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SUMMARY

An unresolved question in neuroscience relates to the extent to which corticothalamocortical 

circuits emanating from layer 5B play a role in information transfer through the cortical hierarchy. 

Here, using a novel form of optical imaging in a brain slice preparation, we demonstrate that the 

corticothalamocortical pathway drives robust activity in higher-order somatosensory cortex. When 

the direct corticocortical pathway was interrupted, secondary somatosensory cortex showed robust 

activity in response to stimulation of the barrel field in primary somatosensory cortex (S1BF), 

which was eliminated after subsequently cutting the somatosensory thalamus, suggesting a highly 

efficacious corticothalamocortical circuit. Further, after chemically inhibiting the thalamus, 

activation in secondary somatosensory cortex was eliminated, with a subsequent return after 

washout. Finally, stimulation of layer 5B in S1BF, and not layer 6, drove corticothalamocortical 

activation. These findings suggest that the corticothalamocortical circuit is a physiologically 

viable candidate for information transfer to higher-order cortical areas.

Much of neocortex can be divided into macroscopic zones: visual, auditory and 

somatomotor. Each of these is comprised of a number of discrete areas1-3 that function 

together to analyze relevant information (e.g., visual, etc.). A key first step towards 

understanding how cortex functions is to elucidate how information flows between these 

discrete cortical areas. The prevailing dogma4-6 is that this flow of information is subserved 

by direct corticocortical pathways. In the visual system, for example, this implies that once 

visual information reaches primary visual cortex from the lateral geniculate nucleus, it 

remains exclusively within cortex as it flows up the cortical hierarchy. In this scheme, 

beyond relaying the initial information to cortex (e.g., the geniculocortical pathway), the 

thalamus plays no obvious role beyond modulation of corticocortical information flow6. 

However, a recent hypothesis suggests that much, and perhaps the vast majority, of 
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information flow between cortical areas involves higher order thalamic nuclei in the form of 

corticothalamocortical circuits7-9.

This latter hypothesis is based partly on the idea that many brain circuits can be divided into 

“drivers”, which represent the main information routes and “modulators”, which serve to 

modulate information flow10, 11. Well-documented examples of drivers are the retinal input 

to the lateral geniculate nucleus or lemniscal input to the ventral posterior nucleus; 

modulator examples are feedback layer 6 corticothalamic projections and cholinergic 

brainstem inputs to thalamus10-14. In this context, the information route involving driver 

corticothalamocortical circuits emanates from layer 5B cells initiating a feedforward 

thalamocortical circuit 1, 12, as opposed to the modulating, feedback layer 6 corticothalamic 

pathway. Though the aforementioned pieces of evidence, in aggregate, are suggestive of a 

highly efficacious corticothalamocortical circuit, no study has directly tested its ability to 

activate cortex. We provide evidence here, based on activity of circuits evoked in slices of 

the mouse brain, that a corticothalamocortical circuit starting in primary somatosensory 

(barrel) cortex (S1BF) strongly activates secondary somatosensory cortex. This finding 

suggests that corticothalamocortical pathways are powerful enough to carry receptive-field 

defining information to higher order cortical areas.

RESULTS

The mouse thalamocortical somatosensory slice2 contains much of the somatosensory 

corticothalamocortical circuit (see Fig. 1). The relevant structures in the slice include S1BF, 

secondary somatosensory cortex, POm and the connections between S1BF/POm and 

secondary somatosensory cortex/POm1, 2, 15-17. To anatomically verify this connectivity, 

we placed a retrograde tracer (DiI) into the upper layers (layers 2/3 and 4) of secondary 

somatosensory cortex in the same type of slice used for our experiments. Retrogradely 

labelled cells were observed in POm, anatomically confirming that at least some of these 

connections remained. We primarily employed flavoprotein autofluorescence imaging18, 19 

to assess whether the corticothalamocortical circuit can drive secondary somatosensory 

cortex responses.

