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� Cell lines with MMR and proofreading
deficiency were constructed using the
CRISPR technology for reference
samples.

� Paired tumor–normal reference
samples close to clinical specimens
were prepared.

� A reliable process to determine high-
confidence region and positive
variants was designed.

� A multi-laboratory study was
conducted to evaluate reproducibility
and accuracy of participating panels.

� Potential sources of false-discovery
were explored for assay optimization.
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Introduction: Clinical precision oncology increasingly relies on accurate genome-wide profiling using
large panel next generation sequencing; however, difficulties in accurate and consistent detection of
somatic mutation from individual platforms and pipelines remain an open question.
Objectives: To obtain paired tumor–normal reference materials that can be effectively constructed and
interchangeable with clinical samples, and evaluate the performance of 56 panels under routine testing
conditions based on the reference samples.
Methods: Genes involved in mismatch repair and DNA proofreading were knocked down using the
CRISPR-Cas9 technology to accumulate somatic mutations in a defined GM12878 cell line. They were
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Targeted panel sequencing
Reference material
used as reference materials to comprehensively evaluate the reproducibility and accuracy of detection
results of oncopanels and explore the potential influencing factors.
Results: In total, 14 paired tumor–normal reference DNA samples from engineered cell lines were pre-
pared, and a reference dataset comprising 168 somatic mutations in a high-confidence region of
1.8 Mb were generated. For mutations with an allele frequency (AF) of more than 5% in reference samples,
56 panels collectively reported 1306 errors, including 729 false negatives (FNs), 179 false positives (FPs)
and 398 reproducibility errors. The performance metric varied among panels with precision and recall
ranging from 0.773 to 1 and 0.683 to 1, respectively. Incorrect and inadequate filtering accounted for a
large proportion of false discovery (including FNs and FPs), while low-quality detection, cross-
contamination and other sequencing errors during the wet bench process were other sources of FNs
and FPs. In addition, low AF (<5%) considerably influenced the reproducibility and comparability among
panels.
Conclusions: This study provided an integrated practice for developing reference standard to assess onco-
panels in detecting somatic mutations and quantitatively revealed the source of detection errors. It will
promote optimization, validation, and quality control among laboratories with potential applicability in
clinical use.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Large panel (usually more than 1 Mb) next-generation sequenc-
ing (NGS) is a finely balanced approach between the whole exome
and hotspot detection for oncology. It concentrates on genomic
regions where pathogenic mutations appear and reduce the turn-
around time and cost. Furthermore, it is now increasing used for
therapeutic target identification [1,2], treatment decision [3], and
prognosis judgment [3] by detecting genome-wide mutations in
various malignant cancers. Moreover, oncopanels allow the esti-
mation of tumor mutation burden (TMB) with a high correlation
with whole exome sequencing (WES), which is an important bio-
marker for prescribing immune checkpoint inhibitors [4,5]. How-
ever, clinically oriented targeted assays are error prone at every
step, leading to inaccurate and inconsistent results among labora-
tories [6–8]. To promote the application and standardization of tar-
geted sequencing for clinical use, validation and quality control
using well-characterized and paired tumor–normal reference sam-
ples should be conducted.

Currently available reference materials are not perfect but have
been identified and utilized in different ways for standardization
studies. First, the spike-in method to synthesize variant-
containing fragments and gene-editing method to introduce muta-
tion point by point are both uneconomic and not interchangeable
with patient samples [9]. Second, the germline method, which
entails using the existing and easily identified mutations with high
allele frequencies (most of them are germline mutations) in tumor
cell lines, is used to mimic somatic mutations and could offer
abundant variants. However, it is not associated with the occur-
rence and development of cancers [10], and has questionable
applicability in clinical somatic mutation research. Third, the avail-
able and certified tumor cell lines either have no paired normal cell
lines or have limited mutations and allele frequency (AF) range
[11]. More importantly, as most laboratories develop their
methodologies based on these cell lines, it is familiar and biased
to launch a blinded external quality assessment (EQA) with them.
In addition, reliable methods for establishing reference datasets on
other kinds of reference materials are challenging, because some
somatic mutations with low AF are difficult to validate using con-
ventional droplet digital PCR (ddPCR) and Sanger sequencing, as
well as low-coverage WES and whole-genome sequencing (WGS).

In the present study, we developed a series of paired tumor–
normal reference materials using effective building and feasible
validating methods, which were based on easily available normal
cell lines that were close to real-world clinical tumors. To increase
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somatic variants in normal cell lines, we knocked down MutL
homolog 1(MLH1) and MutS homolog 2(MLH2), two key genes in
the mismatch repair (MMR) pathway, and the proofreading-
associated DNA polymerase epsilon (POLE) gene using the
CRISPR-Cas9 technology. The highly conserved MMR system exists
in prokaryotes and eukaryotes, playing a critical role in repairing
mismatched nucleotides caused by replicative errors and physical
and chemical damage [12]. Pol e, the protein product of the POLE
gene, possesses 3 ? 5 exonuclease activity, which recognizes and
removes nucleotides erroneously incorporated during DNA replica-
tion [13]. Deficiencies in the MMR and proofreading systems have
been reported to lead to genome instability and somatic hypermu-
tation, which have been observed in several types of cancer
[14,15]. Thus, it is practical to generate hundreds of somatic muta-
tions and set up tumor–normal pairs by knocking down the MLH1,
MLH2, and POLE genes in normal cell lines. We then practiced an
integrated method to easily determine somatic variants [16], and
evaluated the performance of oncopanels in somatic mutation
detection simultaneously. WES results and reliable oncopanel
results selected from those with high sequencing depth, perfect
reproducibility, and superior concordance with WES results, were
used to determine positive somatic variants in our reference sam-
ples. Our study aimed at developing a reference standard to assess
diverse oncopanel products with respect to performance metrics
such as precision, recall, and F1-score, and tracing the source of
detection errors for assay optimization, which will aid in delivering
reliable NGS testing for clinical application.
Materials and methods

