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ABSTRACT

Topologically associated domains (TADs) are 3D ge-
nomic structures with high internal interactions that
play important roles in genome compaction and gene
regulation. Their genomic locations and their asso-
ciation with CCCTC-binding factor (CTCF)-binding
sites and transcription start sites (TSSs) were re-
cently reported. However, the relationship between
TADs and other genomic elements has not been
systematically evaluated. This was addressed in the
present study, with a focus on the enrichment of
these genomic elements and their ability to predict
the TAD boundary region. We found that consensus
CTCF-binding sites were strongly associated with
TAD boundaries as well as with the transcription
factors (TFs) Zinc finger protein (ZNF)143 and Yin
Yang (YY)1. TAD boundary-associated genomic ele-
ments include DNase I-hypersensitive sites, H3K36
trimethylation, TSSs, RNA polymerase II, and TFs
such as Specificity protein 1, ZNF274 and SIX home-
obox 5. Computational modeling with these genomic
elements suggests that they have distinct roles in
TAD boundary formation. We propose a structural
model of TAD boundaries based on these findings
that provides a basis for studying the mechanism of
chromatin structure formation and gene regulation.

INTRODUCTION

The human genome is tightly packed into the cell nucleus,
and yet is readily accessible to other cellular components
for the maintenance of cellular activity and response to ex-
ternal signals. The physical structure of the genome respon-
sible for this apparent paradox has been sought for a long
time. Biochemical and microscopic studies revealed that the
genome has different levels of organization, including nu-
cleosomes, chromatin domains, and chromosome territories
(1–3). Recent advances in chromatin conformation capture
techniques have enabled detailed examination of genomic
structures; it was suggested that the human genome has a
fractal-like architecture in which the small local structural

units of chromatin interact with each other to form larger
units (4). The basic structural units of chromatin are nucle-
osomes, which have a 10-nm fiber structure; their dynamic
interaction leads to the formation of larger-scale chromatin
domains characterized by high intra-domain and low inter-
domain interactions (5). Two classes of chromatin domain
have been described; the smaller of these, which are referred
to as physical or contact domains, constitute about 185 000
bp (6) and interact with each other to form larger topolog-
ically associated domains (TADs) of ∼1 million bp (7).

Although the existence of various genomic structures has
been experimentally demonstrated, how they are formed
is largely unknown; TADs are of particular interest given
that they are implicated in gene regulation (8,9). It is
thought that particular genomic elements are located at the
boundaries of TADs and are involved in their formation.
CCCTC-binding factors (CTCFs) are more frequently ob-
served at TAD boundaries than in other regions, as are
transcription starting sites (TSSs) of housekeeping (HK)
genes and histone modifications such as H3K36 trimethy-
lation (H3K36me3) (10). In fact, CTCF-binding sites are
key features of TAD boundaries since they can interact with
CTCF-binding sites of another TAD boundary and thereby
segregate the activities of adjacent TADs in association
with cohesin complexes (6). However, given that CTCF-
binding sites are frequently found outside the TAD bound-
ary, these sites are not in themselves sufficient to demar-
cate TADs. Hence, in one of previous studies, histone mod-
ification marks were incorporated into the prediction of
TAD boundaries along with CTCF-binding sites (11). One
other previous study examining the association between 76
DNA-binding proteins and chromatin loop anchors located
at the ends of contact domains found that the transcrip-
tion factors (TFs) Zinc finger protein (ZNF)143 and Yin
Yang (YY)1 were enriched at TADs (6); the enrichment of
ZNF143 at TADs was later confirmed by another group
(12). However, these studies did not systematically search
for genomic elements associated with TAD boundaries nor
did they evaluate their predictive power. The predictabil-
ity measure could clarify the association between genomic
elements and TAD boundaries, since it takes into account
both coverage and data enrichment. For example, TSSs of
HK genes are the most highly enriched genomic element
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at TAD boundaries, but have weak predictive power since
they are present in only a small fraction of TAD boundaries.
Conversely, CTCF binding sites are good predictors of the
boundaries though they are not particularly enriched at the
boundaries than other genomic elements.