Cut Sequence

After verifying flavoprotein autofluorescence activity in both secondary somatosensory 

cortex and thalamus following electrical stimulation of layer 5B in S1BF, we identified the 

border between S1BF and secondary somatosensory cortex by locating the abrupt 

disappearance of barrels, which were visible under both brightfield and fluorescence 

illumination. We confirmed that this was the correct location by using an atlas and nearby 

characteristic landmarks20. We then used a bent syringe needle to make a radial cut between 

the stimulation site in S1BF and secondary somatosensory cortex that extended into the 

white matter, thereby severing the direct corticocortical afferents connecting them (see 

Methods). After making the cut, we stimulated S1BF at the same location we used for the 

first stimulus. In 3 slices, activity in secondary somatosensory cortex and POm remained 

despite ablation of the direct corticocortical pathway (see Fig. 2 and Supplementary Video 2 

online for a representative example). ΔF/F slightly decreased in secondary somatosensory 
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cortex in all 3 slices and was not significantly different in POm compared to activity levels 

prior to this cut. We then made a second cut across the dorsolateral aspect of VPm and POm, 

ensuring the disruption of all thalamic projections to secondary somatosensory cortex (Fig. 

2c). S1BF stimulation following this cut failed to activate secondary somatosensory cortex 

in all 3 slices. To ensure that the cut eliminated any possibility of activating secondary 

somatosensory cortex, we increased the stimulus amplitude by a factor of 6 during one of 

our experiments and were still unable to get any appreciable secondary somatosensory 

cortex activity after the second cut.

These data suggest that direct corticocortical projections are not necessary to activate 

secondary somatosensory cortex in these slices, and that a corticothalamocortical circuit is 

capable of doing so. Several other circuits could conceivably be responsible for this 

activation following direct corticocortical disruption. It is possible that branched collaterals 

of thalamic relay cell axons that innervate both S1BF and secondary somatosensory cortex21 

were antidromically activated leading to orthrodromic thalamocortical activation of 

secondary somatosensory cortex. Another possibility is that the cut may not have completely 

severed corticocortical axons. Finally, an unknown pathway could be involved.

Reversible Inhibition

To ensure that corticothalamocortical circuit activation accounted for our results we 

employed glutamate stimulation methods, which avoid antidromic activation of (branched) 

thalamocortical axons. To selectively and reversibly inhibit the corticothalamocortical 

circuit we focally injected an AMPA receptor blocker, 500 μM 6,7 -dinitroquinoxaline -2,3-

dione (DNQX), into the thalamus (see Methods, Fig. 3 below and Supplementary Videos 2 

and 3 online). We performed these experiments in 9 slices, each from a different animal, and 

the results are summarized in Fig. 3d. The maximal secondary somatosensory cortex ΔF/F 

values decreased by 89.8 +/− 4.5% during runs with maximal thalamic inactivation (n = 9, p 

= 0.0007, paired t-test). Furthermore, ΔF/F values after DNQX washout were not 

significantly different from baseline (n = 9, p = 0.33, paired t-test), indicating a full recovery 

in secondary somatosensory cortex. These data suggest that the corticothalamocortical 

pathway is a potent activator of secondary somatosensory cortex.

To determine whether the DNQX injection reached S1BF or secondary somatosensory 

cortex, which could have directly inhibited secondary somatosensory cortex activation, we 

injected a fluorescent tracer (Texas Red® 10,000 MW lysine-fixable dextran, Invitrogen) 

into the thalamus using the same protocol we use to inject DNQX (see Fig. 3f and 

Supplementary Video 3 online). We monitored an entire 6 minute injection to ensure that the 

injection medium did not reach cortex. It was clear from the video that the injection stream 

did not approach S1BF or secondary somatosensory cortex. A further indication that the 

DNQX did not affect the relevant parts of cortex was the stability of upper layer activation 

in the column we stimulated (see Fig. 3).

