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Clinical and cognitive dysfunction in Multiple Sclerosis (MS) is insufficiently explained by structural damage
as identified by traditional magnetic resonance imaging (MRI) of the brain, indicating the need for reliable
functional measures in MS. We investigated whether altered resting-state oscillatory power could be related
to clinical and cognitive dysfunction in MS. MEG recordings were acquired using a 151-channel whole-head
MEG system from 21 relapsing remittingMS patients and 17 healthy age-, gender-, and education-matched con-
trols, using an eyes-closed no-task condition. Relative spectral power was estimated for 78 regions of interest,
using an atlas-based beamforming approach, for classical frequency bands; delta, theta, alpha1, alpha2, beta
and gamma. These cortical power estimates were compared between groups by means of permutation analysis
and correlated with clinical disability (Expanded Disability Status Scale: EDSS), cognitive performance and MRI
measures of atrophy and lesion load. Patients showed increased power in the alpha1 band and decreased power
in the alpha2 band, compared to controls, mainly in occipital, parietal and temporal areas, confirmed by a lower
alpha peak-frequency. Increased power in the alpha1 band was associated with worse overall cognition and
especially with information processing speed. Our quantitative relative power analysis of MEG recordings
showed abnormalities in oscillatory brain dynamics in MS patients in the alpha band. By applying source-space
analyses, this study provides a detailed topographical view of abnormal brain activity in MS patients, especially
localized to occipital areas. Interestingly, poor cognitive performance was related to high resting-state alpha1
power indicating that changes in oscillatory activity might be of value as an objective measure of disease burden
in MS patients.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Multiple Sclerosis (MS) is an acquired progressive neurological
disease with a highly variable course, leading to both physical symptoms
and cognitive impairment. Clinical and cognitive decline in MS is insuffi-
ciently explainedby classicalMRImeasures such as lesion load or atrophy
of the white matter (Barkhof, 2002). However axonal damage and
demyelination in the gray matter seem to correlate with clinical
and cognitive deficits in MS (Geurts and Barkhof, 2008).

In physiological conditions modulations in neuron population firing
probability occur preferentially during a certain phase of the oscillatory
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activity (Schnitzler and Gross, 2005). Demyelination and axonal
damage could lead to altered firing probability and therefore to altered
oscillatory cortical activity in MS. Neurophysiological techniques, such
as EEG and MEG, can be used to detect such changes in activity, as has
been demonstrated for neurological diseases such as Alzheimer's
disease (de Haan et al., 2008; Jeong, 2004; Stam et al., 2006),
Parkinson's disease (Bosboom et al., 2006; Ponsen et al., 2013; Stoffers
et al., 2007), low-grade glioma (Bosma et al., 2008), traumatic brain in-
jury (Kumar et al., 2009), and stroke (van Putten and Tavy, 2004). Up to
70% of patients with MS suffer from cognitive impairment (Rao et al.,
1991); attention, information processing speed and memory being the
most commonly affected domains (Chiaravalloti and DeLuca, 2008).
There is increasing evidence that changes in oscillatory brain activity
may be related to cognitive dysfunction in neurological disease
(Schnitzler and Gross, 2005; Stam and van Straaten, 2012; Uhlhaas
and Singer, 2006).We therefore hypothesize that cognitive impairment
in MS patients might be partially explained by pathological changes in
oscillatory brain activity.
served.
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To date, literature on EEG or MEG in MS is scarce. Visual inspection
of EEG recordings fromMS patients revealed more focal EEG abnormal-
ities (slow activity) in patients with relapses compared to patients with
a progressive course (Feng, 1981). A 5-year follow-up study did not
show a significant correlation between visual EEG abnormalities and
neurological disability (Quattrini et al., 1981). Yet, another group used
computerized spectral analysis to demonstrate a positive relation
between patients' disability and increased theta power over the temporal
regions and increased beta power over the frontal regions, where visual
interpretation of the EEG failed to demonstrate any correlations (Colon
et al., 1981). Power spectral density analysis of EEG data, obtained during
an auditory oddball task, revealed increased power in beta and gamma
bands (especially over midfrontal areas) in MS patients compared to
healthy controls (Vazquez-Marrufo et al., 2008). Similarly, for a
visuo-spatial task,more beta and gammapowerwas foundover occipital
and right-frontal regions in relapsing remittingMS patients compared to
a group of healthy controls, but no differences were found in the high
frequency bands during resting-state, nor were there any significant
correlations between quantitative EEG (QEEG) scores and Expanded
Disability Status Scale (EDSS) (Vazquez-Marrufo et al., 2008).

Compared to EEG, MEG provides a reference free method and the
magnetic fields are much less disturbed by the skull. MS research using
EEG and MEG has recently focussed on altered functional connectivity,
which referrers to statistical interdependencies between physiological
time series (Cover et al., 2006; Leocani et al., 2000; Schoonheim et al.,
2013; Tecchio et al., 2008), and changes in functional network topology
(Hardmeier et al., 2012; Schoonheim et al., 2013). A more basic charac-
terization, including for example global and local spectral analysis of the
rhythmic MEG activity in MS patients has not been performed to date.
Yet, knowledge of changes in local spectral power seems fundamental
in comprehending the outcome of connectivity research. Additionally,
the aforementioned studies were performed at the sensor level, i.e.
results were estimated based on the extracranial recordings directly,
making interpretation of these results in terms of the specific anatomical
brain regions that are involvedmore difficult. In addition, investigation of
abnormal MEG activity at the source-level facilitates comparison with
other neuroimaging techniques, notably structural and functional MRI.

The aim of the present MEG study was therefore to explore differ-
ences in resting-state oscillatory brain activity inMS patients compared
to healthy controls, and to relate these differences to cognitive perfor-
mance, physical disability and structural deficits measured with MRI.
A recently developed technique, projecting sensor-based data onto an
atlas-based source-space using beamforming, was applied (Hillebrand
et al., 2012) in order to provide a detailed anatomicalmapping of cortical
rhythms for 78 regions of interest (ROIs).

