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Abstract: The aim of this study was to investigate the immediate static balance effects of bare foot,
UD-Flex ankle–foot orthosis (AFO), and AFO using wire (AOW) of patients with stroke with foot
drop. Seventeen patients with stroke with foot drop (8 men and 9 women) were randomized to
three conditions (bare foot, UD-Flex AFO, or AOW made with a flexible material). Static balance
was assessed using the Zebris (Zebris GmbH, Isny, Germany) and BioRescue (RM Ingenierie, Rodez,
France) pressure platform by a single examiner, who did not design the AOW. The order of testing
with the equipment was random. The center of pressure path length (mm) measured using Zebris
showed significant differences among the three conditions (bare foot, 484.47 ± 208.42; UD-Flex AFO,
414.59 ± 144.43; AOW, 318.29 ± 157.60) (p < 0.05). The bare-foot condition was not significantly
different from the UD-Flex AFO condition (p > 0.05), but was significantly different from the AOW
condition (p < 0.05). The surface area ellipse (mm2) measured using BioRescue showed significant
differences among the three conditions (bare foot, 241.35 ± 153.76; UD-Flex AFO, 277.41 ± 381.83;
AOW, 68.06 ± 48.98) (p < 0.05). The bare-foot condition was not significantly different from the
UD-Flex AFO condition (p > 0.05), but the AOW condition was significantly different from the
bare-foot (p < 0.05) and from the UD-Flex AFO conditions (p < 0.05). We suggest using the AOW
made of flexible materials and wire instead of the UD-Flex AFO to improve immediate static balance
of patients with stroke with foot drop after stroke. Further studies on the effects of dynamic balance
and gait are required.

Keywords: stroke; foot drop; static balance; ankle-foot orthosis; wire

1. Introduction

Stroke impairs motor and sensory functions, thus causing difficulties in postural control [1],
leading to postural instability and difficulties in balance and gait [2]. Functional impairment of
the lower extremity affects balance and ambulation [3], and when balance is disturbed, movement
is reduced, thus limiting the activities of daily living [4]. In addition to spasticity [5] and muscle
weakness [6], foot drop due to plantarflexion stiffness and dorsiflexion weakness is also a major cause
of poor balance in patients with stroke [7]. Foot drop occurs in 20% of stroke patients [8] and results
from a weakening of the dorsiflexors or spasticity of the plantarflexors, causing reduced gait velocity,
inefficient gait, and increased risk of falling [9]. Abnormal postural alignment in patients with stroke

Healthcare 2020, 8, 116; doi:10.3390/healthcare8020116 www.mdpi.com/journal/healthcare

http://www.mdpi.com/journal/healthcare
http://www.mdpi.com
https://orcid.org/0000-0002-7206-1780
http://dx.doi.org/10.3390/healthcare8020116
http://www.mdpi.com/journal/healthcare
https://www.mdpi.com/2227-9032/8/2/116?type=check_update&version=2


Healthcare 2020, 8, 116 2 of 11

further increases asymmetry between the left and right sides of the body, thereby affecting balance,
stability, and functional disability and resulting in decreased function [10]. Patients with stroke have
difficulty controlling posture due to motor and sensory function abnormalities, thereby affecting
balance and walking [1,2].

Ankle–foot orthosis (AFO) is the most widely used method to prevent foot drop in patients with
stroke [11,12], and is used during weight-bearing training of the limb on the affected side [13] or when
there is ankle spasticity or deformity [14]. It was also reported to improve abnormal gait caused by
mediolateral instability of the ankle in patients with stroke [15,16] and enhance balance in patients
with stroke [17–19]. A previous study reported that performing Biodex balance exercise for six weeks
while wearing a UD-Flex AFO led to improvements in gait velocity and balance in stroke patients with
foot drop compared with the use of posterior AFO [20]. UD-Flex AFO, a type of anterior AFO, is easier
to wear and remove than posterior AFO; due to the open area of the calcaneus, the patient can feel
direct contact of their foot with the floor when walking [20].

However, AFO passively fixes the ankle to completely restrict ankle joint movement, thus limiting
mobility of the ankle joint [21,22], and was also reported to cause contracture of the ankle joint [17]
and reduced muscle activity of the lower extremity [23]. It also limits ankle range of motion (ROM),
which makes standing from a seated posture difficult [24]; thus, the neuromuscular system cannot be
stimulated [22]. However, despite these shortcomings, plastic AFO is widely used for foot drop in
patients with stroke.

Thus, the aim of this study was to investigate the immediate static balance effects of bare foot,
plastic UD-Flex AFO, and a newly developed AFO using wire (AOW) in stroke patients with foot drop.