Sample panel design and preparation

Six DNA repair or proofreading gene knockdown clonal cell
lines constructed using the CRISPR-Cas9 technology and validated
using quantitative reverse transcription polymerase chain reaction
(qRT-PCR) and western blot were used for reference sample prepa-
ration (Supplementary Methods). All cells were passaged regularly
and expanded until expected stocks were generated. Genomic DNA
from six clones and the original Cas9-expressing GM12878 cell line
were extracted, and a panel of 15 DNA samples was prepared by
the NCCL (Beijing, China). The 15 reference samples and corre-
sponding cells are as follows: S01–S03 were from double-gene
(MLH1 and MSH2) knockdown clonal cells after culturing over a
defined period of time (1, 3, and 5 months); S04–S06 were from
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three-gene (MLH1, MSH2 and POLE) knockdown clonal cells after
culturing over a defined period of time (1, 3, and 5 months); S07
and S08 were from two different MLH1 knockdown clonal cells
after culturing for 7 months; S09 and S10 were from two different
double-gene (MLH1 and MSH2) knockdown clonal cells after cul-
turing for 5 months; S11 was a mixture of S03, S09, and S10,
whereas S12 was a mixture of S03, S07, S09, and S10 at equal pro-
portions (Table S1). SNC was prepared using the original Cas9-
expressing GM12878 cell line as a normal matched sample to filter
out irrelevant mutations. S13 and S14 were the replicates of S03
and SNC, respectively, which were designed to assess the intra-
reproducibility of panels with twice assays on the same sample.
All the samples dispensed as 30 lL aliquots into 200 lL thin-wall
polypropylene PCR tubes with a concentration of 20–30 ng/lL
and stored at �20 �C.
Whole-exome sequencing

The 13 samples, namely, S01–S12 and SNC, were sent to four
centers for WES analysis. Sequencing platforms, protocols, and
bioinformatic pipelines are detailed in the Supplementary Meth-
ods. All assays were performed according to the manufacturer’s
protocol.
Participating laboratories

The prepared samples were shipped on ice to 55 clinical labora-
tories. All the laboratories were assigned the same coded samples,
and detailed instructions for storage conditions and assay proce-
dures were provided. Laboratories were required to perform the
detection using their routine procedures, and the raw reads were
mapped to the human reference genome (hg19). Laboratories were
required to submit their results, including the variants and corre-
sponding allele frequencies. All variants were reported according
to the Human Genome Variation Society guidelines. Because a vari-
ant might have different descriptions across different transcripts,
we recommended that the participants use the mane-selected
transcripts in the ClinVar database. Questionnaires were sent to
obtain information regarding their panel parameters (such as size,
number of genes, detectable ranges, minimum limit of detection),
sequencing procedures (such as the platforms and kits for library
construction and sequencing), databases and bioinformatics tools
employed, and assay-specific quality metrics (such as minimum
coverage thresholds, mapping qualities, and Q scores). In addition,
laboratories were required to submit BAM and VCF files for all 15
samples. Because of the different bioinformatic filtering rules in
somatic mutation calling, nine defined filtering tags were required
to annotate all mutation calls in the column ‘‘FILTER” in the VCF
files, using vcftools [17] or any other similar software: ‘‘PASSALL,”
‘‘LOWQUAL,” ‘‘NONCODING,” ‘‘MATCHED,” ‘‘GERMLINEDB,” ‘‘SNP,”
‘‘OUTSCOPE,” ‘‘NOCS,” and ‘‘OTHER.” [18]. The details of these fil-
tering tags are provided in the Supplementary Methods.
Establishment of the truth set

WES usually performs worse than high-depth panel products in
detecting somatic variants with low AF. For 12 non-repetitive sam-
ples, S01–S12, the truth set consists of two parts: set I comprised
mutations with VAF � 10% and set ⅠⅠ included mutations with
VAF < 10%. WES results were used to determine set Ⅰ, and 14 panels
(termed Ref panels) with high sequencing depth were selected to
determine set II based on the rules listed in Supplementary
Methods.
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Data analysis

To assess participant performance effectively, a set of scoring
rules was established previously. Mutation results in the assess-
able region were compared to the truth set to identify false nega-
tives (FNs) or false positives (FPs). Considering the variability of
mutation detection around the limit of detection (LOD), the muta-
tion results with AF � 5% differed from the truth set were defined
as false FPs and FNs. To verify our findings, all false mutation
results, including FPs and FNs, were visually reviewed using the
Integrative Genomics Viewer (IGV). In addition, discordant results
between any pair of replicates (S03–S13 and S14–SNC) were con-
sidered as reproducibility errors. The performance of the panels
was classified as either acceptable or improvable by penalty, which
was determined using the following formula: penalty = FPs + FNs +
2 � Reproducibility Errors. The performance of panel with the pen-
alty smaller than the median of all panels was considered accept-
able, otherwise it was considered improvable.

Precision (positive predictive value) was calculated as follows:
mutations observed in results of both the panels and truth sets
(true positives; TPs) divided by total mutations called by panels
(TPs and FNs).

Precision ¼ TPs
TPsþ FPs

¼ concordant mutation between panel and truth sets
mutation called by panel

Recall (sensitivity) was calculated as follows: mutations
observed in the results of both panel and truth sets (TPs) divided
by total mutations in the truth set (TPs and FNs).

Recall ¼ TPs
TPsþ FNs

¼ concordant mutation between panel and truth sets
mutation in truth set

Reproducibility was determined as the ratio of concordant calls
to the unique calls of both duplicate samples.

Reproducibility ¼ concordant
concordantþ discordant

Bedtools were used for the overlap calculation. The scripts for
truth set analysis, panel performance assessment, and other analy-
sis pipelines were written in Python.