2. Methods

2.1. General study design

In this cross-sectional study MS patients and healthy controls
underwent MEG, MRI, neurological examination and neuropsychological
assessment on the same day. Outcome measures were global relative
power, relative power per ROI (regional relative power), peak frequency,
anterior–posterior gradients, diffuse slow-wave activity and the presence
of asymmetry. These outcome measures were associated with cognition
and MRI measures.

2.2. Subject characteristics

MS patients and healthy volunteers were recruited from an ongoing
large clinical study at theMultiple Sclerosis Center of the VU University
Medical Center, as described in a previous MEG study in the same sub-
jects (Schoonheim et al., 2013). Our project involved 34MSpatients (17
women, mean age 41.4 ± 8.0 years, disease duration 8.1 ± 1.6 years)
and 28 healthy controls (14 women, mean age 39.8 ± 10.5 years),
matched for age, gender and educational level (using a Dutch classifica-
tion system ranging from 1 (only primary education) to 7 (university
degree)). Twenty four participants were excluded from further analysis
due to unavailability of an anatomical MRI (n = 2), failed MEG/MRI
co-registration (n = 10) and too many artifacts in the raw MEG data
(n = 12). Consequently, 21 MS patients (mean age 41.9 ± 7.7, disease
duration 6.8 ± 0.9 years) and 17 controls (mean age 39.8 ± 9.8)
remained in the present study, who were still gender-, age- and
education-matched. Patients were diagnosed with MS according to
the revisedMcDonald Criteria (Polman et al., 2005). None of the healthy
controls suffered from a neurological or psychiatric disease, nor did they
use anymedication or drugs. Eight patients were treated with interferon
β since diagnosis, one of them switched to glatiramer acetate and two to
natalizumab,which they received during this study. No othermedication
was used. Patients were assessed according to a clinical protocol, in-
volving history taking, neurological examination, blood tests, neuro-
psychological tests, MRI of the brain andMEG. Physical disability was
measured using the Expanded Disability Status Scale (EDSS) (Kurtzke,
1983). The study protocol was approved by the Local Research Ethics
Committee, whose ethics review criteria conformed to the Helsinki
declaration. All subjects had given written informed consent prior to
participation.

2.3. MRI

AnMRI scanwas obtained from all subjects, using a 3 T-MRI system
(GE Signa HDXT V15m). 2D dual-echo T2-weighted sequence (TR
9680 ms, TE 22/112 ms) and T1-weighted sequence (TR 475 ms, TE
9 ms) were obtained with 48 slices of 3 mm and 3D-T1 heavily
T1-weighted sequence (FSPGR, TR 7.8 ms, TE 3.0 ms, TI 450 ms) with
1 mm slices covering the entire brain. All scans were inspected by an
experienced rater (MMS). T1-hypointense and T2-hyperintense lesions
in MS patients were marked and their volumes were measured using a
local-threshold technique. Total normal gray matter volume (NGMV),
total normal white matter volume (NWMV), and normal whole brain
volumes (NBV), corrected for head size, were estimated using FSPGR
images and SIENAX (Smith et al., 2002) version 2.5 (part of FSL 4.1,
FMRIB's Software Library, http://www.fmrib.ox.ac.uk/fsl). Thalamic
volumes were outlined and volumes measured using FIRST (part of
FSL), as described before for this cohort (Schoonheim et al., 2012).
Left and right volumes were summed to give the total volume.

2.4. Neuropsychological evaluation

Cognitive function in all subjects was assessed according to the
protocol used and described before (Schoonheim et al., 2012). A
Brief Repeatable Battery of Neuropsychological Tests (BRB-N), the
selective reminder test (SRT), the 10/36 spatial recall test (SPART), the
symbol digit modalities test (SDMT), the word list generation test
(WLG), the concept shifting test (CST), the Stroop color-word test and
the memory comparison test (MCT) were administered. Individual
patients' test scores were converted to z-scores, using the means and
standard deviations of the entire group of participants. The z-scores
for all tests were averaged for each subject, creating overall cognition
z-score. Subsequently, individual scores on the tests were summarized
into seven cognitive domains, namely (1) executive functioning (CST,
WLG), (2) information processing speed (SDMT), (3) psychomotor
speed (CST, SDMT), (4) attention (Stroop), (5) verbal memory (SRT),
(6) working memory (MCT), and (7) visuospatial memory (SPART).
Construction of these domains with comparable cognitive tests has
been reported previously and was based on a principal component
analysis using varimax rotation with Kaiser normalization performed
on the z-scores for a large group of healthy controls (Klein et al.,
2003), and these domains are commonly used in neurocognitive prac-
tice and research.

http://www.fmrib.ox.ac.uk/fsl
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2.5. MEG recording

MEG data were acquired using a 151-channel whole-head MEG
system (CTF Systems Inc., Port Coquitlam, BC, Canada), while subjects
were seated inside a magnetically shielded room (Vacuum-schmelze
GmbH, Hanau, Germany). A third-order software gradient (Vrba et al.,
1999) was used with a recording passband of 0–150 Hz and a sample
frequency of 625 Hz. At the beginning and end of the measurement,
the head position relative to the coordinate system of the helmet was
determined by leading small currents through three position coils situ-
ated at the left and right pre-auricular points and the nasion. Changes in
head position smaller than 0.5 cm during the recording were accepted.
The MEG recordings were performed in a no task, eyes-closed and
eyes-open condition. Only data from the eyes-closed condition were
analyzed here. For each participant, 5 min of the continuous
resting-state, eyes-closed recording was divided into 45 epochs of
6.555 s. Channels and epochs were visually inspected. Epochs and
channels were rejected based on system related artifacts (SQUID
jumps, noisy, broken or saturated channels), physiological artifacts
(eye movements, eye blinks, muscle artifacts), external artifacts
(magnetized dental fillings) and environmental noise (Gross et al.,
2013), as well as for representing an alert eyes-closed state, leading
to discarding on average 5.7 channels (range: 2–14) and 8.4 epochs
(range: 3–20). The selected epochs were subsequently projected to
source-space.