In the present study, we investigated the association be-
tween TAD boundaries and various genomic elements in-
cluding TF-binding sites (TFBSs), TSSs, histone modifi-
cations, and DNase I-hypersensitive sites. We first identi-
fied genomic elements that are enriched at TAD bound-
aries. We then employed machine-learning methodology to
determine those that are important for accurately predict-
ing TAD boundaries (Figure 1). We confirmed that con-
sensus CTCF-binding sites present in multiple cell lines
were better predictors of TAD boundaries, and were as-
sociated with TFs such as ZNF143. We also searched for
genomic elements that represent the structural characteris-
tic of TAD boundaries by measuring their enrichment at
and their ability to predict these boundaries, and identi-
fied TAD boundary-associated genomic elements such as
ZNF143, YY1, MYC complexes, Specificity protein (SP)1,
ZNF274 and SIX homeobox (SIX)5 as well as DNase I-
hypersensitive sites, H3K36me3 and TSSs. We generated a
predictive model based on these genomic elements and ana-
lyzed their localization at specific sites in the TAD. Our find-
ings reveal a number of novel TAD boundary-associated
genomic elements whose functions can provide insight into
the mechanisms of gene regulation.

MATERIALS AND METHODS

TADs and boundaries

A total of 2994 TADs with a length >200 kb were selected
from 3062 previously defined TADs (10). The meeting ends
of two adjacent TADs were designated as a boundary. When
there was a gap between the two ends, these were merged
into a boundary if the spacing was <100 kb. There were
1254 gapped cases, of which 718 were merged. Ultimately,
3586 boundaries were analyzed in this study. The genomic
locations of TADs and boundaries are shown in Supple-
mentary Tables S1 and S2.

Genomic regions before and after 150 kb of the bound-
aries were designated as TAD boundary segments (Figure
1A). A total of 3586 segments were collected and the same
number of segments were randomly sampled from genomic
regions that were not part of a boundary. TAD regions lo-
cated >100 kb away from a boundary were defined as a non-
boundary TAD region; genomic locations in this region
were randomly selected and those within ±150 kb were des-
ignated as TAD segments (Figure 1A). These were evenly
distributed throughout the genome, and both segments to-
gether covered 61% of the entire human genome (Figure 1B
and Supplementary Figure S1).

Genomic elements

Genomic elements were collected from the University of
California, Santa Cruz (UCSC) Genome Browser database
(13); most of these were generated by the ENCODE project
(14) and included TFBS clusters, which are a collection of

transcription factor binding site peaks from multiple exper-
iments in various cell lines (wgEncodeRegTfbsClusteredV3
table). TF signals obtained from the H1-human embry-
onic stem cell (hESC) cell line were separately considered
in order to evaluate the cell type dependency of the TAD
structure. Non-TFBS signals such as locations of DNase I-
hypersensitive sites and TSSs were also retrieved from the
UCSC Genome Browser (13) and were tagged as ‘Other’.
The full list of data used in this study is shown in Sup-
plementary Table S3. TSSs were divided into three groups:
TSSs of mRNA (TSS), TSSs of mRNA and non-coding
RNAs (TSS-ALL), and TSSs of HK genes (TSS-HK). HK
genes were identified from a previously published list (15).
The center of each signal was taken as its genomic location;
for example, a CTCF peak located at 16 110–16 390 on chro-
mosome 1 was assumed to be at 16 250.

Analysis of consensus CTCF-binding sites

We found that genomic elements associated with consen-
sus CTCF-binding sites occupied a narrower region, and we
therefore reduced the range of analysis to ±15 kb. Consen-
sus CTCF-binding sites were defined as signals with a peak
score ≥600 and supported by 60 or more experiments.

Position-specific linear model (PSLM)

To evaluate the predictive power of each genomic element,
we devised a computational model, PSLM, that considers
both position and density of genomic elements in genomic
segments and classifies them into boundaries or TADs.
In the model, the analyzed segments––of boundaries or
TADs––were divided into 11 bins and the number of each
genomic element in each bin was counted, which are used as
11D feature vectors that represent the positional preference
of the genomic element around the boundary or the TAD.
For each genomic element, boundary and TAD segments
were converted into feature vectors, and a predictive model
that segregated boundary and TAD feature vectors was gen-
erated. A linear model was developed using the Bayesian
Ridge method (16), which resembles linear regression but
eliminates abnormally large coefficients by incorporating
parameter regularization. To counter the over-fitting prob-
lem, we used a 5-fold cross-validation approach. All values
presented in this study are results of the test sets.