During three of the runs, we recorded from a single neuron in the upper layers of secondary 

somatosensory cortex using whole-cell patch clamp throughout the entire manipulation, 

providing electrophysiological verification of the imaging results (see Fig. 4). Recordings 

from each of these three cells and the corresponding flavoprotein autofluorescence signals 
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were well-aligned with one another, as was expected given the previously-described 

correlations between flavoprotein autofluorescence signal strength in the neocortex and 

underlying physiological activity22. Before applying DNQX to the thalamus, there was a 

strong optical signal in secondary somatosensory cortex following S1BF stimulation and a 

correspondingly robust inward synaptic current in a neuron recorded within the region of the 

flavoprotein autofluorescence response. After DNQX application, both the optical and 

electrophysiological signals were abolished, and both returned after subsequent washout of 

DNQX. Cellular activity, similar to the aforementioned flavoprotein autofluorescence 

imaging results, decreased by 91.73 +/− 0.47% during successful DNQX trials for the 3 

cells, each from separate experiments (n = 3, p = 0.000026, paired t-test). We lost one cell 

while removing the DNQX pipette, but the remaining two cells regained much of their 

previous activation. Similar to statistical data for the optical analyses, above, single-cell 

activity returned to baseline levels after wash for these cells.

Corticothalamocortical Circuit Verification

We sought to ensure that activation in our slices originated in layer 5B, the layer of origin 

for the corticothalamocortical circuit, and not layer 6, which sends feedback to thalamus. 

We thus pressure injected glutamate into S1BF in somatosensory slices from two animals 

starting in layer 5B and steadily moved the stimulation site towards the white matter until 

the corticothalamocortical circuit was no longer activated. We found that stimulation of 

layer 6, which sends modulatory afferents to thalamus 10, 12, did not activate secondary 

somatosensory cortex via this circuit. Subsequent stimuli in layer 5B elicited secondary 

somatosensory cortex activation, verifying that the circuit was still viable after the failures 

of the layer 6 stimulations. This sequence was also done in a slice from another animal with 

low levels of electrical stimulation (2 μA; see Methods for stimulus train parameters); 

similar results were obtained.

To confirm that stimulation in S1BF was generating suprathreshold activity in the thalamus, 

we recorded extracellularly from six POm neurons in three somatosensory slices (two 

neurons each) in a loose seal configuration while photostimulating in S1BF. We observed 

spiking activity in 2/6 cells from a single slice with an average of 3.64 +/− 0.49 spikes 

elicited per stimulus (see Supplementary Fig. 1a). We also used extracellular recording 

electrodes in open configuration (described in Methods) to record multiunit activity from 

POm in three other slices. We saw reliable multiunit spiking activity that was time-locked to 

stimulation in S1BF in each slice; see Supplementary Fig. 1b. These data demonstrate that 

glutamate stimulation in the corticothalamocortical slices we used was able to drive spiking 

in POm, a requisite for corticothalamocortical circuit activation. Furthermore, when 

photostimulating in layer 6 of S1BF with the same stimulus both neurons in the loose seal 

configuration failed to spike, also suggesting that layer 5B, and not layer 6, corticothalamic 

afferents were responsible for the activation of the corticothalamocortical pathway in our 

slice preparations.
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DISCUSSION

Previous work indicates that individual elements within the corticothalamocortical circuit 

have driver properties. Layer 5B inputs to POm are of large diameter and contact proximal 

dendrites, and have synaptic properties consistent with driver inputs12, 23. In addition, 

receptive fields in POm depend on S1BF input24. Furthermore, activation of the higher order 

thalamocortical projection from POm to secondary somatosensory cortex elicits synaptic 

responses characteristic of driver input1. Here we have demonstrated the efficacy of the 

entire circuit by providing evidence that a substantial proportion of the secondary 

somatosensory cortex activation our slices depended on thalamic circuitry. Given that our 

results came from experiments on a brain slice with many cut connections, it is likely that 

the corticothalamocortical circuit is highly efficacious in an intact animal, though this will 

need verification.

