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ABSTRACT Artemisinin resistance constitutes a major threat to the continued suc-
cess of control programs for malaria, particularly in light of developing resistance to
partner drugs. Improving our understanding of how artemisinin-based drugs act and
how resistance manifests is essential for the optimization of dosing regimens and
the development of strategies to prolong the life span of current first-line treatment
options. Recent short-drug-pulse in vitro experiments have shown that the parasite
killing rate depends not only on drug concentration but also the exposure time,
challenging the standard pharmacokinetic-pharmacodynamic (PK-PD) paradigm in
which the killing rate depends only on drug concentration. Here, we introduce a dy-
namic stress model of parasite killing and show through application to 3D7 labora-
tory strain viability data that the inclusion of a time-dependent parasite stress re-
sponse dramatically improves the model’s explanatory power compared to that of a
traditional PK-PD model. Our model demonstrates that the previously reported hy-
persensitivity of early-ring-stage parasites of the 3D7 strain to dihydroartemisinin
compared to other parasite stages is due primarily to a faster development of stress
rather than a higher maximum achievable killing rate. We also perform in vivo simu-
lations using the dynamic stress model and demonstrate that the complex temporal
features of artemisinin action observed in vitro have a significant impact on predic-
tions for in vivo parasite clearance. Given the important role that PK-PD models play
in the design of clinical trials for the evaluation of alternative drug dosing regimens,
our novel model will contribute to the further development and improvement of an-
timalarial therapies.

KEYWORDS Plasmodium falciparum, artemisinin action, drug exposure time, dynamic
model

Plasmodium falciparum malaria is a major vector-borne parasitic disease affecting
over 200 million people annually (1). Over the past 2 decades artemisinin-based

therapies, used as the first-line treatment against falciparum malaria, have been shown
to be highly effective. Their wide-scale distribution (approximately 390 million treat-
ment courses delivered annually) has been instrumental in achieving a dramatic
reduction in morbidity and mortality through both individual-level clinical and public
health benefits (1). Worryingly, over the past decade P. falciparum parasites resistant to
artemisinin derivatives, originally defined via a clinical phenotype of decreased parasite

Received 28 March 2017 Returned for
modification 8 May 2017 Accepted 28
September 2017

Accepted manuscript posted online 9
October 2017

Citation Cao P, Klonis N, Zaloumis S, Dogovski
C, Xie SC, Saralamba S, White LJ, Fowkes FJI,
Tilley L, Simpson JA, McCaw JM. 2017. A
dynamic stress model explains the delayed
drug effect in artemisinin treatment of
Plasmodium falciparum. Antimicrob Agents
Chemother 61:e00618-17. https://doi.org/10
.1128/AAC.00618-17.

Copyright © 2017 Cao et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to James M. McCaw,
jamesm@unimelb.edu.au.

MECHANISMS OF ACTION:
PHYSIOLOGICAL EFFECTS

crossm

December 2017 Volume 61 Issue 12 e00618-17 aac.asm.org 1Antimicrobial Agents and Chemotherapy

https://doi.org/10.1128/AAC.00618-17
https://doi.org/10.1128/AAC.00618-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:jamesm@unimelb.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1128/AAC.00618-17&domain=pdf&date_stamp=2017-10-9
http://aac.asm.org


clearance rate following treatment and now characterized by the presence of the K13
mutation, have begun to emerge and spread across Southeast Asia (2, 3, 4, 5). With no
new antimalarial drugs yet available and alternatives unlikely to be brought to market
within the next few years, advancing our understanding of the antimalarial action of
the artemisinins is essential to prolong the life span of the current first-line treatment
for malaria.

A model-based study of clinical isolates from Pailin (western Cambodia) by Sara-
lamba et al. demonstrated that artemisinin-resistant parasites displayed a reduced
sensitivity to artesunate (an artemisinin derivative with the active metabolite dihydro-
artemisinin [DHA]) during the ring stage of infection (6). Recent in vitro experiments
have further demonstrated that P. falciparum exhibits a distinct stage-dependent
susceptibility to artemisinin and that resistant isolates show a reduced drug suscepti-
bility during the very early ring stage of development (7, 8, 9). Despite this developing
understanding of the subtleties of artemisinin action and drug resistance, a major gap
remains in describing the full dynamics of the host-pathogen-drug system and trans-
lating findings from the well-controlled in vitro experimental environment to the in vivo
context.