Population greedy search algorithm (PGSA)

To identify the combination of genomic elements that can
best describe TAD boundaries, we devised a heuristic search
algorithm, PGSA, which is a simple extension of the greedy
search algorithm with genetic algorithm concept. In the
greedy search algorithm, a path that maximizes the ob-
jective function is selected at each optimization step. In-
stead, our algorithm keeps a number of paths with high-
est objective function. In this study, we generated the first
PSLM with the consensus CTCF signal, followed by the
set of all possible combinations containing the CTCF sig-
nal and one additional genomic element. For each com-
bination, a PSLM was generated and the area under the
curve (AUC) was determined. Genomic element combina-
tions of the 10 best models were collected, and the next
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Figure 1. Dataset and schematic illustration of analytical approaches. (A) TADs were retrieved from a previously published study (10), and TAD boundaries
were defined as the ends of TADs. The ±150-kb region of TAD boundaries were designated as boundary segments, and the same number of genomic
regions located in the TAD––designated as TAD segments––were identified by randomly selecting locations within TADs. (B) Genomic distribution of
boundary and TAD segments (the distribution in the whole region of analysis is shown in Supplementary Figure S1). (C) Signals corresponding to each
genomic element were mapped onto the boundary and TAD segments. The collective distributions of genomic elements in these segments were compared
in order to identify TAD boundary-enriched genomic elements. In another approach, signals in each segment were used to generate a predictive model
that distinguishes boundary from TAD segments. The model was used to predict the relative importance and predictive power of genomic elements for
TAD boundary formation.

set of combinations was generated by adding one more ge-
nomic element to each selected combination. This proce-
dure was repeated until combinations of 10 genomic ele-
ments were evaluated. This analysis yielded pseudo-optimal
combinations of genomic elements that are highly predic-
tive of TAD boundaries. The analysis also revealed genomic
elements that were consistently selected in the best pre-
dictive models and would be robust features of the TAD
boundary. Genomic elements were incorporated by con-
catenating 11D feature vectors; thus, combining two ge-
nomic elements yielded a 22D feature vector. Our dataset
contained some redundant information––for example, both
TFBS cluster and H1-hESC-specific data were available for
RAD21. Since highly correlated features can cause prob-
lems when constructing predictive models, data represent-
ing the same genomic element were grouped into a class, and
only combinations of different classes were allowed during
PGSA optimization steps. The list of genomic elements and
their classes is shown in Supplementary Table S1.

With this algorithm, combinations of genomic elements
were analyzed to identify those that were consistently used
in multiple models. This was measured as the number of
top predictive models containing a genomic element, or as
the ‘selection count’. However, this value was large for ge-

nomic elements that were incorporated in the earlier opti-
mization step and the genomic elements that were intro-
duced in a later step but were used repeatedly would be
under-weighted. We therefore devised another measure re-
ferred to as ‘persistence score’, which was obtained by divid-
ing the selection count by the number of predictive models
in subsequent rounds of optimization.

Boundary enrichment score

For quantitative comparisons of boundary enrichment, a
boundary enrichment score was calculated. The value is a
weighted integration of the relative preference for bound-
ary over non-boundary segments and is determined by the
following equation:

Se =
m∑

i=1

p(i, BD) ln
[

p(i, BD)
p(i, TAD)

]

where Se is the enrichment score; p is the relative frequency
of a genomic element at position i observed in boundary
(BD) and TAD segments; and m is the number of bins span-
ning the entire region of analysis (300 kb) (m = 550 in this
study).
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RESULTS

CTCF-binding sites and TSSs in TAD boundaries

CTCF-binding sites and TSSs have been reported to be en-
riched at TAD boundaries, which was confirmed in our
dataset (Supplementary Figure S2). A large number of both
elements were found within 50 kb of TAD boundaries; how-
ever, CTCF count distributions of boundary and TAD seg-
ments were not clearly distinguishable (Supplementary Fig-
ure S2A). Similarly, TSS counts could not effectively dis-
tinguish between boundary and TAD segments, and ∼800
TAD boundaries lacked TSSs within a 100-kb range (Sup-
plementary Figure S2B). Therefore, CTCF-binding sites
and TSSs are not sufficient in themselves to demarcate TAD
boundaries, which are likely defined by other genomic el-
ements. We therefore examined the association of various
genomic elements with TAD boundaries.