Results

Generation of DNA repair and proofreading deficient cell lines to
increase mutations

To achieve a spontaneous increase of variants in cell lines, we
introduced loss-of-function mutations in the POLE, MLH1, and
MSH2 genes using the CRISPR-Cas9 technology. Briefly, three
sgRNA expressing vectors (Table S2) were transfected into Cas9-
expressing GM12878 cell line to elicit DNA proofreading and repair
deficiency. Six stable single clones were selected for continuous
subculture, including two MLH1 knockdown clones, three double-
gene (MLH1 and MSH2) knockdown clones, and one three-gene
(MLH1, MSH2 and POLE) knockdown clone (Fig. 1A). Finally, gene
inactivation was verified using qRT-PCR, revealing a significant
reduction ofMLH1, MSH2 and POLEmRNA expression in the six clo-
nal cells (Fig. 2A). Western blot analysis demonstrated the loss or
decrease in the protein expression of MLH1, MSH2 and POLE
(Fig. 2B).

Furthermore, for sample preparation, we passaged the six
clones for up to seven months to allow cells to accumulate



Fig. 1. Comprehensive study design for assessing the analytical performance of multiple targeted panel sequencing technologies. (A) Three tRNA-sgRNA plasmids were used
for targeting DNA repair and proofreading genes, and six clones with MLH1, MSH2 or POLE gene knock-down were selected for sample preparation. The ellipse represents the
human tRNA sequence, diamonds with different color represent different gRNA sequence, the white rectangle represents sgRNA scaffold sequence, and the gray rectangle
represents Pol III terminator sequence. The cells with different colors indicate different single clones. (B) A total of 14 reference samples and one paired normal sample were
prepared as shown in Methods. (C) A total of 56 panels were involved, and were required to perform the detection using routine procedure and submit mutation results and
questionnaire regarding panel information. (D) Basic information of four WES analysis is listed in embedded table. See Methods for detailed information. (E) Fourteen panels
termed ‘‘Ref panels” were selected according to the detailed rules in Methods, the mutation results of which were used to determine the positive mutations for truth set. (F)
The rules for generation of a high-confidence region and the truth set. The truth set Ⅰ comprised mutations with AF � 10% reported by all four WES, and truth set ⅠⅠ were
determined by 14 Ref panels. * indicates the concordance of reported mutation results among detectable Ref panels. The lines with different color represent detection ranges
of the Ref panel or human exon region. (G) Mutation results were subjected for performance assessment with respect to recall, precision, and reproducibility.
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sufficient mutations. We then selected cells frozen after different
periods of culturing for DNA isolation to prepare samples S1–S10
(Table S1). S11 and S12 were mixed, as indicated in the Materials
and Methods section. All the samples were subjected to WES anal-
ysis to identify the somatic mutations that accumulated during
culture (Fig. 1D). In general, the mutation increased significantly
in the first month. Cells containing approximately 70–240 non-
synonymous somatic mutations were used for reference samples
preparation to assess the performance of the targeted NGS panels
(Fig. 2C).
164
The 56 NGS panels from 55 laboratories were included in the study

In total, 57 reports were obtained from 56 laboratories before
the cutoff date. Among these responses, one laboratory reported
that their panel size was 32 Mb, which was considered as WES
and therefore not included. Consequently, 7 hospital laboratories
and 48 commercial laboratories with 56 targeted gene panels at
different stages of development were included in this study
(Fig. 1B).



Fig. 2. Generation of DNA repair and proofreading gene knock-downs in human Cas-expressing GM12878 cell line. (A) qRT-PCR for MLH1, MSH2 and POLE in the selected
clones and control cell line (indicative of original GM12878-Cas9 cell line). Expression was normalized to GAPDH. Mean and SD (error bars) of n = 3 independent experiments
are indicated. Asterisks indicate significant differences in mRNA expression between six knock-down cells and GM12878-Cas9 cell line. (two-sided t-test; ** for P < 0.01, ***
for P < 0.001) (B) Western blot analysis of MLH1, MSH2 and POLE expression in selected clones and control cell line (indicative of original GM12878-Cas9 cell line). b-actin
was used as a loading control. (C) The number of non-synonymous somatic mutations from 4 WES analysis in 12 samples from 6 selected clones.
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All laboratories submitted the questionnaires (regarding panel
information, sequencing procedure, and mutation analysis tools),
mutation results and detectable range as required. The panels
information was summarized in and detailed in Table S3. The
sequencing quality control metrics of panels in 14 tumor samples
and a matched normal sample were summarized in Table S4. The
exon region size of these gene panels ranged from 0.84 to
2.95 Mb, and the number of genes detected by the gene panels ran-
ged from 162 to 1460. The panel of participants used different NGS
approaches. Most panels (42/56, 75%) used Illumina sequencing
platforms, including the NovaSeq 6000 System (34/56, 60.7%),
NextSeq 550 (7/56, 12.5%), NextSeq 2000 (1/56, 1.8%), HiSeq
(1/56, 1.8%) and NextSeq 500 (1/56, 1.8%). Other platforms shared
the remaining panels, such as MGISEQ 2000 (MGI Tech, Shenzhen,
China) (7/56, 17.9%), NextSeq CN500 (Berry Genomics, Hangzhou,
China) (3/56, 5.4%), DNBSEQ-T7 (MGI Tech) (1/56, 1.8%), and GEN-
ETRON S2000 (GENETRON, Beijing, China) (1/56, 1.8%). For target
enrichment, all the panels used the hybrid capture method. The
LOD of the participating panels ranged from 0.5% to 5%, and the
most used LOD were 1% (19/56, 33.9%) and 5% (13/56, 23.2%).
Seven panels used a lower cutoff for mutations occurring in hot-
spot genes compared to those in non-hotspot genes. For example,
three of them used 1% for mutations occurring in hotspot genes,
2.5% for single-nucleotide variants (SNVs) and 2% for insertion
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and deletion variants (indels) occurring in non-hotspot genes. In
addition, bioinformatic pipelines varied notably among panels, as
indicated by the fact that several different software packages,
including those developed in-house, were used for read mapping,
variant detection, filtering, and annotation (Table 1). All laborato-
ries claimed that the reported results met the internal quality con-
trol standards. The mean Q30 of all panels ranged from 85.7% to
99.9% for all samples except for one panel with a Q30 of 77.2%.
The average effective sequencing depth of all panels ranged from
100x to 3415x for SNC, and ranged from 552x to 6173x for all
tumor samples (Table S4).