Pharmacokinetic-pharmacodynamic (PK-PD) modeling, which integrates drug kinet-
ics (e.g., absorption and elimination) with the dynamics of both cyclic parasite growth
and drug-parasite interactions, enables the quantitative assessment of drug efficacy,
determination of optimal dosing schemes, and advancement of our understanding of
antimalarial action and resistance (6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19). Over nearly
20 years of development, PK-PD models have increased significantly in complexity.
Building from early models, which treated infected red blood cells as a single com-
partment (10, 11, 12), models have expanded to capture the different stages of the
parasite life cycle in the red blood cell (ring, trophozoite, and schizont), allowing the
incorporation of stage-dependent drug effects (6, 13, 19). A feature common to almost
all PK-PD models of artemisinin-based therapy developed to date has been the implicit
assumption that the relationship between drug concentration and the rate of parasite
killing is independent of the history of exposure (an exception is a turnover model
proposed by Patel et al. [16], which assumed an unidentified physiological process
mediating the parasite killing). The transient killing rate, k (i.e., the fraction of parasites
killed by drug per unit of time), has been empirically modeled by a Hill function of
plasma drug concentration (C),

k(C) �
kmaxC

�

Kc
� � C� (1)

where parameters kmax (maximum killing rate), � (Hill coefficient), and Kc (half-maximal
killing concentration) are (possibly stage-dependent) fixed quantities (i.e., constants)
(20). The killing rate varies with drug concentration in a sigmoidal manner and saturates
at the kmax for high drug concentration. Under this formulation, a higher (nonsaturat-
ing) drug concentration will immediately exert a stronger killing effect.

However, the recent in vitro experiments of Klonis et al. (7) and Dogovski et al. (9)
have provided clear evidence that a higher (nonsaturating) drug concentration may not
result in an increased rate of killing. Indeed, for sufficiently short exposure times, the
cumulative killing effect (i.e., one minus the fraction of parasites surviving the exposure)
may be strongly limited and largely independent of drug concentration. These obser-
vations are in direct contradiction with the possible behavior displayed by a model in
which the killing rate is solely concentration dependent (equation 1). Klonis et al. and
Dogovski et al. have demonstrated that the fraction of parasites that remains viable (i.e.,
able to asexually reproduce and initiate a subsequent round of blood-stage infection)
does not depend solely on the applied drug concentration. Rather, viability was
established to be a complex function of the drug exposure time and the initial drug
concentration, manifesting as (stage-dependent) variations in the exposure time re-
quired to render parasites nonviable (7). The minimum exposure time required for loss
of viability was particularly extended for mid-ring-stage parasites (artemisinin-sensitive
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3D7 laboratory strain). Antimalarial resistance corresponded to a distinct change in the
susceptibility of early-ring-stage parasites (9). To date, these novel properties have not
been incorporated into a mechanistic model of parasite killing, indicating a require-
ment to extend the PK-PD modeling framework to reflect our emerging understanding
of drug activity and evaluate the influence of these novel biological phenomena on the
prediction of parasite clearance (20).

In this paper, we generalize the traditional model of killing (equation 1) by allowing
the kmax and Kc to be time-dependent quantities and then fit the generalized model to
viability data for the 3D7 laboratory strain available in reference 7. By doing so, we aim
to (i) show if the model is able to capture the full set of in vitro viability data (and also
if the generalized model is statistically superior to the traditional model) and (ii)
elucidate how the artemisinin-mediated killing effect develops following drug exposure
and how that development differs between the parasite life stages. These results will
further imply the relative contributions of drug concentration and exposure time to the
effective killing rate. Finally, we incorporate the time-dependent drug effect into a
PK-PD modeling framework to evaluate its effect on in vivo parasite killing. Complex
temporal effects are anticipated to be present, as the short half-life of the artemisinins
in vivo is comparable to the exposure time required for effective parasite killing.

RESULTS
Construction of the dynamic stress model. In order to identify the key features

that motivate the development of our model, we first review the in vitro experimental
procedure (see reference 7 for details). Cultures containing equal quantities of tightly
age-synchronized P. falciparum parasites (3D7 laboratory strain; over 80% of parasites
synchronized within a 1-h age window) were treated with a specified dose of dihydro-
artemisinin (DHA) for a duration of 1, 2, 4, or 6 h before washing (to remove all drug).
To quantify the effect of drug, a viability assay was performed. Viable parasites were
defined as those able to reproduce and enter the next cycle of replication (thus
excluding dead and dormant populations), assessed by measuring the parasitemia (P)
in the trophozoite stage in the following life cycle 48 h later. In order to calculate the
viability, parasitemia was also measured for two special cases: the control case (Pcontrol),
where no drug was applied, and the background case (Pbackground) with supermaximal
DHA concentration (�10� the 50% lethal dose of 3 days, in nanomolars), applied for
more than 48 h. Viability (V), a unitless ratio, then was given by subtracting the unviable
population,