2.6. Beamforming: time-series estimation for regions-of-interest

The technique used in this study was recently described (Hillebrand
et al., 2012). A brief overview is given below. First, a subject's MRI was
co-registered with the MEG data through identification of the same an-
atomical landmarks in theMRI that were also used for the placement of
the MEG head-localization coils (i.e. left and right pre-auriculars and
nasion). Only data from subjects where the estimated co-registration
error was smaller than 0.8 cm were accepted for further analysis. The
co-registered MRI was then spatially normalized to a template MRI
using the SEG-toolbox in SPM8 (Friston et al., 2004). The new segmen-
tation toolbox is an extension of the unified segmentation algorithm,
which incorporates additional tissue priors for improved matching of
the subject's MRI to the template (Ashburner and Friston, 2005;
Weiskopf et al., 2011). The automated anatomical labeling (AAL) atlas
was used to label the voxels in a subject's normalized co-registered
MRI (Tzourio-Mazoyer et al., 2002). Subcortical structures were re-
moved, and the voxels in the remaining 78 cortical ROIs were used for
further analysis (Gong et al., 2009), after inverse transformation to the
patient's co-registered MRI.

Neuronal activity for the labeled voxels in the ROIs was re-
constructed using a beamforming approach known as Synthetic
Aperture Magnetometry (SAM) (Robinson and Vrba, 1999). SAM
works in a sequential fashion, where the activity for each voxel is
reconstructed by selectively weighting the contribution from each
MEG sensor to a voxel's time-series. This weighting is done such that
the activity at a voxel is reconstructed without distortion, and at the
same time the contribution from external (noise) sources is minimized
(Hillebrand and Barnes, 2005; Hillebrand et al., 2005). The beamformer
weights are based on the covariance of the data and the forward solu-
tion (lead field) of a dipolar source at the voxel location, where data
were band-pass filtered from 0.5 to 48 Hz. To correct for non-uniform
projection of sensor noise each beamformer weight was normalized
by its vector norm. A time-window of, on average, 238 s (range:
164–282 s)was used for the computation of the data covariancematrix,
which was considered sufficient for accurate estimation of the data
covariance, and therefore for the accuracy of the reconstructed source
power (Brookes et al., 2008). We used broadband data for the estima-
tion of the beamformerweights, as this avoids overestimation of covari-
ance between channels (Hillebrand and Barnes, 2005). The sensor-level
data were subsequently projected through the beamformer weights,
resulting in a time-series for each voxel. Each ROI containsmany voxels
and the number of voxels per ROI differed. In order to represent a ROI by
a single time-series, we selected, for each ROI and frequency band
separately, the voxel with maximum absolute power in that frequency
band (Hillebrand et al., 2012). The time-series for this voxel was
used for further analysis, resulting in a total of 6 sets of 78 time-series
(one for each frequency band, using six classic frequency bands: delta
(0.5–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz),
beta (13–30 Hz), and gamma (30–48 Hz)). Like in our previous studies
we selected five artifact-free epochs of 4096 samples (6.555 s) from
these time-series, based on careful visual inspection (PT) to obtain
stable results (Douw et al., 2010a, 2010b; Bosboom et al., 2006;
Bosma et al., 2008; Douw et al., 2008, 2009; Schoonheim et al.,
2013; Stam et al., 2006, 2009; Stoffers et al., 2007; van Dellen et al.,
2013). BrainWave software packing was used for this purpose
and also for further analyses (version 0.9.58 available from http://
home.kpn.nl/stam7883/brainwave.html).

The relative power, averaged over the selected 5 epochs, in every
ROI for every subject was calculated using the Fast Fourier Transfor-
mation. In addition, the mean power over all ROIs was calculated to
yield one mean power value per frequency band in every subject
(global relative power). The peak frequency was determined as
well. Other properties of the MEG background rhythm were also
computed, namely anterior posterior gradients, the amount of dif-
fuse slow wave activity and asymmetry (Lodder and van Putten,
2013). Anterior posterior gradient is the ratio between power in
frontal regions and power in all regions for a specific frequency
range, often the alpha band. Here we calculated the anterior posterior
gradient for both the alpha1 and alpha2 band separately. This gra-
dient is within normal range if it is smaller than 0.4. Diffuse slow
wave activity is calculated by the power ratio (Qslow) between
Plow (= 2–8 Hz) and Pwide (= 2–25 Hz). Too much or abnormal
diffuse slow-wave activity is present when this ratio exceeds 0.6.
Asymmetry is obtained by calculating a left-right power ratio for each
ROI pair in the frequency range 0.5–12 Hz (Lodder and van Putten,
2013).
2.7. Statistical analysis

To compare group differences between MS patients and healthy
controls independent t-tests and in the absence of normality Mann–
Whitney tests were used for all global relative power values, MRI pa-
rameters and cognition. Obtained p-values for global relative power
values were corrected for multiple comparisons with the false
discovery rate (i.e. correcting for 6 tests (6 frequency bands))
(Benjamini and Hochberg, 1995). Normality was checked using
histogram inspection and Kolmogorov–Smirnov tests of normality.
Whenever there were significant differences in global relative
power values, power in ROIs were compared between groups by
means of permutation analysis as a post-hoc analysis (Nichols and
Holmes, 2002). Here a null distribution for between-group differences
(independent t-test) is derived by permuting group assignment and
calculating a t-statistic after each permutation. Other global properties
of the MEG rhythm were also statistically analyzed as mentioned
above. For analyzing asymmetry differences we used permutation anal-
yses as well.

As another post-hoc analysis, if there were significant differences in
global relative power values between MS patients and healthy controls
in a specific frequency band, then correlations between mean power
and other parameters (EDSS, MRI, and cognition) were computed by
means of Spearman's coefficients (2-tailed) for that specific frequency
band. These statistical analyses were performed using SPSS for
windows v.15. and the permutation analyseswere performed inMatlab
(R2008b).

http://home.kpn.nl/stam7883/brainwave.html
http://home.kpn.nl/stam7883/brainwave.html
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3. Results

3.1. Subject characteristics

Characteristics for the 21MSpatients and 17 healthy controlswhose
data were used for analysis in the present study are summarized in
Table 1. There were no significant differences in age, gender, or educa-
tional level between the two groups. Disease duration, EDSS score and
MRI lesion load did not differ significantly between male and female
patients. Neuropsychological test outcome was not significantly differ-
ent between MS patients and controls. However, overall cognition
Z-scores were significantly lower in male patients compared to female
patients (Mann Whitney U: Z = −2.2, p = 0.02).