Our results thus show, for the first time, that a corticothalamocortical circuit involving POm 

provides a strong connection between S1BF and secondary somatosensory cortex. A 

question that remains unresolved in our data is the efficacy of the direct S1BF to secondary 

somatosensory cortex pathway. While we failed to find much evidence regarding the 

strength of this pathway, we believe that this may be an artifact of our slice, which has been 

optimized for thalamocortical and corticothalamic circuits. Indeed, other evidence15 

indicates that direct corticocortical connections are mostly cut in this preparation. Thus we 

emphasize that what we have shown here is a strong, hitherto unexplored, 

corticothalamocortical circuit, and that is the main point of this investigation. A proper 

comparison with the direct S1 to secondary somatosensory cortex circuit must await further 

study.

Before the hypothesis that much of the information transfer between cortical areas involves 

corticothalamocortical circuits can be accepted, the findings from this study will need to be 

generalized to other sensory systems in vitro (if possible) and in vivo. We should note that 

there is evidence supporting the existence of multiple key features of corticothalamocortical 

driving circuitry in the visual and auditory systems, including driver-like corticothalamic 

inputs from layer 5B25-31, higher order thalamic receptive field dependency on cortical 

inputs24, 32 and non-reciprocal corticothalamocortical organization for layer 5B but not 

layer 6 corticothalamic outputs33-35. The presence of similar circuitry in other sensory 

systems, in combination with the results presented here, suggests that corticothalamocortical 

information transfer may represent a key addition to, or even replacement of, the current 

dogma that corticocortical transfer of primary information exclusively involves direct 

corticocortical pathways.

The corticothalamocortical hypothesis also raises key questions about the utility of thalamic 

circuitry in information processing. Just as there is no a priori reason for information to pass 

through the thalamus from the sensory periphery to the cortex, there is no obvious reason for 

an additional thalamic pathway between cortical areas. Further, the presence of 

corticothalamocortical driving pathways leaves open the question of the nature of the 

ubiquitous direct corticocortical pathways: are they modulatory, driving, a combination of 

the two, or something else entirely? While this will require further study, the possibility or 
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even likelihood that these direct corticocortical pathways do indeed provide another route of 

information flow would suggest a system of two parallel streams of information: 

corticocortical and corticothalamocortical. A major difference between these routes might be 

related to the observation that, while essentially all direct corticocortical projections lie 

strictly within cortex, the corticothalamocortical pathway emanates from layer 5B cells, 

most or all of which have axons that branch to innervate thalamus as well as other 

subcortical structures that appear to be mostly motor in nature36-38. Thus, this arm of 

information transfer reflects output that is sent to both cortical and extrathalamic subcortical 

motor targets, implying that this circuit, by having a large impact on its cortical target, may 

be an effective monitor of motor control signals39.

METHODS

We obtained somatosensory slices2 from male and female mice (BALB/c mus musculus, 12–

22 d) using standard, previously published techniques1 with only minor variations. All 

procedures were approved by the Institutional Animal Care and Use Committee at the 

University of Chicago. We first anesthetized the mice (Harlan Sprague-Dawley, 

Indianapolis, IN) with a mixture of 1 mg/kg ketamine (Vetaket, Phoenix Scientific, Inc., St. 

Joseph, MO) and 10 mg/kg xylazine , and after the hindlimb reflex was absent, we perfused 

them with chilled (~4° C) sucrose-based slicing solution1 prior to cutting. After cutting, we 

transferred the slices to a holding chamber containing oxygenated artificial cerebrospinal 

fluid (ACSF), composed of, in mM: NaHCO3 26, KCl 2.5, glucose 10, NaCl 126, 

NaH2PO4*H2O 1.25, MgCl2*6H2O 3, CaCl2*2H2O 1.1, where they incubated for at least 

1 hour prior to imaging/recording.