Truth set comprising 168 somatic mutations in a high-confidence
region was generated

According to the rules for generating the truth set listed in the
Materials and Methods, including high consistency with WES
results with AF greater than 10% and reproducibility across two
pairs of replicates, 14 panels (termed the ‘‘Ref panels”) from 13 lab-
oratories were selected for determining positive variants (Fig. 1E).
A variety of sequencing platforms and bioinformatic tools were
used by these 14 panels (Table S3). In brief, 14 panels used
sequencing platforms, including NovaSeq 6000, NextSeq 550,
HiSeq 4000, NextSeq CN500, MGISEQ 2000, and GENETRON



Table 1
Methodological variance among participating panels.

56 panels from 55 laboratories

Methodological variance N Bioinformatic pipeline variance N

1. Sequencing platform 1. Quality Control
NovaSeq 6000 34 Fastp 26
NextSeq 550 7 FastQC 16
MGISEQ 2000 7 BRQC 3
NextSeq CN500 3 FQstat 1
NextSeq 2000 1 Trimmomatic 1
HiSeq 4000 1 In-house 8
Nextseq 500 1 2. Reads Mapping �

DNBSEQ-T7 1 BWA 54
GENETRON S2000 1 Speedseq 1

2. Panel size (Mb) Sentieon 1
< 1.00 1 3. Variant detection �

1.00–2.00 24 GATK 2
2.00–3.00 34 GATK Mutect2 20
� 3.00 7 VarDict 11

3. Targeted genes VarScan 10
< 300 1 Strelka 4
300–600 28 Lofreq 2
600–900 24 Sentieon 2
� 900 3 SomaticSniper 1

4. Limit of detection (LOD) Scalpel 1
0.5% 4 realDcaller 1
0.6% 1 Freebayes 1
1% 19 Lancet 1
2% 9 Pisces 1
3% 3 In-house 9
5% 13 10. Variant filtering �

Other y 7 GATK FilterMutectCalls 15
5. Sequencing Mode VarDict 4
Paired End 56 VarScan 4

6. Sequencing read length (bp) GATK Mutect2 1
100 8 GATK 1
150 48 Lofreq 1

7. DNA input (ng) Sentieon 1
10–99 17 In-house 29
100–299 22 11. Variant annotation �

300–499 4 Annovar 40
� 500 13 snpEff 15

8. Fragment DNA VEP 13
Ultrasonic shearing: Transvar 1
Covaris 33 In-house 7
Bioruptor 7
Qsonica 3
NA 1

Enzyme digestion：
KAPA (Roche) enzyme 4
TIAEN enzyme 1
NEB enzyme 1
Other 9

y Different cutoff for mutations occurred in hotspot genes and non-hotspot genes.
� More than one software may be used for mutation analysis.
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S2000, which had an average depth ranging from 500x to 2000x.
Variant calling tools, which including VarScan [19], VarDict [20]
and GATK Mutect1 and Mutect2 [21], were combined with differ-
ent variant filtering method (GATK FilterMutectCalls [22], Vardict
and in-house developed software) and alignment strategy such
as BWA [23] to create reliable set of positive variants.

The detectable region varied significantly across laboratories,
and an assessable region with a size of 1.8 Mb was defined (details
provided in Supplementary Methods). For the candidate calls in the
assessable region, there were results from at least three Ref panels
to determine whether they were positive or negative. Within the
assessable region, the first part of truth set (termed set Ⅰ) was
defined as mutations with AF � 10% called by all four WES analy-
ses. To further fully enrich the truth set, the mutation results with
AF � 5% of 12 non-repetitive samples from the 14 Ref panels were
considered as candidate mutation calls for the truth set (termed set
ⅠⅠ). According to the consistency among the Ref panels, the candi-
166
date mutation calls were classified into three confidence levels,
including high-confidence (HighConf) calls reported by more than
80% of detectable Ref panels, medium-confidence (MedConf) calls
reported by 20%–80% of detectable Ref panels, and low-
confidence (LowConf) calls reported by less than 20% of detectable
Ref panels. The HighConf and LowConf calls reviewed by IGV were
considered as TPs (set ⅠⅠ) and FPs, respectively. MedConf calls were
accepted into truth set ⅠⅠ if reported by at least two WES and
passed IGV review, whereas the remaining mutation calls in Med-
Conf were classified into an ‘‘Unassessed” list and not involved for
assessing the performance of panels (Fig. 1F). More details are pre-
sented in the ‘‘Establishment of the truth set” in Materials and
Methods section.

Based on the above rules, we identified 168 positive mutations
in the high-confidence region (referred to as assessable region)
(Table S6) and 32 mutations in the unassessed list (Table S7).
Table 2 summarizes the characteristics of mutations in the truth
set from 12 samples. The types of mutations included missense
SNV (69/168, 41.1%), nonsense SNV (8/168, 4.8%), synonymous
SNV (38/168, 22.6%), splice site SNV (1/168, 0.6%), frameshift inser-
tion (16/168, 9.5%), frameshift deletion (35/168, 20.8%), and com-
plex mutations (1/168, 0.6%). Indels accounted for 30.3% of the
truth set (51/168), among which 41 indels that occurred on the
MLH1, MSH2, and POLE genes were introduced by the CRISPR tech-
nology. There were 10 indels larger than 10 bp, which were a chal-
lenge for the participating panels. Notably, 38 mutations were
found in the COSMIC database (Table 2).

Performance of somatic mutations detection in the assessable region

We evaluated the performance of the panels in detecting
somatic mutations in the assessable region by comparing them
with the truth set, and the total error of 56 panels was calculated
(Fig. 1G). Considering the reproducibility errors occurred in dupli-
cate samples, the penalty was calculated to judge the performance
rating in assessment report (Materials and Methods). Accordingly,
the performance of 28 panels from 27 laboratories was considered
acceptable and they had a penalty less than 10. The remaining pan-
els were classified as improvable with a penalty ranging from 10 to
293.