3.2. MRI: atrophy measures

NBV and NGMV were significantly lower in the patient group
(t(36) = −3.01, p = 0.006, t(36) = −2.2, p = 0.037, respectively)
(Table 1). Mann–Whitney test revealed significantly lower total thalamic
volumes (Z = −2.9, p = 0.004) in MS patients compared to healthy
controls.

3.3. Global relative power

Global relative power (averaged over all 78 ROIs) in all the different
frequency bands is shown in Fig. 1. Patients showedmoremean relative
power in the alpha1 band compared to controls (mean patients = 0.15
and mean controls = 0.11, Z = −2.7, p = 0.006) and less mean rela-
tive power in the alpha 2 band (mean patients = 0.15 and mean con-
trols = 0.21, Z = −2.7, p = 0.007). For the full alpha (8–13 Hz)
frequency band global relative power was not different between
healthy controls and MS patients (Z = −1.086 p = 0.27). The global
relative power in the other bands did not differ significantly between
groups. Differences in peak alpha frequency are illustrated in Fig. 2,
which shows a significant shift in peak frequency from 9.92 Hz in
controls to 9.15 Hz in patients (t(36) = 2.138, p = 0.039).

3.4. Regional relative power

Only if global relative power differences were present in a specific
frequency band, we compared regional power differences between
MS patients and healthy controls as a post hoc analysis. There were
significant differences in relative power between patients and controls
in the lower and upper alpha band. Fig. 3 displays the results of the
Table 1
Descriptive variables for controls and patients.

Controls (N = 17) Patients (N = 21) p value

Mean ± SD Mean ± SD

Age 39.8 ± 9.8 41.9 ± 7.7 0.49
Education(1–7) 5.9 ± 1.36 5.4 ± 1.33 0.52
Disease duration 6.8 ± 0.9 –

NGMV (l) 0.84 ± 0.05 0.81 ± 0.04 0.037a

NWMVb (l) 0.69 ± 0.03 0.66 ± 0.03 –

NBV (l) 1.53 ± 0.07 1.47 ± 0.05 0.006a

Total thalamic volume 0.021 ± 0.001 0.019 ± 0.002 0.004a

Cognition 0.04 ± 0.64 −0.19 ± 0.84 0.36
EDSS (1–10)c 2 (0–4.5) –

T1 lesion load (mL) 1.05 ± 0.81 –

T2 lesion load (mL) 2.48 ± 2.03 –

NGMV, normalized gray matter volume; NWMV, normalized white matter volume;
NBV, normalized brain volume; EDSS, Expanded Disability Status Scale.

a Indicates significant differences between the two groups.
b NWMV was not used for further analyses; lesion filling was not performed and

therefore NWMV was not reliably estimated.
c Indicates median and range.
post hoc permutation analysis in respectively the alpha1 and alpha2
bands. The nomenclature for the different areas based on automated
anatomical labeling (AAL) is given in Appendix A1. Compared to
healthy controls, MS patients showed more relative power in the
alpha1 band in right and left occipital regions (AAL 22–27, 61–66),
inferior temporal regions (AAL 28, 32, 35, 67, 71, 74), medial parietal
regions (AAL 21, 56, 59, 60), right frontal regions (AAL 51, 52) and
midposterior cingulate regions (37, 38, 76, 77). Additionally, for
the alpha2 band, significantly less power was found in MS patients
in very similar regions, namely left and right occipital regions (AAL
22–27, 61–66), medial and inferior temporal regions (AAL 28,
31–33, 35, 67, 69–71, 74), parietal regions (AAL 20, 21, 59, 60),
midposterior cingulate (AAL 38, 76, 77) and frontal regions (AAL 2,
3, 6, 12, 40, 41).

3.5. Other MEG background properties

There was no difference in diffuse slow-wave activity between MS
patients and healthy controls nor between asymmetry and anterior–
posterior gradients in the alpha1 band. In both MS patients and
healthy controls the diffuse slow-wave activity ratio (Qslow) was
lower than 0.6. In the alpha2 band there was a higher anterior–
posterior gradient in MS patients (healthy controls median = 0.25,
range = (0.15–0.44), MS patients median = 0.3, range = (0.19–0.42),
Z = −1.48 p = 0.036).

3.6. Correlations between power and cognition, physical disability andMRI

InMS patients, a negative correlation between global relative power
in the alpha1 band and overall cognition was found (r(19) = −0.46,
p = 0.03), driven by information processing speed (r(19) = −0.44,
p = 0.047). There were no correlations between alpha1 or alpha2
band global relative power and physical disability or MRI parameters
in MS patients.

4. Discussion

The aim of the present study was to investigate if changes in oscilla-
tory resting-state activity were present in MS and whether these
changes were clinically relevant. For this purpose we reconstructed
the relative power in several frequency bands for 78 atlas-based
regions. Subsequently, relations between relative power and clinical-,
cognitive-, and structural-measures were assessed. We found higher
mean relative power in the alpha1 band and lower mean relative
power in the alpha2 band in MS patients compared to healthy controls.
Moreover, cognition and more specifically information processing
speed correlated with mean relative power in the alpha1 band.

Here we report for the first time that in early MS there is a shift of
the alpha peak towards the slower frequencies. Apart from the power
differences at the global level in both lower and upper alpha bands,
regional power differences in the same frequency bands were present,
mainly localized to occipital, parietal and temporal areas. The observed
lower power in the alpha2 bandwas also strengthened by the finding of
a higher anterior–posterior gradient, indicative of a loss of alpha2
power in posterior regions in MS patients. So far, limited research on
EEG and MEG power spectra has been performed in MS. Some earlier
EEG studies at the sensor-level did find changes in MS spectra com-
pared to controls, namely increased theta power over temporal regions
and increased beta power over frontal regions (Colon et al., 1981),
increase or hemispheric asymmetry of alpha band power (Facchetti
et al., 1994) and increase of beta and gamma band activity over occipital
and right frontal areas during an odd-ball task (Vazquez-Marrufo et al.,
2008). However the latter study used a small 13-electrode EEG system
and subsequently only used the midline electrodes (Fz, Cz, Pz) for analy-
ses. More recent MEG and EEG studies were not able to find resting-state
power changes in MS (Cover et al., 2006; Leocani et al., 2000). The use of



Fig. 1. Relative power in the different frequency bands, averaged over all cortical areas (78 AAL ROIs), for patients and healthy controls. Error bars indicate standard deviations.
* Indicates significant total power differences between the two groups, which occurred in the alpha1 and alpha2 bands. The patients showed higher alpha1 power and lower
alpha2 power. These results were corrected for multiple comparisons with the false discovery rate.
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MEG compared to EEG, in combination with analyses in source-space
(which gives an increased signal-to-noise ratio) and a larger sample
size, could explain some of the differences between our results and the
results from these previous studies.