2. Material and Methods

2.1. Patients

A sample size of 15 stroke patients with foot drop, at a significance level of 0.05, power of 80%,
and effect size of 0.9 were analyzed using G-Power version 3.1 (University of Dusseldorf, Dusseldorf,
Germany) [25]. The study was conducted on 17 patients, including dropouts. The selection criteria
were as follows: age of 18 years or older, diagnosis of hemiplegia due to stroke, a Modified Ashworth
Scale (MAS) score of ≤1 for spasticity of the lower extremity, no problems with communication, and
no history of orthopedic surgery on the lower extremity. All patients gave their informed consent
for inclusion before they participated in the study. The study was conducted in accordance with
the Declaration of Helsinki and approved by the institutional review board at Dong Eui University
(DIRB-201810-HR-E-40).

2.2. Study Design

This study used a cross-over design, with participants randomized to the bare-foot, UD-Flex
AFO, or AOW conditions. All measurements were performed by the same examiner, who did not
design the AOW. The examiner was blinded to the bare-foot, UD-Flex AFO, or AOW conditions in
a separate space blocked by nontransparent partitions, and the data were collected via a computer
connected to the measurement device. Assessment of static balance using Zebris and BioRescue was
also performed by the same examiner. All participants performed static balance assessments under the
three conditions. The testing order of the equipment was randomly conducted based on the order
of measurement written on papers from sealed envelopes. The study flowchart of the methods and
design is shown in Figure 1.
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Figure 1. Study flowchart. AFO: ankle–foot orthosis; AOW: ankle–foot orthosis using wire; ANOVA: 
analysis of variance. SPSS (IBM Corp., Armonk, NY, USA). 

2.3. Measurement 

Zebris PDM-SX (Zebris GmbH, Isny, Germany) was used to electronically record and analyze 
the static balance and foot pressure. It consisted of a 55 cm × 40 cm × 2.1 cm (length × weight × height) 
platform containing 1920 activity sensors. The center of pressure (COP) path length (mm) was 
defined as the overall length of COP path movement during the test period [26]. In a previous study, 
the sway distance in the COP deceased as the posture maintenance and balance ability improved [27]. 
The reliability (intraclass correlation coefficient) of this equipment was 0.77–0.9 [28]. 

BioRescue (RM Ingenierie, Rodez, France) was used to measure the balance by computing the 
area of displacement (mm2) of the COP on a foot plate (610 mm × 580 mm × 10 mm) equipped with 
1600 sensors. The lower surface area ellipse indicated better static balance [29,30]. The reliability of 
this equipment (intraclass correlation coefficient) ranged from 0.83 to 0.95 [31]. The static balance was 
measured by the participant standing with their feet shoulder-width an parallel for 30 s on the 
measurement plate placed 1 m away from the computer while looking straight ahead. Every time the 
experimental conditions were changed, participants took a 5 min rest and then lightly walked for 5 
min under their respective conditions (bare foot, UD-Flex AFO, or AOW) to minimize the effects of 
the previous experimental condition and to adjust to the current condition. 

Figure 1. Study flowchart. AFO: ankle–foot orthosis; AOW: ankle–foot orthosis using wire; ANOVA:
analysis of variance. SPSS (IBM Corp., Armonk, NY, USA).

2.3. Measurement

Zebris PDM-SX (Zebris GmbH, Isny, Germany) was used to electronically record and analyze the
static balance and foot pressure. It consisted of a 55 cm × 40 cm × 2.1 cm (length ×weight × height)
platform containing 1920 activity sensors. The center of pressure (COP) path length (mm) was defined
as the overall length of COP path movement during the test period [26]. In a previous study, the sway
distance in the COP deceased as the posture maintenance and balance ability improved [27]. The
reliability (intraclass correlation coefficient) of this equipment was 0.77–0.9 [28].

BioRescue (RM Ingenierie, Rodez, France) was used to measure the balance by computing the
area of displacement (mm2) of the COP on a foot plate (610 mm × 580 mm × 10 mm) equipped with
1600 sensors. The lower surface area ellipse indicated better static balance [29,30]. The reliability of
this equipment (intraclass correlation coefficient) ranged from 0.83 to 0.95 [31]. The static balance
was measured by the participant standing with their feet shoulder-width an parallel for 30 s on the
measurement plate placed 1 m away from the computer while looking straight ahead. Every time
the experimental conditions were changed, participants took a 5 min rest and then lightly walked for
5 min under their respective conditions (bare foot, UD-Flex AFO, or AOW) to minimize the effects of
the previous experimental condition and to adjust to the current condition.
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2.4. Orthosis