V �
P � Pbackground

Pcontrol � Pbackground
(2)

To study stage-specific drug effects, Klonis et al. tested four different parasite ages (by
using different age-synchronized groups): 2 h postinfection (h p.i.; early ring stage), 7.5
h p.i. (mid-ring stage), 24 h p.i. (early trophozoite stage), and 34 h p.i. (late trophozoite
stage). Two examples of viability data are given in Fig. 1 and show the viability for
different durations of drug exposure (1 h, 2 h, 4 h, and 6 h) with an initial DHA
concentration of approximately 39 nM or 300 nM. Note that DHA concentration also
decays in vitro with a half-life of approximately 8 h (which is much longer than that
which occurs in vivo; see Discussion). Experiments were performed in technical repli-
cates for each combination of initial DHA concentration and drug exposure duration.

We take as our fundamental conceptualization of antimalarial action that the drug
kills or otherwise prevents parasites within infected red blood cells (iRBC) from being
able to produce viable merozoites (which would go on to invade and infect other RBC
at the end of the first life cycle). We model the number of iRBC of age a (i.e., RBC that
have been infected with parasites for a hours) surviving drug exposure [N(a,t)] by the
first-order partial differential equation

�N(a, t)

� t
�

�N(a, t)

�a
� �kN(a, t) (3)
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where k is a drug-induced parasite killing rate and may depend on other factors, such
as drug concentration, parasite life stage, or even drug exposure duration (which will
be explicitly indicated once we formally introduce those dependencies later). We have
the boundary condition N(0,t) � rN(48,t), where r is the parasite multiplication factor,
indicating the average number of newly infected RBC generated from merozoites
released from a single iRBC at the end of the preceding life cycle.

The in vitro experiments use tightly age-synchronized parasites, allowing for further
simplification to an ordinary differential equation system, which is sufficient for deter-
mining the time dependency in the maximum killing rate (kmax) and the half-maximal
killing concentration (Kc). We track only the number of newly infected RBC generated

from parasites first exposed to drug at age a� [denoted by N�(t)]:

dN�(t)

dt
� �kN�(t) (4)

As mentioned in the Introduction, the parasite killing rate, k, is empirically modeled
by a Hill function of drug concentration, C(t),

k(C(t)) �
kmaxC(t)�

Kc
� � C(t)� (5)

where kmax is the maximum killing rate, Kc indicates the drug concentration at which
half-maximal killing (kmax/2) is achieved and � is the Hill coefficient. To capture the
time-dependent features of the in vitro data, we generalized the model by allowing
kmax and Kc to be dependent on the duration of drug exposure. We considered the time
variation to be a function of an auxiliary modulatory variable S(t), which we refer to as
a general cell stress. During drug exposure, parasites develop a stress response, the
extent of which determines the killing effect (and thus the concentration-killing rate
function; equation 5). The stress, S(t), is normalized to vary between 0 and 1 (inclusive).
We consider S to increase in the presence of drug above some (very small) threshold
level, C*, but decrease once drug concentration, C, is below C*. For the increase phase,
we apply a simple first-order differential equation:

dS

dt
� �(1 � S) (6)

where � is a rate constant which sets the time scale for stress development. In the
absence of additional experimental data, S(t) is assumed to immediately reset to zero
once drug concentration falls below C*. While this is sufficient to capture all available
in vitro data, we anticipate that further experimental research will allow us to more

FIG 1 Representative experimental data showing how the fraction of viable parasite (i.e., viability) changes with the
duration of drug exposure for two different initial DHA concentrations (39 nM [left] and 300 nM [right]) and four
different parasite life stages. For one parasite stage and one drug exposure time in each panel, duplicate viability
measurements are provided, which means in total 40 data points are measured in each panel (note that viability
for zero exposure time is always equal to 1 due to normalizing parasitemia to itself). Insets indicate the in vitro
decay of DHA concentration. Empty circles display the raw viability data, and the curves pass through the
arithmetic means of the paired data points. (Data are sourced from reference 7.)
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closely tie empirical determinations of the mechanisms of stress and its accumulation
to our modulatory variable, S (with consequential changes to equation 6).