Boundary-enriched genomic elements

Genomic elements enriched or depleted in the vicinity of
TAD boundaries would be involved in their formation. Bio-
chemical analysis techniques including next-generation se-
quencing have identified the locations of various genomic
elements. These data were obtained from UCSC Genome
Browser database, which contains a large number of data
generated by the ENCODE project (13,14). Our com-
pendium mostly included DNA-binding proteins and his-
tone modifications along with other elements such as TSSs
and DNase I-hypersensitive sites (Supplementary Table S1).
The location of each genomic element was mapped onto
boundary and TAD segments (Figure 1A), and the bound-
ary enrichment score was calculated.

CTCF and TSS-HK were reportedly enriched at TAD
boundaries (10); this was confirmed by their abundance at
the boundary region and slight depletion in TADs (Figure
2A and B). There were approximately 1.7 and 4 times more
CTCF-binding sites and TSS-HKs, respectively, near TAD
boundaries. For a quantitative comparison, we calculated
an enrichment score for each genomic element and found
that TSS-HK was the most highly enriched element at the
boundary, followed by RNA polymerase II and TFs such as
SP4, Sin3A-associated protein (SAP)30, General transcrip-
tion factor IIF subunit (GTF2F)1, and MYC (Figure 2C).

SP4 is an SP family TF that recognizes GC boxes in many
promoters (17), while GTF2F1 is a general TF that binds to
the TATA box (18). MYC controls the expression of a wide
variety of genes and is an important regulator of cell prolif-
eration and death (19). The enrichment of these factors may
be related to the transcriptional activity of TAD bound-
aries and TSS enrichment. In contrast to these general ac-
tivating TFs, SAP30 is a component of histone deacetylase
complex that is involved in gene repression (20). Therefore,
TAD boundary formation may not be solely associated with
gene activation, but may involve a more complex regulation
that includes changes in chromatin structure. Most DNA-
binding proteins were enriched at the boundary (Supple-
mentary Figure S3), possibly due to TSS enrichment. How-
ever, some genomic elements were more highly represented
at the boundaries than others, suggesting that they have im-
portant roles in TAD boundary formation.

The various TAD boundary-associated genomic ele-
ments identified by our analysis were not sufficient to char-
acterize or predict TAD boundaries. For example, although
some boundaries contained an abundance of TSSs, oth-
ers lacked them altogether (Supplementary Figure S2B).
We therefore used machine-learning techniques to identify
genomic elements related to TAD boundaries. Specifically,
the positional densities of genomic elements were converted
into feature vectors, and linear predictive models that seg-
regated boundary and TAD segments were generated. This
type of PSLM was constructed for each genomic element
and its predictive power was evaluated based on the aver-
age AUC of receiver operating characteristic curves in the
5-fold cross-validation approach.

Boundary-predictive genomic elements

Genomic elements with the highest predictive power dif-
fered markedly from boundary-enriched elements (Figures
2C and 3D and Supplementary Figure S3). The model with
CTCF had the highest predictive power for the boundary,
with an AUC of 0.751 (Figure 3A, D). This model predicted
82% of TAD boundaries with an erroneous prediction rate
of 46% of TADs as boundaries when the prediction thresh-
old was set to the maximum F1 score (Figure 3B). The po-
sitional preference of a genomic element was inferred from
the coefficients of the model. In the case of CTCF, the co-
efficient was largest at the center, indicating that a higher
number of CTCFs were located at the center of the TAD
boundary while fewer were present in regions remote from
the center (Figure 3C).