The AOW (Okmeditech Co., Ltd, Changwon, Korea) is a newly developed AFO designed by the
first author. It is made of a flexible material consisting of neoprene and spandex and has a polyvinyl
chloride (PVC) wire to induce passive ankle dorsiflexion (Figure 2). The device was designed such
that turning the wire adjustor above the lateral and medial malleoli (A in Figures 2 and 3) triggers the
wire crossed above the dorsum of the foot (B in Figure 2), inducing passive ankle dorsiflexion and
preventing plantarflexion (B in Figure 3). Further, to assist ankle dorsiflexion, a talus strap made of
polyester with rubber is stretched and attached from the front of the ankle joint toward the inferior
posterior direction on both sides (C in Figure 2) to induce talus posterior gliding (Arrow of Figure 2).
A Velcro strap on the top of the ankle secures the AOW from sliding down the ankle (D in Figure 2).
Another Velcro strap is used to fix the front part of the orthosis above the intermetatarsal joints (E in
Figure 2).
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The UD-Flex AFO used in this study was a type of plastic AFO that compensates for the
shortcomings of the posterior AFOs, which is widely used in hospitals to prevent foot drop in patients
with stroke (Figure 4). UD-Flex AFO is worn on the anterior part of the foot and leaves the heel open,
enabling patients to feel with their heels during ambulation. Moreover, it is lightweight and small; thus,
patients can easily wear and take off their shoes even while wearing the UD-Flex AFO [20]. Patients
were tested while wearing AOW and AFO on their bare feet.
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2.5. Statistical Analysis

The participants’ general characteristics were analyzed using descriptive statistics and presented
as the mean and standard deviation. The data measured using Zebris were normally distributed at
p > 0.05 as a result of normality testing using the Kolmogorov–Smirnov and Shapiro–Wilk tests. The
effects of bare foot, UD-Flex AFO, and AOW on static balance were compared using one-way analysis
of variance, followed by the Bonferroni test as the post-hoc test for multiple comparisons.

Because the data obtained from BioRescue were not normally distributed according to p < 0.05 in
the Kolmogorov–Smirnov and Shapiro–Wilk normality tests, the effects of the bare-foot, UD-Flex AFO,
and AOW conditions on static balance were examined using the Kruskal–Wallis test, followed by the
Mann–Whitney test as the post-hoc test for multiple comparisons. Data were statistically processed
using SPSS for Windows version 18.0 (IBM Corp., Armonk, NY, USA), with the statistical significance
level set at 0.05.

3. Results

3.1. Participants’ General Characteristics

Seventeen patients were enrolled in the study, and their general characteristics are shown in
Table 1.
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Table 1. General characteristics of patients (n = 17).

Variables Mean ± SD or Mode (%)

Sex

Male 8 (47.1)
Female 9 (52.9)

Age (years) 53.94 ± 14.65
Height (cm) 166.18 ± 9.47
Weight (kg) 64.76 ± 10.61

Diagnosis

Infarction 11 (64.7)
Hemorrhage 4 (23.5)

Tumor 2 (11.8)

Affected side

Right 10 (58.8)
Left 7 (41.2)

Modified Ashworth Scale 1.29 (0.47)
The duration of stroke (month) 12.29 (7.03)

Foot size (mm) 253.82 (12.81)

Orthosis

UD-Flex AFO 16 (94.1)
Elastic band 1 (5.9)

3.2. Static Balance Using Zebris

The COP path length measured using Zebris showed significant differences in static balance
among the three conditions (p < 0.05) (Table 2). In the post-hoc test for multiple comparisons, no
significant differences were observed between the bare-foot and UD-Flex AFO conditions (p = 0.470) or
between the UD-Flex AFO and AOW conditions (p = 0.244), but significant differences were observed
between the bare-foot and AOW conditions (p = 0.019) (Figure 5).
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Figure 5. Comparisons of static balance among the three conditions using Zebris. AFO: ankle–foot
orthosis; AOW: ankle–foot orthosis with wire; COP: center of pressure. * p < 0.05.
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Table 2. Static balance using Zebris.

Variables Bare Foot UD-Flex AFO AOW p-Value

COP path length (mm) 484.47 ± 208.42 414.59 ± 144.43 318.29 ± 157.60 0.025

Values are presented as mean ± standard deviation. AFO: ankle–foot orthosis; AOW: ankle–foot orthosis with wire;
COP: center of pressure.