Across the 56 panels, a total of 1306 errors were found, includ-
ing 179 FPs (range from 0 to 39), 729 FNs (range from 0 to 62) and
398 reproducibility errors (range from 0 to 126). Only 2 panels
(2/56, 3.6%) from 2 laboratories correctly reported all the results,
and 90.1% of the total error (1177/1306) came from 28 panels
judged as improvable. No FPs was found in the results of 42.9%
of the panels (24/56); no FNs were found in the results of 14.3%
of the panels (8/56); no reproducibility errors was found in the
results of 26.8% of the panels (15/56). The errors in all 14 samples
(except SNC) of the 56 panels are summarized in Table S5.

Precision and recall (sensitivity) of the 56 panels were calcu-
lated for 12 samples against the truth set. The F1-score was the
trade-off between precision and recall, which was ranked based
on the value (Fig. 3). Performance metrics varied substantially
across panels: precision ranged from 0.773 to 1, recall ranged from
0.683 to 1, and F1-score ranged from 0.725 to 1. Only one panels
had a precision of less than 0.8, whereas the recall of 14.3% of pan-
els (8/56) were less than 0.8. Consistently, false-negatives were
more common in results from 56 panels, indicating that it is more
difficult to achieve a high sensitivity for somatic mutation detec-
tion. The F1-score of 45 panels (45/56, 80.3%) was greater than
0.9, which indicated both high precision and recall. Notably, two
panels, namely OncoScreen Plus and EpiCGP, were used by more
than one laboratory. Three laboratories using the former panel
and two laboratories using the latter panel all had quite high recall
(100%, � 97%) and precision (�97%, 100%) (Fig. S1A).



Table 2
Characteristic of mutation in truth set of 12 samples.

Type Number VAF (%) Cosmic database

5–10 10–20 20–30 30–50

Total SNV
Synonymous substitution 38 10 11 8 9 10
Missense substitution 69 17 19 10 23 18
Nonsense substitution 8 3 2 0 3 0

Total Indel
Frameshift insertion 16 0 3 2 11 1
Frameshift deletion 35 7 5 3 15 9

Splice_site 1 0 0 0 1 0
Complex 1 0 0 0 1 0
Total 168 37 40 23 67 38

Fig. 3. Overview of the performance in somatic mutation detection among 56 panels. (A) Precision-recall plot for pooled sample. (B) The F1-score calculated using precision
and recall were ranked according to the value. Colors represent individual panels. These two figures share the same legend in (B).
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Potential sources of errors

Consistency among panels

The truth set only included mutations with AF � 5%, and assess-
ment of the performance of panels was not conducted in lower AF
mutations. A pooled analysis of the mutation results of 12 samples
were performed to explore the impact of low AF on mutation
detection. All mutations in the assessable region reported by the
56 panels were classified into high consistency mutations (de-
tected or not detected by more than 80% of detectable panels)
and low consistency mutations (detected by 20%–80% of detectable
panels). Allele frequencies of the latter were considerably lower
than those of the former, and most of them were close to the
LOD (0%–5%). Similarly, mutations detected by less than 20% of
the panels also generally had low AFs, which were more likely to
be FPs (Fig. 5A). Thus, low AF was a main source of variation in
mutation detection and contributed to the inconsistency among
the results from 56 panels.
Reproducibility

S13 and S14 were designed as replicates of S03 and SNC, which
should have the same mutation results under the same testing pro-
cedure. A total of 398 reproducibility errors were reported by 40
panels, with the number ranging from 0 to 126. More than five
reproducibility errors were observed in 28.6% of the panels
(16/56), among which 13 panels had a LOD of less than 3%. Muta-
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tion results of two pairs of replicates from these 13 panels were
extracted and classified into three subgroups according to VAF:
mutations with AF � 3%, mutations with AF ranging from 3% to
5%, and mutations with AF � 5%. Reproducibility was defined as
the fraction of mutations shared between any pair of replicates,
and the intra-lab reproducibility of the 13 panels was calculated
(Materials and Methods). The intra-lab reproducibility was gener-
ally high (0.625–1) for mutations with AF � 5% among 13 panels,
but was relatively low (0–0.57) and varied widely among panels
for mutations with AF � 3% (Fig. 4). Importantly, the number of
mutations with AFs ranging from 3% to 5% was relatively small,
which resulted in the reproducibility of few panels being relatively
high for these mutations. Despite this, compared to the mutations
with AF � 5%, the reproducibility for mutations with AF ranging
from 3% to 5% was relatively low (0.14–1) and varied among pan-
els. The cross-lab reproducibility between laboratories using the
same panels was assessed, and a high reproducibility (>0.8) among
all samples was observed, with cross-lab reproducibility being
slightly worse than intra-lab reproducibility in a few samples
(Fig. S1B).
Source of FPs

Previous studies have shown that low VAF is a main source of
FPs [24], but the present study focused on non-negligible FPs with
an AF � 5% reported by all panels. There were eight FPs from one
panel that did not submit BAM files as required, and the remaining
171 FPs from 31 panels were analyzed.



Fig. 4. Reproducibility is reported separately for variant candidates at high (AF � 5%), mid (AF range from 3% to 5%) and low frequency(AF < 3%) (as above). P < 0.0001 for
reproducibility between mutations with AF < 3% and AF � 5%. The mutations for reproducibility analysis were from 14 panels with more than five reproducibility errors and
limit of detection (LOD) of less than 3%.

Table 3
The source of false-positives.