The power changes in the alpha band seem to be clinically relevant.
Power in the alpha1 band correlated negatively with overall cognition
and, more specifically, with information processing speed. It has been
observed that information processing speed is one of the first affected
cognitive domains in MS (Chiaravalloti and DeLuca, 2008). In line
with our results, another study on MS revealed that increase of mean
alpha frequency was associated with improvement in clinical status
(Colon et al., 1981). Therefore it seems relevant to elucidate this relation
further in larger MS cohorts and compare power changes in the alpha
band between MS patients with preserved information processing
speed and impaired information processing speed. Another argument to
support further investigation in this relation is the observation that in
healthy conditions alpha frequency is related to information processing
speed or reaction time (Klimesch, 1999).

We observed a minor but significant slowing of the peak frequency
of oscillatory brain activity. The mechanism underlying this slowing
remains to be elucidated, particularly since there was no relation
between alpha band power changes and structural damage (as
Fig. 2. Normalized power spectra, with peak frequency
determined from MRI measures of NBV, NGMV and T2 lesion load).
However, slowing of oscillatory activity has been found for several
other neurodegenerative neurological diseases, such as Alzheimer's
disease (de Haan et al., 2008; de Waal et al., 2012) and Parkinson's
disease (Bosboom et al., 2006; Olde Dubbelink et al., 2012; Stoffers
et al., 2007). Therefore slowing of oscillatory activitymight be a common
pathway in neurodegenerative neurological diseases.

Oscillatory activity at the macroscopic level, such as measured with
MEG/EEG, is the result of neuronal interactions at the micro-scale
(between individual neurons) andmacro-scale (between cortical re-
gions), and involves different types of connections (excitatory and
inhibitory). This makes it difficult to elucidate the exact origins of
extracranially observed alterations in band-limited oscillatory
power (Lopes da Silva, 1991). However, some insight may be gained
from computational studies. Two recent studies have used neural
mass models in order to explain empirical observations in patients
with Alzheimer's disease, and revealed that increased inhibition
(Bhattacharya et al., 2011) or disinhibition (de Haan et al., 2012) can
cause slowing of oscillatory activity. Therefore a shift in the balance of
inhibition/excitation could be of importance in slowing of oscillatory
activity inMS aswell. Such a shift in the balance of inhibition/excitation
can be regarded as a problem of cortical origin.
for patients (9.15 Hz) and for controls (9.92 Hz).
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Fig. 3. Significant power differences between patients and controls are shown as a color-coded map on a template mesh. Red areas indicate higher power in patients in the alpha1
band (3A), blue areas indicate lower power in patients in the alpha2 band (3B). A scale bar is added to indicate the significance.
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However white matter changes measured with more advanced and
sophisticated MRI measures such as DTI could also be of importance in
MS. It has been shown that the integrity (fractional anisotropy values)
of white matter tracts such as the corona radiata, posterior thalamic
radiation and inferior longitudinal fascicle is positively correlated with
the alpha peak frequency (Valdes-Hernandez et al., 2010). In MS we
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know that the integrity of these tracts is often affected (Harrison et al.,
2013; Li et al., 2012). Furthermore, these white matter tracts are predi-
lection sites for white matter lesions (Li et al., 2012). Therefore, the lo-
cation of white matter lesions (located at white matter tracts going to
occipital cortex) could be of more relevance for changes in the alpha
peak frequency than overall white matter lesion load itself. Further
studies are therefore warranted to elucidate the relation between
white matter integrity changes, lesion probability maps and alpha
band power changes. Demyelination has also been studied in a compu-
tationalmodel of single cell neuronsusingmodifiedHodgkin andHuxley
models (Coggan et al., 2010). In demyelinated neurons four types of
spike behavior could occur after an initial stimulus: delay of a spike, no
spike (spike failure), stimulus dependent afterdischarge and spontane-
ous spiking. This behavior can be explained in terms of the ratio between
sodium conductance and the conductance for leakage charge. When
leakage out of the neuron is too large due to demyelination this ratio be-
comes too small which results in spike failure. Increasing this ratio can
lead to the other aforementioned behaviors. Failure of spike activity
could be responsible for our observed lowering of the frequency of oscil-
latory activity. Unfortunately, it is still not fully understoodhowspike ob-
servations relate to post synaptic activity observations (main source of
LFP/EEG/MEG), therefore future studies are warranted to verify this pos-
sible explanation.

The present study has some limitations. Sample size of our study
was limited which hampered analysis of medication and gender effects.
Limited sample size was partially caused by exclusion of subjects due to
inaccurate co-registration and artifacts in the raw data. Future studies
will use improved co-registration procedures, as well as a sophisticated
artifact removal approach (temporal extension of Signal Space Separa-
tion (tSSS)) in order to address these issues (Gross et al., 2013; Taulu
and Hari, 2009; Taulu and Simola, 2006; van Dellen et al., 2013). The
present study had a cross-sectional design, and we therefore do not
know if slowing of oscillatory activity is specific for short disease dura-
tion and is still present, or progresses, later on in the disease.