In agreement with previous reports (7,10), models for
CTCF and cohesin complex proteins including RAD21 and
Structural maintenance of chromosomes protein 3 (SMC3)
showed the highest prediction accuracy (Figure 3D). In-
terestingly, CTCF-binding site information from the H1-
hESC cell line was more useful for boundary prediction
than CTCF information in the TFBS clusters data, which
is a collection of CTCF peaks from multiple cell lines. The
latter may contain cell type-specific sites, which would lower
the prediction accuracy. Since consensus CTCF-binding
sites were found to be more closely associated with TAD
boundaries (21), CTCFs were classified as consensus or
non-consensus and genomic elements associated with the
consensus ones were then characterized in the next section.

The TF ZNF143 was found to be a powerful predic-
tor of TAD boundaries, even competing with CTCFs. Al-
though the function of ZNF143 is not well characterized,
it was reported to be associated with the regulation of U6
small nuclear RNA transcription and recruitment of chro-
matin remodelers (22). It was also implicated in distal chro-
matin interactions (6,12). Thus, ZNF143 may interact with
other components of TAD boundaries by acting as a scaf-
fold for other proteins or mediating interactions between
TAD boundaries. YY1 participates in transcriptional re-
pression of microRNAs by recruiting Enhancer of zeste ho-
molog 2 and inducing H3K27 trimethylation (23). YY1-
binding DNA motifs were detected around CTCF sites in
Tsix, a non-coding RNA that is involved in X chromosome
inactivation, and physical association between YY1 and
CTCF has been confirmed (24). Although the structural
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Figure 2. TAD boundary enrichment. Positional distribution of each genomic element and its enrichment at TAD boundaries. (A) Enrichment of CTCF-
binding sites at TAD boundaries. (B) Enrichment of TSS-HK at TAD boundaries. (C) Genomic elements with the 50 highest enrichment scores (the full
list is shown in Supplementary Table S2).

implications of this interaction are unclear, they may con-
tribute to the shaping of TAD boundaries. Other TFs such
as Lysine demethylase 4A (KDM4A), and PHD finger pro-
tein 8 (PHF8) were highly predictive of TAD boundaries.
KDM4A is involved in the demethylation of trimethylated
H3K9 and H3K36, which are associated with heterochro-
matin regions and transcriptional elongation, respectively
(25,26). PHF8 is also a lysine demethylase that catalyzes
the demethylation of mono- and di-methylated H3K9 (27).
These TFs are mainly related to the histone modification
and chromatin conformation. However, our finding that
their binding sites were better predictors of TAD bound-
aries than the corresponding modifications suggests that
they have additional functions.

Consensus CTCF-binding sites and associated genomic ele-
ments

Given that TAD boundaries are conserved among cell lines
and that the consensus CTCF signal is a better predic-
tor of TAD boundaries (8,21), we evaluated the predictive
power of a subset of CTCF signals that were supported
by multiple experiments. These CTCF signals were more
abundant at TAD boundaries (Figure 4A). The predictabil-
ity was improved with the number of supporting experi-
ments but reached a maximum performance when signals
from 60 or more experiment were used (Figure 4B). We
also analyzed another subset of CTCF signals with differ-
ent peak score thresholds that considers the statistical sig-

nificance and reproducibility of the signal (28). Both en-
richment and AUC scores increased as a higher peak score
threshold was applied (Supplementary Figure S4A and B).
An AUC score of 0.793 was achieved when the predictive
model was generated with CTCF signals that were sup-
ported by 60 or more experiments and had a peak score
larger than 600; these were designated as consensus CTCF
signals (Supplementary Figure S4D). Since these signals
significantly improved TAD boundary prediction, we hy-
pothesized that they would have characteristics that were
distinct from those of non-consensus CTCF binding sites.
CTCF is a ubiquitous TF for which the binding site can
vary according to cell type; as such, it is thought to bind
to specific genomic regions in association with cofactors
(29). Thus, specific TFs may be associated with consensus
CTCFs. To identify such cofactors, we classified CTCF sig-
nals as consensus and non-consensus CTCFs, and searched
for genomic elements that were preferentially associated
with the former.