Source No. of FPs No. of panels

Cluster 1 Wet Bench Process
cross-contamination 27 1
artifacts / other sequencing errors 38 9

Cluster 2 Dry Bench Process
software faults 44 12
fail in filtering mutation in normal 31 13
fail in filtering non-human DNA 8 5
gathered around positive variants 15 14

Cluster 3 Other Reason
weak variants 7 6
bad data format 1 1

Total 171 31
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All FPs were divided into three clusters based on different
sources (Table 3). FPs that were likely to occur in the wet bench
process were classified as cluster 1. Sample cross-contamination
during library preparation led to 27 FPs from a single panel (panel
10). For example, nine positive variants in truth set of S1 but not
S4, were reported in S4 and supported by its raw data. There is
another severe but not entirely clear type of error in the wet bench
process. Specifically, 32 unique FPs reported by 8 panels, which
had common characteristics were considered from sequencing
artifacts, strand bias or similar sequencing errors magnified by
technicians. First, they are all A(T) > G(C) SNVs with a similar AF
range from 5% to 10% except one TC deletion and four with
AF � 10%. Second, several base alterations were near the end of
the reads supporting them. Third, these base alterations were sup-
ported by one or two panels, but not by raw data from the vast
majority of the other panels. In addition, there were six FPs from
panel 10 classified into this cluster, because they were labeled as
LOWQUAL by the other panels and demonstrated poor perfor-
mance in the wet bench process.

FPs that occurred in the dry bench process (bioinformatic pipe-
line) were classified as cluster 2. In total, 44 FPs from 12 panels
were detected as a result of software faults. Each of the 12 panels
reported the same FPs in different samples but their raw data did
not support these variants. For example, panel 15 reported chrX:
66766406_66766408del in nine samples, and panel 18 reported
chrX:66765210_66765227del in 3 samples, but no reads in BAM
files of these tumor samples supported them. As at least one in-
house software for mapping, variant calling or filtering is involved
in all these panels, the reason of these FPs may be software issues
or wrong reference sequences. Except the software faults, five pan-
els reported eight FPs because they did not remove non-human
DNA fragments from the sequencing data. Total of 31 FPs from
13 panels should be filtered out by tumor–normal pairs. They did
not recognize these variants in SNC because their poor sequencing
depth on SNC did not meet stringent filtering criteria. In addition,
14 panels reported 15 indel FPs which were rejected by other pan-
els because variants were gathered around positive indels.

FPs related to other reasons were classified as Cluster 3. Seven
FPs from six panels were labeled as LOWQUAL by others because
of insufficient depth or low AF, which might be weak variants that
suffer from variation in AF among multiple assays. Besides, one
panel reported one FP as the result of a bad format.
Source of FNs

There were 42 of the 56 panels that correctly annotated the VCF
files using tags in the Materials and Methods, and 571 FNs with
AF � 5% were found in these panels. We tracked all FN mutations
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in the corresponding VCF files and summarized the tags annotated
for each FN mutation. We then searched for mutations in the BAM
files if there was no record of them in the VCF files.

All the FNs were analyzed, and the sources of them were
divided into three clusters (Fig. 5B). Cluster Ⅰ included the main
source of the FN results, which was related to low sequencing qual-
ity. There were 281 FNs originating from cluster Ⅰ, of which 241
FNs from 31 panels were labeled as LOWQUAL and filtered out
because the quality value or allele frequency were below the
threshold. The other 40 FNs from one panel were not supported
by any reads in the corresponding raw sequencing data. Cluster II
referred to some redundant filtering that was irrelevant to
sequencing quality. Specifically, 9 panels filtered out 96 mutation
calls of no clinical significance or synonymous mutation, which
were unnecessary in our analysis. Cluster III concerned incorrect
filtering. Therein, 106 FNs labeled MATCHED were reported by
15 panels because of incorrect filtering by principle of tumor–nor-
mal pairs; and these FNs involved 17 mutations with a low AF
(range from 0.2% to 5%) and mutant reads (range from 2 to 144)
in matched normal sample, which further revealed the challenge
of low AF mutations in matched normal sample to somatic analy-
sis. In addition, 62 mutation calls were incorrectly judged as germ-
line mutations, mutations in noncoding regions, or clonal
hematopoiesis-derived mutations and filtered out, indicating inap-
propriate databases used in mutation analysis. The seven FNs
labeled OUTSCOPE from five panels were a consequence of the dis-
cordance between the declared and real detection ranges. Notice-
ably, 14 positive mutations were rejected by manual review for
unknown reason before submission. In total, FNs of 40.5% of the
panels (17/42) were from single source, such as LOWQUAL or
MATCHED, and FNs of 26.2% of the panels (11/42) were from two
sources, which indicated common errors in the mutation analysis
process (Fig. 5C).



Fig. 5. Source of variations among results from 56 panels. (A) Distribution of VAFs in dependence of mutations with three consistency level among 56 panels. The consistency
level was defined as the ratio of the number of panels reporting a mutation and the number of detectable panels in 12 samples. (B) The number of false negatives and panels
corresponding to each source of error. OTHER1 indicates that mutation calls are incorrectly filtered because of synonymous mutations. OTHER2 indicates that mutation calls
are filtered out because of clonal hematopoiesis-derived mutations. Mutation calls labeled OTHER3 are filtered out because laboratories considered that many mutations
gather in this position. (C) The number of false-negatives and proportion of source of errors for 42 panels that correctly submitted the VCF files. The inset highlights the
number of panels where all false-negatives originate from a different number of sources. NoDetect refers to positive mutations not detected by the panel, supporting by no
difference in mutant reads between the tumor and normal samples in the raw data.
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Impact of variant type on performance