To conclude, slowing of alpha band oscillatory activity occurs in
early MS. This seems to be of clinical relevance since these changes
were related to information processing speed changes which is one
of the first affected cognitive domains in MS. Future larger studies
should verify the relation between changes in alpha power and infor-
mation processing speed, and subsequently with structural changes
as well.
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3 Frontal_Sup_Orb_L 42 Frontal_Sup_Orb_R
4 Frontal_Med_Orb_L 43 Frontal_Med_Orb_R
5 Frontal_Mid_Orb_L 44 Frontal_Mid_Orb_R
6 Frontal_Inf_Orb_L 45 Frontal_Inf_Orb_R
7 Frontal_Sup_L 46 Frontal_Sup_R
References

Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroImage 26, 839–851.
Barkhof, F., 2002. The clinico-radiological paradox in multiple sclerosis revisited. Current

Opinion in Neurology 15, 239–245.
Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society 57,
289–300.

Bhattacharya, B.S., Coyle, D., Maguire, L.P., 2011. A thalamo-cortico-thalamic neural
mass model to study alpha rhythms in Alzheimer's disease. Neural Networks 24,
631–645.

Bosboom, J.L., Stoffers, D., Stam, C.J., van Dijk, B.W., Verbunt, J., Berendse, H.W., Wolters,
E.C., 2006. Resting state oscillatory brain dynamics in Parkinson's disease: an MEG
study. Clinical Neurophysiology 117, 2521–2531.

Bosma, I., Stam, C.J., Douw, L., Bartolomei, F., Heimans, J.J., van Dijk, B.W., Postma, T.J.,
Klein, M., Reijneveld, J.C., 2008. The influence of low-grade glioma on resting state os-
cillatory brain activity: a magnetoencephalography study. Journal of Neuro-Oncology
88, 77–85.

Brookes, M.J., Vrba, J., Robinson, S.E., Stevenson, C.M., Peters, A.M., Barnes, G.R.,
Hillebrand, A., Morris, P.G., 2008. Optimising experimental design for MEG
beamformer imaging. Neuroimage 39, 1788–1802.

Chiaravalloti, N.D., DeLuca, J., 2008. Cognitive impairment in multiple sclerosis. Lancet
Neurology 7, 1139–1151.

Coggan, J.S., Prescott, S.A., Bartol, T.M., Sejnowski, T.J., 2010. Imbalance of ionic conduc-
tances contributes to diverse symptoms of demyelination. Proceedings of the National
Academy of Sciences of the United States of America 107, 20602–20609.

Colon, E., Hommes, O.R., de Weerd, J.P., 1981. Relation between EEG and disability
scores in multiple sclerosis. Clinical Neurology and Neurosurgery 83, 163–168.

Cover, K.S., Vrenken, H., Geurts, J.J., van Oosten, B.W., Jelles, B., Polman, C.H., Stam, C.J., van
Dijk, B.W., 2006. Multiple sclerosis patients show a highly significant decrease in
alpha band interhemispheric synchronization measured using MEG. NeuroImage
29, 783–788.

de Haan, W., Stam, C.J., Jones, B.F., Zuiderwijk, I.M., van Dijk, B.W., Scheltens, P., 2008.
Resting-state oscillatory brain dynamics in Alzheimer disease. Journal of Clinical
Neurophysiology 25, 187–193.

de Haan, W., Mott, K., van Straaten, E.C., Scheltens, P., Stam, C.J., 2012. Activity dependent
degeneration explains hub vulnerability in Alzheimer's disease. PLoS Computational
Biology 8, e1002582.

de Waal, H., Stam, C.J., de, H.W., van Straaten, E.C., Scheltens, P., van der Flier, W.M.,
2012. Young Alzheimer patients show distinct regional changes of oscillatory
brain dynamics. Neurobiology of Aging 33, 1008–1031.

Douw, L., Baayen, H., Bosma, I., Klein, M., Vandertop, P., Heimans, J., Stam, K., de, M.J.,
Reijneveld, J., 2008. Treatment-related changes in functional connectivity in
brain tumor patients: a magnetoencephalography study. Experimental Neurology
212, 285–290.

Douw, L., Baayen, J.C., Klein, M., Velis, D., Alpherts, W.C., Bot, J., Heimans, J.J., Reijneveld,
J.C., Stam, C.J., 2009. Functional connectivity in the brain before and during intra-
arterial amobarbital injection (Wada test). NeuroImage 46, 584–588.

http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0005
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0010
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0010
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0015
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0015
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0015
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0020
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0020
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0020
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0025
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0025
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0030
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0030
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0030
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9000
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9000
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0035
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0035
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0040
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0040
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0040
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0045
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0045
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0050
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0050
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0050
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0055
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0055
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0275
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0275
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0275
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0280
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0280
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0285
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0285
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0285
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0070
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0070


734 M.L. Van der Meer et al. / NeuroImage: Clinical 2 (2013) 727–734
Douw, L., van Dellen, E., Baayen, J.C., Klein, M., Velis, D.N., Alpherts, W.C., Heimans, J.J.,
Reijneveld, J.C., Stam, C.J., 2010a. The lesioned brain: still a small-world? Front
Hum. Neuroscience 4, 174.

Douw, L., de Groot, M., et al., 2010b. ‘Functional connectivity’ is a sensitive predictor of
epilepsy diagnosis after the first seizure. PLoS One 5 (5), e10839.

Facchetti, D., Mai, R., Colombo, A., Capra, R., Marciano, N., Gasparotti, R., Poloni, M.,
1994. Limited clinical significance of traditional and quantitative EEG in multiple
sclerosis. Acta Neurologica Belgica 94, 245–250.

Feng, Y.K., 1981. Clinico-electroencephalographic studies of multiple sclerosis. Clinical
and Experimental Neurology 17, 47–57.

Friston, K.J., Holmes, P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J., 2004.
Statistical parametric maps in functional imaging: a general linear approach. Human
Brain Mapping 2, 189–210.

Geurts, J.J., Barkhof, F., 2008. Grey matter pathology in multiple sclerosis. Lancet Neurology
7, 841–851.

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C., Beaulieu, C., 2009. Mapping
anatomical connectivity patterns of human cerebral cortex using in vivo diffusion
tensor imaging tractography. Cerebral Cortex 19, 524–536.

Gross, J., Baillet, S., Barnes, G.R., Henson, R.N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak,
V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J.R., vanWassenhove, V.,Wibral,M.,
Schoffelen, J.M., 2013. Good practice for conducting and reporting MEG research.
NeuroImage 65C, 349–363.

