝑚) , . . . , ℎ

𝑡
(𝑚) , . . . , ℎ

𝑘
(𝑚)⟩ . (13)

From (13), we can see that, after repeating 𝑘 times, we can get
one column of hash bucket (14); then repeating 𝑏 times, we
can finally obtain the hash bucket 𝑔(𝑚):
𝑔
𝑗
(𝑚) = ⟨ℎ

1
(𝑚) , . . . , ℎ

𝑡
(𝑚) , . . . , ℎ

𝑘
(𝑚)⟩ (1 < 𝑗 < 𝑏) .

(14)

When given the value of 𝑏, we can get all the the hash
functions located in the bucket; we can see the following:

𝑔 (𝑚) =

{{{{{{{

{{{{{{{

{

ℎ
1,1 ⃗𝑟

(𝑚) ℎ
2,1 ⃗𝑟

(𝑚) ⋅ ⋅ ⋅ ℎ
𝑠,1 ⃗𝑟
(𝑚) ⋅ ⋅ ⋅ ℎ

𝑡,1 ⃗𝑟
(𝑚)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ℎ
1,𝑗 ⃗𝑟

(𝑝) ℎ
2,𝑗 ⃗𝑟

(𝑚) ⋅ ⋅ ⋅ ℎ
𝑠,𝑗 ⃗𝑟
(𝑚) ⋅ ⋅ ⋅ ℎ

𝑡,𝑗 ⃗𝑟
(𝑚)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ℎ
1,𝑏 ⃗𝑟

(𝑚) ℎ
2,𝑏 ⃗𝑟

(𝑚) ⋅ ⋅ ⋅ ℎ
𝑠,𝑏 ⃗𝑟
(𝑚) ⋅ ⋅ ⋅ ℎ

𝑡,𝑏 ⃗𝑟
(𝑚)

}}}}}}}

}}}}}}}

}

, (1 < 𝑗 < 𝑏; 1 < 𝑠 < 𝑡) . (15)

Due to the fact that we compute the similarity measure
function in high-dimensional kernel space, the similarity
function can also be extended and written as

sim ((𝑚
𝑖
, 𝑚
𝑗
)) = 𝜅 (𝑚

𝑖
, 𝑚
𝑗
) = 𝜙 (𝑚

𝑖
)
𝑇

𝜙 (𝑚
𝑗
) . (16)

In formula (16), we use kernel function 𝜙(𝑚) to construct
𝜅(𝑚
𝑖
, 𝑚
𝑗
) to complete the kernel mapping for the points of

m
𝑖
and 𝑚

𝑗
. And 𝜙(𝑚

𝑖
)
𝑇
𝜙(𝑚
𝑗
) is a product of projection on

hash function from theR space.The problem is that nothing
is known about the data while in kernel space to generate
⃗𝑟 from 𝑁(0, Σ

𝑝
). Therefore, in order to construct the hash

function, ⃗𝑟needs to be created so thatwe can quickly compute
the ⃗𝑟
𝑇
𝜙(𝑚) function based on the kernel. Similar to normal

⃗𝑟
𝑇, we could use only the kernel of 𝜙(𝑚) to approximately
compute the function of ⃗𝑟

𝑇
𝜙(𝑚). We should select a subset of

database to construct ⃗𝑟. By the large number of central limit
theory, if we intend to choose parts of database items from the
whole database to form the dataset 𝑆, the sample of kernel
data must be satisfied by the distribution with mean 𝜇 and
variance Σ. The variable 𝑧

𝑎
can be written as

𝑧
𝑎
=
1

𝑘
∑

𝑖∈𝑠

𝜙 (𝑚
𝑖
) . (17)

With the growth of variable 𝑎, the theory tells us that
the vector �̃�

𝑎
= √𝑡(𝑧

𝑎
− 𝜇) has also been satisfied by the

distribution of normal Gaussian.
We used the whitening transform to obtain ⃗𝑟:

⃗𝑟 = Σ
−1/2

�̃�
𝑎
. (18)

The LSH function has been yielded:

ℎ (𝜙 (𝑚)) = {
1, if 𝜙 (𝑚)𝑇 Σ−1/2�̃�

𝑎
≥ 0,

0, else.
(19)

As analyzed above, we use kernel function to represent the
database data; then the statistical data like variance andmean

are uncertain. If we intend to estimate and calculate 𝜇 and
Σ, we could sample the data from the database by KPCA
and eigen decomposition in [18] and we let Σ = 𝑉Λ𝑉

𝑇 and
Σ
−1/2

= 𝑉Λ
−1/2

𝑉
𝑇; therefore we can obtain the hash function

ℎ(𝜙(𝑚)):

ℎ (𝜙 (𝑚)) = sign (𝜙 (𝑚)𝑇𝑉Λ−1/2𝑉𝑇�̃�
𝑎
) . (20)

From the above, we can see how to construct the hash
function for the kernel matrix input vectors. In this case, we
let the kernelmatrix input be𝐾 = 𝑈Ω𝑈