We implemented whole-cell patch clamp recordings (Fig. 4) using standard, previously 

described techniques 3, 12, 40-42. We monitored the access resistance of the cells throughout 

the recordings, which lasted > 1 hour for most experiments, and only included neurons with 

a stable access of less than 30MΩ in our analysis.

We performed extracellular recordings presented in Results and Supplementary Fig. 1 

(online) in either a loose seal or open configuration. For loose seal recordings, we placed 4–

6 MΩ glass pipettes filled with ACSF adjacent to a neuronal cell membrane and applied a 

slight amount of negative pressure to achieve ~500 MΩ to 1 GΩ for recordings. In open 

configuration we lowered broken back glass electrodes (~5–10 μm) ~50–100 μm into the 

tissue (POm). To detect spikes we used manual thresholding in Clampfit (Molecular 

Devices, Toronto) and used the resulting spike times to construct peristimulus time 

histograms in Microsoft Excel. We set thresholds well above baseline noise conditions and 

visually confirmed that the waveforms were consistent with that of an action potential.

We were able to easily identify POm in slices as a thalamic region that had a lighter 

appearance than the neighboring VPm under brightfield illumination; we distinguished 

S1BF from secondary somatosensory cortex by the barrels and septa that were resolved in 

the former. We identified the approximate borders between cortical layers in S1BF (and 

often in secondary somatosensory cortex) using the following criteria: layer 4 contained 

characteristic barrel structures and a relative dark contrast compared to layer 5A, which 
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appeared as a light-color band under brightfield illumination; we were also able to 

differentiate layer 5B from the neighboring layer 5A and layer 6, even at low magnification, 

by the presence of a large number of loosely-packed large cell bodies which formed a dark 

strip under brightfield illumination.

Thalamic Inhibition

For irreversible circuit inactivation (Fig. 3), we placed radial cuts with a bent syringe needle 

(27 ½ guage) attached to a micromanipulator between S1 and secondary somatosensory 

cortex, extending through the subcortical white matter to eliminate the direct corticocortical 

pathway. We then made another cut between VPm and the thalamic reticular nucleus to 

sever fibers between POm and cortex, thus eliminating the corticothalamocortical circuit. 

We waited at least 30 minutes after each cut to assess slice activity. For reversible thalamic 

inactivation, we focally injected ~15 μL 500 μM DNQX in ACSF using a glass micropipette 

(5–10 μm) over the course of ~7 minutes into an area just adjacent to the thalamic hotspot to 

avoid damaging relevant thalamic relay cells. We used this method to locally deactivate the 

circuit without directly affecting cortical activity. The sequence of steps for these 

experiments proceeded as follows. First, we assessed circuit activation in each slice by 

microspritzing glutamate or photostimulating via photolysis of glutamate (see Methods) in 

layer 5B of S1BF. After we saw activation in both POm and secondary somatosensory 

cortex, we locally applied 500 μM 6,7 -dinitroquinoxaline -2,3-dione (DNQX) to the 

thalamic hotspot with a micropipette (~5–10 μm diameter) over the course of 6–7 minutes. 

After applying the DNQX, we stimulated the circuit once every two minutes. If two or more 

failures of secondary somatosensory cortex activation (assessed by visual inspection of ΔF/F 

data) occurred followed by return of circuit activation within 20 minutes of the DNQX 

application, we deemed the run a successful deactivation and subsequent reactivation of the 

corticothalamocortical circuit.