ZNF143 was the most abundant genomic element at con-
sensus CTCFs and a good predictor of them (Figure 4C
and D). It was also a good predictor of TAD boundaries
(Figure 3D). Its enrichment at these boundaries (12) and at
chromatin loop anchors (6) contributes to chromatin inter-
actions through associations with CTCF and cohesin (30).
SMC3 and RAD21 were also closely associated with con-
sensus CTCFs in terms of both the enrichment score and
predictive power (Figure 4C and D). Thus, the association
between CTCFs and the cohesin complex, which may in-
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Figure 3. TAD boundary prediction. Predictive power of position-specific linear models. (A) ROC curves of CTCF-based models. A 5-fold cross-validation
approach was used; curves represent models constructed in each cross-validation procedure. (B) True and false positive ratios of CTCF-based models. Levels
were measured at the threshold with the highest F1 score. (C) Coefficients of the CTCF model. (D) Top 50 genomic elements with the highest predictive
power (the full list is shown in Supplementary Table S4).

volve ZNF143, is an important factor that discriminates
consensus from non-consensus CTCFs. YY1 was likewise
a powerful predictor of consensus CTCFs. YY1 can physi-
cally associate with CTCF (24) and is enriched at chromatin
loop anchors (6). Thus, YY1 may also act as a CTCF co-
factor that facilitates distal chromatin interactions. In ad-
dition, TFs including GA-binding proteins and MYC were
enriched at consensus CTCF-binding sites. The association
between MYC and RAD21 has been reported in fission
yeast (31); these TFs may contribute to recruitment of co-
hesin complexes and TAD boundary formation.

TAD boundary prediction with multiple elements

The consensus CTCF was the single most informative ge-
nomic element in predicting TAD boundaries, but ∼40% of
TAD segments were indistinguishable from boundary seg-
ments (Supplementary Figure S5B). We therefore hypothe-
sized that other genomic elements also contribute to the for-
mation of TAD boundaries, and we searched for a combina-
tion of genomic elements that could improve TAD bound-
ary prediction along with the consensus CTCF. To this end,
we devised the PGSA, which increases the predictive power
of the model by sequentially incorporating an additional ge-

nomic element to the previous model. Up to 10 combina-
tions of genomic elements were evaluated, but the incorpo-
ration of three elements––DNase-Cluster, H3K36me3, and
TSSs––of both mRNA and non-coding RNA (TSS-ALL)
showed the greatest increase in predictive performance (Fig-
ure 5A). These elements were consistently detected in later
optimization steps (Figure 5B and C), highlighting their im-
portance in TAD boundary prediction. The resultant pre-
dictive model was able to predict TAD boundaries with an
AUC of 0.826, and 86% of boundaries were successfully pre-
dicted with an erroneous prediction rate of 37% of TAD re-
gions as boundaries at the precision of 0.70 (Supplementary
Figure S5E).

We examined the coefficients of the PSLM, which was
built with these four genomic elements, to determine the
locational preference of genomic elements around TAD
boundaries. The coefficients were similar to each other irre-
spective of the choice of training set, suggesting that the pre-
dictive models were robust and that the coefficients them-
selves were informative (Figure 6A). The coefficients indi-
cated that consensus CTCFs were preferentially localized at
the center of the TAD boundary, which spans ∼100 kb. This
is consistent with the enrichment of CTCFs at the bound-
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Figure 4. Consensus CTCF-associated genomic elements. (A) Dependency of enrichment score on the number of supporting experiments. (B) Dependency
of predictive power on the number of supporting experiments. (C) Genomic elements enriched at consensus CTCFs. (D) Genomic elements predictive of
consensus CTCFs (the full list is shown in Supplementary Table S5).

ary and also with the fact that multiple CTCF-binding sites
are located near TAD boundaries (Supplementary Figure
S2A).

H3K36me3 was also clustered at the center of the TAD
boundary (Figure 6A). This modification is enriched at con-
tact domains related to compartment A, which is thought
to be related to gene activation (6). H3K36me3 is associ-
ated with alternative splicing and reduced chromatin ac-
cessibility (32), and is recognized by PWWP domain pro-

teins including DNA methyltransferase 3A (DNMT3A)
(33). These findings suggest that H3K36me3 can recruit cel-
lular machinery for altering chromatin structure.