While non-SNV (indels and multi-nucleotide variants (MNVs))
variant detection was more challenging than SNV variant detection
in previous researches [24,25], the performance of SNV and non-
SNV variant detection varied among specific panels in our study.
We observed similar or better SNV detection performance com-
pared with that of non-SNV in a substantial part of panels. How-
ever, the recall, precision, and reproducibility of SNV variant
detection were worse than non-SNV variants in other 39, 16 and
29 panels, respectively (Fig. S2A). To explain this phenomenon,
the source of SNV and non-SNV false discovery from these panels
was compared. Importantly, problems related to the bioinformatic
filtering process (Cluster 2 or Ⅱ, and Cluster 3 or III) contributed to
51.7% of SNV FNs versus 13.8% of non-SNV FNs (Fig. S2B), while
also caused 43.2% and 48.1% of SNV FPs and non-SNV FPs, respec-
tively (Fig. S2C). Thus, other processes rather than variant calling
had a great impact on low recall and precision of somatic SNV vari-
ant detection. For panels with a better reproducibility on non-SNV
variant detection than SNV variant detection, a vast majority of
reproducibility errors, including both SNV and non-SNV variants,
were clustered in an AF range below 10% (Fig. S2D).
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Impact of sequencing platform on performance

The average recall, precision and reproducibility of panels using
each sequencing platformwere all acceptable, but the dispersion of
that in panels using Illumina NovaSeq 6000, MGISEQ-2000 (includ-
ing GENETRON 2000) and Illumina NextSeq 500/CN500 was quite
notable (Fig.S3). The outliers of Illumina NovaSeq 6000 were com-
posed of 12 panels with similar problems. Each of these panels per-
formed average or top on 1 or 2 metrics but bottom at the other,
suggesting that the cut-off and filter settings of these panels were
highly imbalanced. For instance, Panel 50 had a perfect precision
(100%), but its recall (77.24%) and reproducibility score (68.42%)
were far below others. As its cut-off setting of somatic variants
was ‘‘AF � 1% & Alt Allele � 6 reads” and the AFs of its most repro-
ducibility errors (5/6) were between 1% and 2%, it can be seen from
its data that such a low cut-off incurred many intractable weak
positives and fragile reproducibility. Meanwhile, in order to
achieve a sky-high precision at this extreme cut-off, the filter crite-
ria of variant calling were made very stringent (data not shown),
leading to excessive false negatives and poor recall. The only out-
lier of Illumina Next 500/CN500 and the only DNBSEQ-T7 result
shared the same problem with these 12 panels above. The only
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outlier of MGISEQ-2000 was Panel 10 with unusual cross-sample
contamination, which could not reflect the real performance of
its sequencing platform either. In sum, the apparent performance
difference among sequencing platforms was actually driven by
problems of laboratories, instead of intrinsic error of sequencing
platforms. Also, taking the limited number of panels using each
sequencing platform into account, we cannot conclude that there
was a significant performance gap among sequencing platforms.
Discussion

This study comprehensively assessed performance of somatic
mutation detection using large panel NGS, including preparation
of reference samples using DNA repair gene and proofreading gene
knock-down cell lines, inclusion of multiple panels from hospital
or commercial laboratories, generation of the truth set based on
results from WES and panels, and evaluation of the reproducibility,
FPs, and FNs of the panels.

It is always a primary challenge to prepare reference materials
that are commutable with authentic clinical samples and suitable
for tumor–normal detection approach for standardization studies.
Clinical FFPE specimen are not reproducible and replaceable, and
the mutational profile is heterogenous [26]. Moreover, the quality
and quantity of DNA extracted from them are crucial for perform-
ing genomic profiling, which generally depend on pre-analytical
factors such as fixation time, within block position, and DNA
extraction methods [27,28]. Noting this, the pre-analytical work-
flow has been widely evaluated by previous multicenter studies
using FFPE cell line samples that could closely mimic the real FFPE
samples [29–32]. To evaluate the analytical performance of all par-
ticipating panels exclusively, DNA samples from engineered cell
lines were distributed to laboratories. Only three MMR and proof-
reading genes were knocked down using the CRISPR-Cas9 technol-
ogy, which was more effective to obtain mutations than a previous
study wherein 36 genes were edited to generate reference cell lines
with 125 mutations [33]. Given that MMR and proofreading sys-
tems are critical for high fidelity of genome replication and stabil-
ity [34], defects in them would play a key role in spontaneous
mutagenesis and tumor development [35]. Mutations in genes
involved in MMR and proofreading systems have been observed
in several tumor types, and cause a corresponding dMMR muta-
tional signature and high burden of genomic mutations [36]. Like-
wise, MLH1KO human stem cell organoids had a mutational
signature similar to that of MMR-deficient cancers [37,38]. It could
be inferred that our reference cell lines are close to clinical tumor
samples with respect to the extent of mutation and mutation sig-
nature, allowing for benchmarking sequencing pipeline in the
whole genome. Eleven loss-of-function deletion or insertion muta-
tions in MLH1, MSH2 and POLE gene were finally introduced in six
clones (Table S6), leading to an obvious increase in the number of
mutations, especially after initial culturing. Significantly, clone C1-
1 had approximately 130 non-synonymous mutations in exon after
culturing of 7 months, which increased at a rate close to about 100
mutations per genome per day of an MLH1KO organoid [37]. The
accumulation speed of mutations in six clonal cells was different,
implying that the different introduced mutations would cause gen-
ome instability at different levels. Considering the changes of
mutations during successive passage caused by genome instability,
we frozen sufficient cell for WES validation and laboratory use at
once. Importantly, mutational changes allow us to prepare samples
with different mutational profile, and different mutation burden,
which is also meaningful for control material of TMB detection.
Besides, deficiency in MMR system could cause microsatellite
instability (MSI) which is also a promising biomarker for
immunotherapy. We will focus on this significant field in the
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future research based on our reference materials which present
prospects for multicenter assessment of MSI detection [39].