Stimulation

For the electrical stimulation experiment (Fig. 2) we delivered 20 Hz, 1 second long trains of 

10 ms pulses at varying amplitudes before and after each cut using a glass pipette (5–10 μm 

diameter) filled with ACSF. We delivered a 30 μA stimulus for the baseline run and for the 

cortical cut run. After the thalamic cut we used a 150 μA train to further illustrate that 

secondary somatosensory cortex was no longer being activated. During reversible 

experiments, we used photostimulation (1 experiment) and pressure injection of glutamate 

(8 experiments). The photostimulation techniques have been previously described40, 43. We 

delivered a 20 Hz, 200 ms long train of 10 ms pulses at 60 mA laser power to Layer 5B of 

S1BF or injected glutamate using a 20 Hz, 1 second long train of 10 ms pulses at ~4–6 psi 

using a glass pipette filled with 10 μM L-glutamate in ACSF. We stimulated before DNQX 

application, then after DNQX application at 2 minute intervals until secondary 

somatosensory cortex signal elimination and subsequent recovery. If obvious secondary 

somatosensory cortex deactivation was not achieved, we stopped collecting data 20 minutes 

after DNQX application. We used our previously described methods for 

photostimulation40-42. In past experiments we and others43, 44 have seen no change of the 

recording quality or large tissue response changes during photostimulation experiments that 

might suggest damage from phototoxicity.
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Flavoprotein Autofluorescence Imaging

We performed flavoprotein autofluorescence imaging (Figs. 2–4) as previously described22. 

We captured green light (520–560 nm) generated by mitochondrial flavoproteins in the 

presence of blue light (472–488 nm), using a high sensitivity camera (QImaging Retiga-

SRV; QImaging Corporation, Surrey, BC Canada) with a Firewire interface. We acquired all 

images using 4×4 binning at 8-bits with 2.5x magnification. Final image resolution was 348 

× 260 pixels, with 60 pixels spanning 1 mm in both the x- and y- dimensions. We suspended 

slices above the chamber bottom with a piece of titanium mesh mounted on a hand-bent 

platinum wire to maintain adequate slice oxygenation and perfusion on both sides of the 

slice. This has been shown by others19, and in our experience, to significantly increase the 

flavoprotein autofluorescence signal amplitude. We typically captured images for 14 

second-long sweeps, with stimuli during the second second of each sweep. We stored the 

resulting images on a custom-built computer running a commercially available software 

package (Streampix 3; Norpix, Inc., Montreal, Quebec, Canada) and analyzed them with 

programs that we generated in-house made to run on Matlab. In the case of simultaneous 

whole-cell recordings (Fig. 4), we selected a box of pixels located immediately over the 

group of cells near the electrode tip in ImageJ and exported them to Excel, where we 

produced line graphs.

We typically acquired flavoprotein autofluorescence images at a rate of 7–12 frames per 

second. We manually adjusted exposure times to yield image brightness (i.e., baseline 

flavoprotein autofluorescence) that was subjectively similar across experiments. For Figs. 2 

and 3: after acquisition and processing (details above), we uniformly adjusted the contrast, 

brightness and transparency of flavoprotein autofluorescence images and then overlaid onto 

raw images from Streampix 3 in CorelDRAW X4 (Corel Corporation, Ottawa, Ontario 

Canada). We added all drawn items (arrows, axes, drawings etc.) with CorelDRAW for 

Figs. 1–3. We generated Fig. 4 was in Microsoft Excel 2003, then exported to CorelDRAW 

for font modification and standardization.

Statistics

Descriptive measures throughout the paper are in the form of mean +/− standard error. We 

used a two-tailed t-test to determine the significance of the DNQX runs (Fig. 3). We 

obtained data making up the “baseline” condition by using maximal ΔF/F values for baseline 

runs, runs after DNQX application and runs after we washed out DNQX by selecting a 5×5 

pixel box over layer 4 in secondary somatosensory cortex in ImageJ (NIH) and subtracting 

another set of ΔF/F values obtained from a 5×5 pixel in an area in which we observed no 

activity (the same method was used in the cut experiment). This helped control for 

photobleaching and uniform noise. We analyzed runs with the maximal decrease in ΔF/F 

after DNQX application for the “post-DNQX” condition in each experiment.