𝑇 by decomposing the
𝐾matrix. HereΩ andΛ have the same nonzero eigenvalue; it
is also viewed as another form of kernel matrix input. From
[18], we compute the projection

V𝑇
𝑡
𝜙 (𝑚) =

𝑛

∑

𝑖=1

1

√𝜃
𝑡

𝑢
𝑡
(𝑖) 𝜙 (𝑚

𝑖
)
𝑇

𝜙 (𝑚) . (21)

Here 𝑢
𝑡
and V

𝑡
are, respectively, the 𝑡th eigenvector of the

kernel matrix and its covariance matrix.
As mentioned before, we choose 𝑛 data points from the

database to form 𝜙(𝑚
𝑖
); traversing all the 𝑡 eigenvectors and

conducting the computation yields

ℎ (𝜙 (𝑚)) = 𝜙 (𝑚)
𝑇
𝑉Λ
−1/2

𝑉
𝑇
�̃�
𝑎

=

𝑛

∑

𝑡=1

√𝜃
𝑡
V𝑇
𝑡
𝜙 (𝑚)
𝑇 V𝑇
𝑡
�̃�
𝑎
.

(22)

Substituting (21) into (22) yields

𝑛

∑

𝑡=1

√𝜃
𝑡
(

𝑛

∑

𝑖=1

1

√𝜃
𝑡

𝑢
𝑡
(𝑖) 𝜙 (𝑚

𝑖
)
𝑇

𝜙 (𝑚))

⋅ (

𝑛

∑

𝑖=1

1

√𝜃
𝑡

𝑢
𝑡
(𝑖) 𝜙 (𝑚

𝑖
)
𝑇

�̃�
𝑎
) .

(23)
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(1) Process Data
(a) Obtain 𝐾matrix from database throughout the 𝑛 points.
(b) Obtain 𝑒

𝑠
by randomly sampling a subset from the {1, 2, . . . , 𝑛}

(c) Project on 𝑎th subset to obtain ℎ
𝑎
(𝜙(𝑚)).

(d) Obtain 𝑤 = 𝐾
1/2
⋅ 𝑒
𝑠
/𝑎

(e) Project 𝑤(𝑖) onto the points in kernel space
(f) Obtain hash bucket 𝑔

𝑗
(𝑚)

(2) Query Processing
(a) Obtain the same hash bucket in (29) from the database
(b) Use Ann search for query matching.

Algorithm 1: KLSH algorithm.

Simplifying (23) yields
𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(𝜙 (𝑚
𝑖
)
𝑇

𝜙 (𝑚))

⋅ (𝜙 (𝑚
𝑗
)
𝑇

�̃�
𝑎
)(

𝑛

∑

𝑡=1

1

√𝜃
𝑡

𝑢
𝑡
(𝑖) 𝑢
𝑡
(𝑗)) .

(24)

Since𝐾−1/2
𝑖𝑗

= ∑
𝑛

𝑘=1
(1/√𝜃

𝑘
)𝑢
𝑘
(𝑖)𝑢
𝑘
(𝑗), we further simplify the

(24) yields

ℎ (𝜙 (𝑚)) =

𝑛

∑

𝑖=1

𝑤 (𝑖) (𝜙 (𝑚
𝑖
)
𝑇

𝜙 (𝑚)) , (25)

where 𝑤(𝑖) = ∑𝑛
𝑗=1
𝐾
−1/2

𝑖𝑗
𝜙(𝑥
𝑗
)
𝑇
�̃�
𝑎
.

Through the above derived formula 𝑤(𝑖) we can obtain
⃗𝑟 = ∑
𝑛

𝑖=1
𝑤(𝑖)𝜙(𝑥

𝑖
) which obeys random Gaussian distribu-

tion, then we can substitute (17) into 𝑤(𝑖):

𝑤 (𝑖) =
1

𝑎

𝑛

∑

𝑗=1

∑

𝑙∈𝑠

𝐾
−1/2

𝑖𝑗
𝐾
𝑗𝑙
. (26)

We neglect the term of √𝑎, and finally the simplified 𝑤(𝑖)
yields (27). 𝑒

𝑠
represents the unit vector for 𝑆.

And therefore hash function for kernel input will finally
be

𝑤 = 𝐾
1/2
⋅
𝑒
𝑠

𝑘
, (27)

ℎ (𝜙 (𝑚)) = sign(
𝑛

∑

𝑖=1

𝑤 (𝑖) 𝜅 (𝑚,𝑚
𝑖
)) . (28)

𝜅 is the kernel mapping matrix for points𝑚 and𝑚
𝑖
in space.

After several iterations, the hash function will form a hash
bucket.

In order to get the suitable parameters in this process,
we implement the query matching for several iterations.
The detailed algorithm is illustrated finally in Algorithm 1.
Consider
𝑔
𝑗
(𝑚)

=[ℎ
1
(𝜙 (𝑚)), ℎ

2,𝑗
(𝜙 (𝑚)), . . . , ℎ

𝑡,𝑗
(𝜙 (𝑚)), . . . , ℎ

𝑘,𝑗
(𝜙 (𝑚))],

(1 < 𝑙 < 𝑡) , (1 < 𝑗 < 𝑏) .