3.3. Static Balance Using BioRescue

The surface area ellipse measured using BioRescue showed significant differences among the three
conditions (p < 0.05) (Table 3). In the post-hoc test for multiple comparisons, there were no significant
differences between the bare-foot and UD-Flex AFO conditions (p = 0.352), but there were significant
differences between the bare-foot and AOW conditions (p = 0.001) and between the UD-Flex AFO and
AOW conditions (p = 0.001) (Figure 6).

Table 3. Static balance using BioRescue.

Variables Bare Foot UD-Flex AFO AOW p-Value

Surface area ellipse (mm2) 241.35 ± 153.76 277.41 ± 381.83 68.06 ± 48.98 0.001

Values are presented as mean ± standard deviation. AFO: ankle–foot orthosis; AOW: ankle–foot orthosis with wire.
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4. Discussion

The static balance of the UD-Flex AFO condition was not significantly increased in the BioRescue
and Zebris measurements compared to the bare-foot condition. The BioRescue measurements showed
significantly improved static balance when using AOW compared with the bare-foot and UD-Flex
AFO conditions and the Zebris measurements showed significantly increased static balance when
using the AOW compared with the bare-foot condition. AFO made with plastic limits the ROM of
the ankle and decreases its mediolateral control, therefore, AFO aggravates mobility and balance [32].
Although the study of Kim et al. [33] did not focus specifically on the use of AOW, their use of an
elastic band-type AFO led to improved balance compared to when a plastic AFO or bare foot was
used [33]. The reason for this was suggested to be the ability of the elastic band-type AFO to promote
even weight distribution between the affected and nonaffected limbs [33]. The AOW used in this study
seemed to improve static balance, with the polyvinyl chloride (PVC) wire attached to the mediolateral
side of the ankle potentially inducing passive ankle dorsiflexion and preventing plantarflexion, as well
as promoting even distribution of pressure while decreasing COP displacement. Furthermore, the
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flexible material consisting of neoprene and spandex permitted minimal movement required to control
the position of the ankle joint, possibly helping to improve static balance.

Patients with stroke have trouble controlling their ankles due to the weakening of tibialis anterior,
spasticity of gastrocnemius [34], and asymmetry of the anterior talofibular ligament [35], with further
difficulty regarding posterior gliding of the talus below the tibia during dorsiflexion [36,37]. The
lack of posterior gliding of the talus limits ankle dorsiflexion [38], which alters the alignment of the
foot in turn, thereby leading to abnormal ankle movement and increased risk of ankle injury [39].
In a previous study, patients with chronic stroke who wore a flexible AFO made of elastic bands
demonstrated increased balance due to the elastic band providing lesser limitation of dorsiflexion
than the plastic AFO [40]. Lee et al. [41] reported that talus posterior gliding in a weight-bearing
posture improved static balance in patients with stroke by increasing afferent stimulation of the ankle
joint. Talus posterior gliding stimulates the afferent pathway of the mechanical receptors around
the ankle joint, which enhances talocrural articulation and afferent information in the surrounding
tissues [41]. Applying taping in the inferior posterior direction for talus posterior gliding increased
ankle dorsiflexion in patients with limited dorsiflexion [42] and improved static balance in patients
with chronic stroke [43]. The talus-stabilizing strap attached to the dorsal part of the AOW developed
in this study probably functioned similarly to the taping used in previous studies [42,43], as inferior
posterior gliding of the talus in a weight-bearing posture may assist ankle dorsiflexion.

This study exhibited a few limitations. First, we could not examine the effects on dynamic balance
or gait, thus, we only measured static balance. Second, we did not examine the long-term effects of
AOW and we only assessed immediate static balance. Third, we could not quantitatively measure the
degree to which foot drop was prevented by using AOW. Fourth, we could not examine whether AOW
improved static balance in stroke patients with severe spasticity. Fifth, we could not radiographically
examine the function of the talus strap regarding the effects of talus posterior gliding. Sixth, only one
measure of static balance was used, which made proving the validity of AOW difficult. Additional
studies are needed to resolve these limitations. In a previous study on the effect of wearing an AFO on
standing balance according to time since stroke occurrence, the standing balance of the group who
suffered from stroke less than six months prior increased significantly, but there was no significant
difference in the group who experienced stroke more than 12 months prior [17]. However, this study
was not focused on the difference in the effect of the AOW on the time since the stroke occurred, which
is an area in which further studies are required.

5. Conclusions

Our results showed that the use of AOW led to immediate effects on static balance in patients with
stroke compared to those with bare feet. The use of UD-Flex AFO did not show any immediate effects
on static balance in comparison with the bare-foot condition. However, further studies on the effects of
dynamic balance and gait should be conducted to clinically suggest the use of AOW for stroke patients
with foot drop.
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