Another challenge for standardization studies is reliable meth-
ods to generating the truth set for the reference samples. Consider-
ing Sanger sequencing and ddPCR are limited in confirming
mutations with a large number and low AF, orthogonal targeted
sequencing and WES/WGS have been widely used in previous
studies on establishing reference datasets and panel validation
[18,40]. Multiple sequencing platforms, centers, and various bioin-
formatic pipelines are applied on reference samples to minimize
the biases specific to each process [41,42]. Similarly, inspired by
experience of consecutive three years of EQA by the European
Molecular Genetics Quality Network (EMQN) and the Genomics
Quality Assessment (GenQA), it is effective to determine the truth
set as consensus mutations submitted from participating laborato-
ries [16]. We included four WES, as well as 14 participating panels
including six sequencing platforms and multiple combinations of
variants mapping, calling, and filtering tools, to establish the
high-confidence region and HighConf mutations, and set a higher
consistency threshold for truth set compared to the aforemen-
tioned study (80% vs. 75%) [16]. Moreover, all the laboratories were
required to annotate all the mutation calls in VCF files, so that we
could correct the MedConf mutations if they were incorrectly fil-
tered out. In this way, we could also explore the sources of FPs
and FNs. It should be noted that we did not validate the truth set
using Sanger sequencing or ddPCR because of convincing rules
for the truth set. First, the Ref panels selected for generating truth
set have high sequencing depth that was far more reliable than
WES/WGS and demonstrated perfect performance on two pairs
of replicates. Second, eighteen libraries on each sample were con-
structed compared to only four WES libraries and one WGS library
in previous study [10], which was more important than focusing
on multiple callers upon limited library number in the study
design [32]. Finally, we successfully traced the source of all false
mutation results against the truth set, and there was no dispute
from laboratories on the truth set and reported errors. Our refer-
ence material containing abundant mutations and the correspond-
ing workflow are inseparable. It is recommended that the
workflow should be applied to guarantee the truth set is generated
accurately and effectively.

We distributed homogeneous reference samples to laboratories,
and required them to apply their own routine testing procedures.
Generally, NGS tests need to be validated before clinical use [43].
Therefore, the results from their own routine testing procedures
reflect the real detection proficiency in clinical use, which our
multi-laboratory study emphasize. We had a comprehensive
understanding of the methodological variance and detection per-
formance of domestic large panel NGS. The methodology of
somatic mutation detection varied among laboratories, including
sequencing platforms, library preparation protocols and bioinfor-
matic tools (Table 1). Particularly, most panels (30/56, 53.6%)
involved in-house bioinformatic tools for reads mapping, variants
calling, filtering and annotation. The low accuracy and comparabil-
ity of the panels were revealed, and the specific impact factors
have been explored in several previous researches [24,32,44,45].
In our study, we analyzed the false discovery of panels in detecting
somatic mutations with AF � 5%, which theoretically influences
clinical application of not only actionable mutations but TMB
[46,47]. FNs are more common than FPs. We tracked each FNs
and found that low sequencing quality and inappropriate filtering
settings were the two sources of FNs. Mutations labeled LOWQUAL
are either true low-quality mutations or observed because of too
stringent filtering rules [48]. However, 40 mutations were not
detected by one panel, which originated from the problems in
sequencing reactions in wet bench process, with evidence of no
difference of mutant reads between tumor and normal sample
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under a high coverage depth. Previous research has demonstrated
that the choice of bioinformatic pipeline influences variant calling
results [32]. In this study, 49.6% of FNs (283/571) originated from
problems during variant filtering, and we focused on the content
of incorrect filtering beyond the influence of specific bioinformatic
tools. For example, several laboratories only reported mutations
related to TMB analysis or targeted therapy and filtering synony-
mous mutations and mutations of no clinical significance, which
were considered as errors beyond detection proficiency and had
no impact on clinical decisions. In addition, FNs labeled MATCHED
indicated the importance of accurately distinguishing somatic vari-
ants from matched tumor–normal sample by different algorithms
[49]. Mutations with AF much lower than germline mutations
(50% or 100%) in matched normal sample (SNC) were challenging
for variants callers to isolate somatic mutations, which prompted
further optimization of the algorithm. A few laboratories judged
positive mutations as germline mutations, mutations in noncoding
region or clonal hematopoiesis-derived mutations and filtered
them, revealing that bioinformatic tools or databases should been
optimized. Finally, a few FNs were from incorrectly manual filter-
ing, which could be solved by improving the training professional
analysts.

On the FPs, it is evident that errors during the wet bench pro-
cess appeared solely in 9 panels, but the consequence could be
serious once occurred. For example, sample cross-contamination
resulted in 32 FPs from one panel. This cluster of errors could be
reduced by building standard operation procedure (SOP), training
laboratory technicians, and other management strategies. Errors
during the dry bench process in 24 panels were relatively common,
but had limited influence for each assay. Specifically, software
faults could be eliminated by revising the database and in-house
software. Inappropriate filtering settings and similar errors could
be reduced by adequate regular performance validation. In addi-
tion, FPs caused by weak variant, the inherent problem of NGS,
may be gradually solved by novel methods, like machine learning,
which is currently beyond the scope of our research area.

It has been elucidated that SNPs were easier to identify than
indels in germline mutation detection [25,50]. However, SNV and
non-SNV somatic variants detection demonstrated a similar sensi-
tivity and reproducibility in previous research involving limited
indels and MNVs [24]. In our study, a higher recall, precision, and
reproducibility in detecting non-SNV variants among several pan-
els was found to originate from processes, such as wet-bench oper-
ation, and variant filtering. Noting this, every section of somatic
mutation detection should be highly-regarded during the develop-
ment of workflow. Additional reference material with abundant
somatic mutations, especially indels and MNVs, is required to val-
idate and benchmark somatic mutation detection workflow. In
addition, different sequencing platform have intrinsic error rate,
and we compared the performance of panels using different
sequencing platform. We found that the real capabilities of
sequencing platforms were covered by improper and imbalanced
settings. Laboratories developing and using panels are supposed
to conduct rounds of validation and verification to ensure accept-
able recall, precision, and reproducibility at a proper cut-off.

Conclusion

In conclusion, this multi-laboratory study promoted the stan-
dardization of somatic mutation detection using large panel
next-generation sequencing. A naturally suitable approach for gen-
erating reference materials for future research on standardization
was provided. In addition, comprehensive evaluation revealed that
the variable detection performance of somatic variants with
AF � 5% by oncopanel sequencing was not unsolvable, and could
171
be overcome by method optimization, validation, and quality
control.
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