Hardmeier, M., Schoonheim, M.M., Geurts, J.J., Hillebrand, A., Polman, C.H., Barkhof, F.,
Stam, C.J., 2012. Cognitive dysfunction in early multiple sclerosis: altered centrality
derived from resting-state functional connectivity using magneto-encephalography.
PLoS One 7, e42087.

Harrison, D.M., Shiee, N., Bazin, P.L., Newsome, S.D., Ratchford, J.N., Pham, D.,
Calabresi, P.A., Reich, D.S., 2013. Tract-specific quantitative MRI better correlates
with disability than conventional MRI in multiple sclerosis. Journal of Neurology
260 (2), 397–406.

Hillebrand, A., Barnes, G.R., 2005. Beamformer analysis of MEG data. International Re-
view of Neurobiology 68, 149–171.

Hillebrand, A., Singh, K.D., Holliday, I.E., Furlong, P.L., Barnes, G.R., 2005. A new approach to
neuroimaging with magnetoencephalography. Human Brain Mapping 25, 199–211.

Hillebrand, A., Barnes, G.R., Bosboom, J.L., Berendse, H.W., Stam, C.J., 2012. Frequency-
dependent functional connectivity within resting-state networks: an atlas-based
MEG beamformer solution. NeuroImage 59, 3909–3921.

Jeong, J., 2004. EEG dynamics in patients with Alzheimer's disease. Clinical Neurophysiology
115, 1490–1505.

Klein, M., Engelberts, N.H., van der Ploeg, H.M., Kasteleijn-Nolst Trenite, D.G., Aaronson,
N.K., Taphoorn, M.J., Baaijen, H., Vandertop, W.P., Muller, M., Postma, T.J., Heimans,
J.J., 2003. Epilepsy in low-grade gliomas: the impact on cognitive function and
quality of life. Annals of Neurology 54, 514–520.

Klimesch, W., 1999. EEG alpha and theta oscillations reflect cognitive and memory perfor-
mance: a review and analysis. Brain Research. Brain Research Reviews 29, 169–195.

Kumar, S., Rao, S.L., Chandramouli, B.A., Pillai, S.V., 2009. Reduction of functional brain
connectivity in mild traumatic brain injury during working memory. Journal of
Neurotrauma 26, 665–675.

Kurtzke, J.F., 1983. Rating neurologic impairment in multiple sclerosis: an expanded
disability status scale (EDSS). Neurology 33 (11), 1444–1452 (Nov).

Leocani, L., Locatelli, T., Martinelli, V., Rovaris, M., Falautano, M., Filippi, M., Magnani, G.,
Comi, G., 2000. Electroencephalographic coherence analysis in multiple sclerosis:
correlation with clinical, neuropsychological, and MRI findings. Journal of Neurology,
Neurosurgery & Psychiatry 69, 192–198.

Li, Y., Jewells, V., Kim, M., Chen, Y., Moon, A., Armao, D., Troiani, L., Markovic-Plese, S., Lin,
W., Shen, D., 2012. Diffusion tensor imaging based network analysis detects alterations
of neuroconnectivity in patients with clinically early relapsing–remitting multiple
sclerosis. Human Brain Mapping.

Lodder, S.S., van Putten, M.J., 2013. Quantification of the adult EEG background pattern.
Clinical Neurophysiology 124, 228–237.

Lopes da Silva, F., 1991. Neural mechanisms underlying brain waves: from neural
membranes to networks. Electroencephalography and Clinical Neurophysiology
79, 81–93.

Nichols, T.E., Holmes, A.P., 2002. Nonparametric permutation tests for functional neuro-
imaging: a primer with examples. Human Brain Mapping 15, 1–25.

Olde Dubbelink, K.T., Stoffers, D., Deijen, J.B., Twisk, J.W., Stam, C.J., Berendse, H.W.,
2012. Cognitive decline in Parkinson's disease is associated with slowing of rest-
ing-state brain activity: a longitudinal study. Neurobiology of Aging (Apr 9).

Polman, C.H., Reingold, S.C., Edan, G., Filippi, M., Hartung, H.P., Kappos, L., Lublin, F.D.,
Metz, L.M., McFarland, H.F., O'Connor, P.W., Sandberg-Wollheim, M., Thompson,
A.J., Weinshenker, B.G., Wolinsky, J.S., 2005. Diagnostic criteria for multiple sclerosis:
2005 revisions to the “McDonald Criteria”. Annals of Neurology 58, 840–846.
Ponsen, M.M., Stam, C.J., Bosboom, J.L.W., Berendse, H.W., Hillebrand, A., 2013. A three
dimensional anatomical view of oscillatory resting-state activity and functional
connectivity in Parkinson's disease related dementia: an MEG study using atlas-
based beamforming. NeuroImage: Clinical 2, 95–102.

Quattrini, A., Paggi, A., Ortenzi, A., Di, B.P., Cianci, F., Forastieri, L., 1981. CT and EEG inves-
tigations in 100 patients with multiple sclerosis (MS). Italian Journal of Neurological
Sciences 2, 25–34.

Rao, S.M., Leo, G.J., Bernardin, L., Unverzagt, F., 1991. Cognitive dysfunction in multiple
sclerosis. I. Frequency, patterns, and prediction. Neurology 41, 685–691.

Robinson, S.E., Vrba, J., 1999. Functional neuroimaging by synthetic aperturemagnetometry.
In: Yoshimoto, M., Kotani, S., Kuriki, H., Karibe, N., Nakatato, E. (Eds.), Recent Advances
in Biomagnetism. Tohoku University Press, Sendai, pp. 302–305.

Schnitzler, A., Gross, J., 2005. Normal and pathological oscillatory communication in
the brain. Nature Reviews Neuroscience 6, 285–296.

Schoonheim, M.M., Popescu, V., Rueda Lopes, F.C., Wiebenga, O.T., Vrenken, H., Douw,
L., Polman, C.H., Geurts, J.J., Barkhof, F., 2012. Subcortical atrophy and cognition:
sex effects in multiple sclerosis. Neurology 79 (17), 1754–1761 (Oct 23).