We translated whole-cell recording data (currents) presented in Results and Fig. 4 into area 

(pA*ms) for 2.5 second windows beginning at the stimulus onset. The post-DNQX run and 

wash run were normalized to the baseline condition for each experiment and were compared 

using paired t-tests.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Line drawing of the corticothalamocortical circuit. Red delineates the indirect, 

corticothalamocortical circuit; the direct corticocortical pathway is in grey. S1BF = barrel 

field of the primary somatosensory cortex, S2 = secondary somatosensory cortex, POm = 

posterior medial nucleus of the thalamus, VPm = ventroposteriomedial nucleus of the 

thalamus.
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Figure 2. 
Demonstration of corticothalamocortical pathway sufficiency to drive secondary 

somatosensory cortex activity: electrical stimulation. Panels are ΔF/F (change in 

fluorescence/baseline fluorescence) images overlaid on top of raw images for anatomy. 

Insets are optical traces for the region delineated by the blue circles in secondary 

somatosensory cortex. Panels A–C depict a ‘cut sequence’ experiment. 1/1 experiments 

shown.

a. Secondary somatosensory cortex response to S1BF stimulation in a somatosensory 

slice preparation.

b. Secondary somatosensory cortex response following a cut between S1 and 

secondary somatosensory cortex. ΔF/F decreased by 45.5% in secondary 

somatosensory cortex and 11.6% in POm compared to baseline (a).
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c. Cortical response following thalamic ablation. See Supplementary Video 1 online. 

ΔF/F decreased by 81.6% in secondary somatosensory cortex and 92.7% in POm 

compared to baseline (a).
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Figure 3. 
Demonstration of corticothalamocortical pathway sufficiency to drive secondary 

somatosensory cortex activity: reversible inactivation. Panels a–c depict elimination of 

secondary somatosensory cortex response with AMPA receptor blockade in thalamus. 1/9 

experiments shown.

a. Stimulation of layer 5B of S1BF via microspritzing of glutamate (see Methods).

b. Maximum percent ΔF/F before, during, and after DNQX – all Runs. 5×5 regions of 

interest were chosen in secondary somatosensory cortex for each trial. These 

regions were analyzed to determine maximal ΔF/F values during the baseline run 

(before DNQX), post-DNQX run and washout. Values for all nine experiments are 

plotted.
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c. Slice response to the same stimulus as (a) ~4 minutes after local application of 

500μM DNQX in the thalamic hotspot. Directional axis: D = dorsal, M = medial. In 

d, color bar corresponds to colors in panels.

d. Mean percent ΔF/F before, during, and after DNQX inactivation of thalamus. The 

data shown in (b) were averaged and compared using a two-tailed t-test (an asterisk 

indicates a significant difference; see Results and Methods). Error bars indicate 

s.e.m. Means and standard errors were the following: 2.29 +/− 0.36% before 

DNQX, 0.2 +/− 0.10% Post-DNQX, 2.66+/− 0.30% Wash.

e. Response after DNQX washout. See Supplementary Video 2 online.

f. Injection spread control. We injected a fluorescent tracer into the thalamus using 

the same paradigm we used while injecting DNQX. The white line extending left 

from the electrode tip represents the tracer stream. ACSF flowed from right to left. 

See Supplementary Video 3 online.
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Figure 4. 
Simultaneous flavoprotein autofluorescence imaging and whole-cell recording in secondary 

somatosensory cortex. Panels depict optical traces along with voltage clamp recordings from 

a representative (1/3) neuron in secondary somatosensory cortex before (a), ~6 minutes after 

(b) and ~12 minutes after (c) local DNQX application to thalamus. Optical traces and 

intracellular recordings were consistent (no cellular activity in conditions of no optical 

activity) and temporally synchronized at onset. See inset in lower left corner for scale.
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