TSSs of both mRNA and non-coding RNA (TSS-ALL)
were also abundant at the center of the TAD boundary (Fig-
ure 6A). The selection of TSS-ALL over the TSS of mRNAs
indicates that the binding of large molecular machinery can
contribute to the formation of TAD boundaries. Alterna-
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Figure 5. Combination of genomic elements. (A) TAD boundary prediction by the best multi-element models identified by PGSA. (B) Graphical repre-
sentation of genomic elements identified by the PGSA approach. Each genomic element is represented as a node whose size and color are the ‘selection
count’ and ‘persistence score’, respectively. Edges were drawn between two genomic elements used by top predictors and the width is the number of models
supporting the relationship. (C) Genomic elements used in the top 10 models shown in a matrix-like format. Large columns enclosed by solid lines represent
each optimization round, and contain 10 small columns corresponding to the top 10 models. Genomic elements used in a model or column are indicated
by a green color. For example, the top-ranked model of the second optimization round, or that with three genomic elements, is composed of DNase and
TSS-ALL.

tively, changes in nucleosome position by polymerase bind-
ing (34) can influence the structure of these boundaries.

The weights of DNase I-hypersensitive sites were mostly
negative around the TAD boundary (Figure 6A), which ap-
pears to be contradictory to the fact that the binding of
proteins to DNA generally increases chromatin accessibility
(5). In fact, the DNase I sites were enriched at the bound-
aries (Supplementary Table S4). However, DNase I signals
are correlated with the CTCF signals, and when compar-
ing a boundary and a TAD region with the same level of
CTCF signals the DNase I signals are weaker in the bound-
ary region than in the TAD region (Supplementary Fig-
ure S6). Consequently, the coefficient of DNase I is neg-
ative in the boundary prediction model. It is unclear why

the boundaries are associated with slightly reduced DNase
I signal. The chromatin conformation of the boundaries
might be different from those of well exposed TAD regions.
Recently, it was suggested that the TAD boundary region
might be less flexible than other regions and this physical
property may contribute to the separation of two adjacent
TADs (7). The association of various cellular machineries
such as CTCF, RNA polymerases, and DNMT3A could co-
operatively induce structural changes in chromatin at TAD
boundaries and make the region less flexible. The resultant
conformation may reduce interaction between two adjacent
TADs, and thus act as a barrier for inter-domain interac-
tion.
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Figure 6. Inference of positional preference. Coefficients of each genomic element in the PSLM. (A) Model constructed with four genomic elements
(consensus CTCF, H3K36me3, TSS-ALL and DNase-Cluster). (B) Model with four additional genomic elements (RNA polymerase II, and TFs SP1,
ZNF274 and SIX5).

The incorporation of more genomic elements further im-
proved the predictive power of genomic elements, albeit
only modestly (Figure 5A). We analyzed the prediction
models with four additional genomic elements––namely,
RNA polymerase II, SP1, ZNF274, and SIX5––which were
consistently observed in subsequent optimization steps
(Figure 5B and C). The coefficients of CTCF, H3K36me3,
TSS, and DNase of this model (Figure 6B) were simi-
lar to those in the previous model (Figure 6A), suggest-
ing that these genomic elements are robust features of
the TAD boundary. RNA polymerase II binding sites of
H1-hESC were preferentially associated with TAD bound-
aries, suggesting that genes that are actively transcribed
in hESCs are more closely associated with TAD bound-
aries than others. SP1 had negative weight in the bound-
ary region. The activity of SP1 is regulated by various post-
translational modifications and has been linked to vari-
ous cellular processes including differentiation, cell growth,
and death (35,36). Although the underlying mechanism re-
quires more detailed study, conditional binding is not a
feature that favors the constitutive genomic structure of
TADs. As such, it is likely that the TFs under cellular reg-
ulation are disfavored at TAD boundaries. An intriguing
pattern emerged for ZNF274 in that two preferential coef-
ficients flanked the negative coefficient region (Figure 6B).
The function of ZNF274 is not fully understood, but it is
thought to repress transcription by recruiting the histone–
lysine N-methyltransferase SET domain bifurcated 1 and

forming heterochromatin (37). Therefore, it could facilitate
the formation of and function as a boundary for TADs.
To date, there are no known modifications for ZNF274
in UniProt (38), suggesting that it is a constant feature of
the genomic structure. SIX5 was positively associated with
TAD boundaries; its mutation has been linked to branchio-
oto-renal syndrome (39,40), but its role in chromatin struc-
ture is mostly unknown. Similar to ZNF274, there have
been no regulatory modifications reported for SIX5 (37); it
may therefore stably bind to specific DNA sequences, which
could contribute to the formation of TAD boundaries.