Schoonheim, M.M., Geurts, J.J., Landi, D., Douw, L., van der Meer, M.L., Vrenken, H.,
Polman, C.H., Barkhof, F., Stam, C.J., 2013. Functional connectivity changes inmultiple
sclerosis patients: a graph analytical study of MEG resting state data. Human Brain
Mapping 34 (1), 52–61.

Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P.M., Federico, A., De, S.N.,
2002. Accurate, robust, and automated longitudinal and cross-sectional brain
change analysis. NeuroImage 17, 479–489.

Stam, C.J., van Straaten, E.C., 2012. The organization of physiological brain networks.
Clinical Neurophysiology.

Stam, C.J., Jones, B.F., Manshanden, I., van Cappellen van Walsum, A.M., Montez, T.,
Verbunt, J.P., de Munck, J.C., van Dijk, B.W., Berendse, H.W., Scheltens, P., 2006.
Magnetoencephalographic evaluation of resting-state functional connectivity in
Alzheimer's disease. NeuroImage 32, 1335–1344.

Stam, C.J., de Haan, W., Daffertshofer, A., Jones, B.F., Manshanden, I., van Cappellen van
Walsum, A.M., Montez, T., Verbunt, J.P., de Munck, J.C., van Dijk, B.W., Berendse,
H.W., Scheltens, P., 2009. Graph theoretical analysis of magnetoencephalographic
functional connectivity in Alzheimer's disease. Brain 132, 213–224.

Stoffers, D., Bosboom, J.L., Deijen, J.B., Wolters, E.C., Berendse, H.W., Stam, C.J., 2007.
Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease
without dementia. Brain 130, 1847–1860.

Taulu, S., Hari, R., 2009. Removal of magnetoencephalographic artifacts with temporal
signal-space separation: demonstration with single-trial auditory-evoked responses.
Human Brain Mapping 30, 1524–1534.

Taulu, S., Simola, J., 2006. Spatiotemporal signal space separation method for rejecting
nearby interference in MEG measurements. Physics in Medicine and Biology 51,
1759–1768.

Tecchio, F., Zito, G., Zappasodi, F., Dell' Acqua, M.L., Landi, D., Nardo, D., Lupoi, D.,
Rossini, P.M., Filippi, M.M., 2008. Intra-cortical connectivity in multiple sclerosis:
a neurophysiological approach. Brain 131, 1783–1792.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15, 273–289.

Uhlhaas, P.J., Singer, W., 2006. Neural synchrony in brain disorders: relevance for cognitive
dysfunctions and pathophysiology. Neuron 52, 155–168.

Valdes-Hernandez, P.A., Ojeda-Gonzalez, A., Martinez-Montes, E., Lage-Castellanos, A.,
Virues-Alba, T., Valdes-Urrutia, L., Valdes-Sosa, P.A., 2010. White matter architecture
rather than cortical surface area correlates with the EEG alpha rhythm. NeuroImage
49, 2328–2339.

van Dellen, E., de Witt Hamer, P.C., Douw, L., Klein, K., Heimans, J.J., Stam, C.J.,
Reijneveld, J.C., Hillebrand, A., 2013. Connectivity in MEG resting-state networks
increases after resective surgery for low-grade glioma and correlates with improved
cognitive performance. Neuroimage: clinical 2, 1–7.

van Putten, M.J., Tavy, D.L., 2004. Continuous quantitative EEGmonitoring in hemispheric
stroke patients using the brain symmetry index. Stroke 35, 2489–2492.

Vazquez-Marrufo, M., Gonzalez-Rosa, J.J., Vaquero, E., Duque, P., Borges, M., Gomez, C.,
Izquierdo, G., 2008. Quantitative electroencephalography reveals different physiological
profiles between benign and remitting–relapsing multiple sclerosis patients. BMC
Neurology 8, 44.

Vrba, J., Anderson, G., Betts, K., 1999. 151-Channel whole-cortex MEG system for seated
or supine positions. In: Yoshimoto, T., Kotani, M., Kuriki, S., et al. (Eds.), Recent
Advances in Biomagnetism. Tohoku University Press, Sendai, Japan.

Weiskopf, N., Lutti, A., Helms, G., Novak, M., Ashburner, J., Hutton, C., 2011. Unified seg-
mentation based correction of R1 brain maps for RF transmit field inhomogeneities
(UNICORT). NeuroImage 54, 2116–2124.

http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0075
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0075
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0290
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0290
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0085
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0085
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0090
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0090
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0095
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0095
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0100
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0100
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0105
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0105
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0105
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0300
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0300
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0305
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0305
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0305
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0115
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0115
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0115
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0120
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0120
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0130
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0130
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0125
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0125
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0125
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0135
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0135
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0140
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0140
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0145
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0145
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0150
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0150
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0150
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9155
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9155
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0155
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0155
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0155
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0160
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0160
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0160
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0165
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0165
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0170
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0170
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0170
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0175
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0175
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9005
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9005
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0180
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0180
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9010
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9010
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9010
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9010
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0310
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0310
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0310
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0185
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0185
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0190
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0190
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0190
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0195
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0195
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9500
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9500
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0200
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0200
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0200
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0205
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0205
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0220
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0220
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0215
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0215
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0210
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0210
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0225
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0225
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0230
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0230
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0230
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0235
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0235
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0235
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0240
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0240
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0245
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0245
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0245
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0250
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0250
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0255
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0255
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0255
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0260
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0260
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0260
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0265
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0265
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0315
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0315
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0315
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9020
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9020
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf9020
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0270
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0270
http://refhub.elsevier.com/S2213-1582(13)00059-4/rf0270

	Cognition in MS correlates with resting-state oscillatory brain activity: An explorative MEG source-space study
	1. Introduction
	2. Methods
	2.1. General study design
	2.2. Subject characteristics
	2.3. MRI
	2.4. Neuropsychological evaluation
	2.5. MEG recording
	2.6. Beamforming: time-series estimation for regions-of-interest
	2.7. Statistical analysis

	3. Results
	3.1. Subject characteristics
	3.2. MRI: atrophy measures
	3.3. Global relative power
	3.4. Regional relative power
	3.5. Other MEG background properties
	3.6. Correlations between power and cognition, physical disability and MRI

	4. Discussion
	Acknowledgments
	Appendix A1
	References