(29)

Figure 1: Datasets: Caltech-101 Example.

5. Experimental Result
In the experiment, we proposed the homogenous kernel-
hashing algorithm and verified the high efficiency on the
dataset. In our scheme, homogenous kernel-KLSH method
makes it possible to get the unknown feature embeddings.
We use these features to conduct vision search task to locate
the most similar items in the database, and the neighbors we
find in the task will give their scores on the tags. The method
proved to be more effective and accurate than the linear scan
search.

In this part, we design and verify our algorithm on the
Caltech-101 dataset in Figure 1. Caltech-101 dataset is a bench-
mark on image recognition and classification, which has 101
categories objects and each category has about 100 images,
so 10000 images totally. In recent years, many researchers
have done useful research on this dataset such us proposing
some important and useful image represent kernels [19].
Also there are many published papers that focused on this
dataset, some of which are very valuable and significantly
historic. For example, papers [20–22], respectively, state their
contribution to the dataset. The author of [21] proposed the
matching method for pyramid kernel of images histograms,
while Berg [20] proposed and created the CORR kernel of
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Figure 2: Hashing using a RBF-𝜒2 kernel for SIFT based on homogenous kernels 𝜒2 (𝛾 = 1/2). We choose 𝑡 = 30, 𝑛 = 300, and 𝑏 = 300 in
our experiment.

image local feature using geometric blur for matching local
image similarity.

In our paper, we apply our algorithm to complete the
vision classification and similar search task. The platform of
our benchmark is based on Intel 4 core 3.6GHZ CPU and
16GB of memory and 2 TB hard disk.

We used 𝜒2 kernel for 𝛾-homogeneous kernel maps (𝛾 =
1/2) and applied the nonlinear RBF-𝜒2 kernel designed in
[19, 23] to the SIFT-based local feature.Meanwhile we applied
and learnt the homogenous kernel map beyond it. Compared
with the nonlearnt kernel, our learnt kernel has been more
accurate. And we use KNN classifier, respectively, for KLSH
and linear scan to compute the accuracy of classification. We
also compare it with CORR [24] and the result proves to be
better than them, here we use 15 images per class for training
task.

From Figure 2 we can see that the growth of parameters
is closely related with accuracy. As is seen, the accuracy
increased with the increase of 𝑛, while it has little relationship
with the number of 𝑡 and 𝑏. The value of (𝑛, 𝑡, 𝑏) is chosen as
𝑛 = 300, 𝑏 = 300, 𝑡 = 30 as the best parameters through a
series of experiments.

We find that the combination of these parameters can
result in better performance than the large-scale dataset.
Meanwhile it can be seen that our approach with homoge-
nous kernel map has higher accuracy than CORR-KLSHwith
metric learning [25].

Figure 3 illustrates that our method is superior to other
existing approaches [25–28] tested on this dataset. Compar-
ing with other kernel classifiers, our classifier with RBF-𝜒2
kernel for local features performs better. In Table 2 we can
see that the result of ours has higher accuracy with 𝑇 = 15
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Figure 4: Classification beyond CPU load performance.

and 𝑇 = 30 than other papers’ results including better than
[24] which obtains the result by 61% for 𝑇 = 15 and 69.6%
for 𝑇 = 30. More clearly, it has improved the result by 16%
several years ago.

In order to find the best parameters in our experiment
for NN search for our scheme, we should take into account
the balance between performance and CPU time. Therefore
here we conducted to analyze the performance and CPU time
of different of 𝑘 (𝑘 = 2, 3, . . . , 20) for NN search. Figure 4

illustrates the accuracy and CPU time by each 𝑘 in our
dataset.

The author of [26] proposed the method by combining
KPCA and normal LSH. That means computing hashing
beyond the KPCA. However this method has apparent
disadvantage because KPCA will bring on the loss of input
information although it can reduce the dimensionality in the
processing, while KLSH can solve this problem to assure the
integrity of input information to compute the LSH.Therefore
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Table 2: Accuracy of Caltech-101.

#train Ours [18] [29] [30] [31] [32] [33]
15 68.5 59.05 56.4 52 51 49.52 44
30 75.2 66.23 64.6 N/A 56 58.23 63

we found that our method has high accuracy and better
performance than the algorithm in [26].

6. Conclusions

In our paper, we properly use the concept of homogeneous
kernel maps to help us to solve the problem of approximation
of those kernels, including those commonly used in machine
learning such as 𝜒2, JS, Hellinger’s, and intersection kernels.
Combining with the KLSH scheme, it enables us to have
access to any kernel function for hashing functions. Although
our approach is inferior to linear scan search in time but it
can guarantee that the search accuracy will not be affected.
Moreoverwe do not need to consider the distribution of input
data; to some extent, it can be applicable for many other
databases as Flicker and Tiny Image. Experimental results
demonstrate that it is superior to standard KLSH algorithm.
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