DISCUSSION

The present study systematically evaluated the enrichment
of genomic elements at TAD boundaries and analyzed their
ability to predict the location of these boundaries. A model
of the TAD boundary is shown in Figure 7. CTCF and co-
hesin complexes were confirmed as the most important fea-
tures of TAD boundaries. In particular, consensus CTCF-
binding sites were closely associated with these boundaries
and are presumed to be involved in distal genomic interac-
tions in conjunction with cohesin complexes, whose bind-
ing would be facilitated by cofactors such as ZNF143 and
YY1. TAD boundaries are better described as a combina-
tion of multiple genomic elements, and a predictive model
incorporating these can provide insight into the structural
characteristics of boundaries. Genomic elements associated
with boundaries were related to larger molecular machiner-
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Figure 7. Model of TAD boundary. CTCFs are highly enriched at boundaries of both contact domains and topologically associated domains. In particular,
CTCF-binding sites found in multiple cell lines were closely associated with boundaries. Co-factors such as ZNF143 and YY1 may be involved in the
association of the cohesin complex to these sites, whereby two distal regions would be in contact. Unlike contact domain boundaries, multiple CTCF-
binding sites were observed at TAD boundaries. Other genomic elements including TSS, H3K36me3 and SIX5 were associated with these boundaries, and
the chromatin would assume a more closed conformation. The association of TFs such as SIX5 at the boundaries and SP1 in TADs may have different
structural effects on chromatin structure. Consequently, the binding of a distinct set of genomic elements and resultant structural changes in the chromatin
would lead to the separation of the boundary and TAD regions; the former can then associate with each other, while two adjacent TADs can be more
definitively separated from each other.

ies and were distributed over a large genomic region span-
ning approximately 100 kb. Boundary regions were less ac-
cessible to DNase than TAD regions with similar CTCF sig-
nals, suggesting that the two regions have distinct chromatin
conformations, which may be attributed to H3K36me3. Al-
ternatively, the binding of large molecular machinery may
cause slight chromatin condensation at TAD boundaries.
The physical structure of these regions is not well under-
stood, but it is thought that boundaries have extended con-
formation, at least in large scale. Since there are multiple
CTCF sites at the boundary, two adjacent boundaries can
anneal together instead of forming internal loops. On the
other hand, the binding of multiple larger machineries may
obstruct dense packing in the region or make the region sep-
arated from the condensed region (41), resulting in its pro-
trusion from the domain. The binding of a specific set of
proteins can also alter chromatin organization, making the
region less flexible and causing it to adopt an extended con-
formation. In some cases, TFs such as ZNF274 may func-
tion as a nucleation site for TAD structures and thereby
limit the scope of interactions of adjacent chromatin.

The PSLM model assumes a single boundary struc-
ture, but TADs are not homogeneous and their boundaries
would be heterogeneous. We evaluated the effect of the het-
erogeneity by changing the boundary orientation to make
a certain genomic element placed more abundantly on the
upstream of the boundary. This simple treatment increased
the prediction performance of the models (Supplementary
Table S6). We think that further details of the TAD bound-
aries can be revealed by developing computational model
that can consider the heterogeneity of TADs. Despite the
fact that various genomic elements were observed in the
orientation models, the boundary associated genomic ele-
ments reported here were recurrently found in the best pre-
dictive models, and the models built with these genomic el-
ements were similar to the original model (Supplementary
Figures S7 and S8), indicating that the boundary associated
elements successfully represent a majority of TAD bound-
aries.

In conclusion, we revealed a set of genomic elements that
are statistically associated with TAD boundaries. Some of
these have been previously reported and others remain to
be confirmed. Nonetheless, the findings reported here can
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serve as a basis for studies on the mechanisms of TAD for-
mation and how genomic structure contributes to gene reg-
ulation.
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