We then assume that kmax and Kc depend on the development of the stress
response, i.e., they are functions of S. This construction allows for kmax and Kc to vary
with different drug exposure times, mediated through the stress response. kmax is
evidently positively correlated with S and Kc is negatively correlated, indicating that as
stress accumulates, the ability of the drug (at a given concentration) to kill parasites
increases. In the absence of detailed experimental data, we assume these relationships
are linear:

kmax � �S (7)

and

Kc � 	1(1 � S) � 	2 (8)

where �, 	1, and 	2 are parameters to be determined. � can be viewed as the
maximum achievable killing rate (i.e., k � �), achieved only after long exposure to a
high drug concentration. 	1 affects how sensitive the killing rate, k, is to a change in the
stress variable, S, and 	2 represents the half-maximal activation concentration once
stress is at a maximum (i.e., when S � 1). Note that to avoid issues of parameter
identifiability as �¡∞, we do not allow for an additional constant term in the expres-
sion for kmax. Similarly, and as explored further in Discussion, without direct experi-
mental evidence for a particular underlying mechanism for stress, we have assumed
that a single stress response is able to influence both kmax and Kc.

Under this simple formulation of the model for stress accumulation and the linear
relationship between stress and killing, we can solve equation 6 to obtain

S(t) � 1 � e��t (9)

and thus

kmax � �(1 � e��t) (10)

and

Kc � 	1e��t � 	2 (11)

Of note, when �¡∞ (i.e., the modulatory variable reaches its steady state instanta-
neously), kmax � � and Kc � 	2 such that our model reduces to a traditional PK-PD
model with a fixed relationship between drug concentration and killing rate.

For finite �, kmax and Kc become functions of S and so duration of exposure. In
particular, for low �, our model displays a slow development of the stress response and
thus is capable of capturing a delayed reduction in viability, indicating its suitability for
the in vitro data shown in Fig. 2 and detailed in references 7 and 9. For simplicity, in this
paper we refer to the traditional killing rate model with constant (although perhaps
stage-dependent) kmax and Kc as the stationary model and refer to our generalized
model as a dynamic stress model.

The dynamic stress model contains five parameters (�, �, �, 	1, and 	2) to be deter-
mined by fitting to available data. These five parameters are assumed to be stage specific,
and thus the model is fitted separately to the viability data for each parasite stage. Note that
by incorporating the phenomenological model of stress through the modulatory variable
S, we aim to develop a better understanding of how the killing rate evolves in the presence
of drug. While we are as yet unable to explore the underlying mechanisms governing the
development of both stress and drug action (e.g., the changes at the cellular or even
molecular levels), we discuss possible biological interpretations further in Discussion.

For modeling the in vitro experiments of tightly age-synchronized parasites, we use

equation 4. The solution to equation 4, subject to an initial condition N�(0) � N�0, is

N�(t) � N0
�e��0

t k(C(
),S(
))d
 (12)

where we have explicitly presented the killing rate, k, as a function of DHA concentra-
tion, C, and stress, S, both of which are functions of time (following initiation of drug
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exposure). DHA concentration, C(t), as a function of time due to in vitro decay, is given by

C(t) � C0e� ln(2)
t1⁄2

t (13)

where C0 is the initial dug concentration and the in vitro half-life of DHA (t1/2) was
measured to be about 8 h (21).

For a drug pulse with a duration of td hours in a given stage of the parasite life cycle,
the total number of iRBC, Nd, at the time of data collection (during the trophozoite
stage in the next life cycle) is given by

Nd � rN0
�e��0

td kd
 � N0
��1 � e��0

td kd
� (14)

where k’s dependence on C(
) and S(
) is now implicit. The first term represents the
number of iRBC with live parasites (having expanded by factor r, the parasite multipli-
cation factor), while the second term represents the number of nonviable parasites. For
the control case (no drug), the number of parasites, Nc, is given by equation 14 with k �

0 (Nc � rN0). For the background case (all parasites killed due to supermaximal
exposure), the number of parasites, Nb, is given by equation 14 with k¡∞ (Nb � N0).
Substituting these two expressions back into equation 14, we have

Nd � Nce
��0

td kd
 � Nb�1 � e��0
td kd
� (15)

which can be rearranged to give

e��0
td kd
 �

Nd � Nb

Nc � Nb
(16)

FIG 2 Results of fitting the model to viability data (early ring stage). The initially applied DHA concen-
tration is indicated for each panel. Empty circles (appearing in duplicate) are the repeated measures of
viability by (initial) drug concentration and exposure duration. For one DHA concentration and one drug
exposure time in each panel, duplicate viability measurements are provided, which means in total 10
data points are measured in each panel (note that viability for zero exposure time is always equal to 1
due to normalizing parasitemia to itself). Black curves show the predicted mean viability measurements
from the model with fixed � parameter. Red dashed lines are the 95% confidence intervals (CI) for the
predicted mean viability measurements (derived using simulation-estimation of 500 concentration-effect
profiles and parametric bootstrap CIs), and blue-shaded regions are 95% prediction intervals (PI; derived
2.5th and 97.5th percentiles of 500 simulated concentration-effect profiles) for a new viability measure-
ment if it were generated under the same experimental conditions (i.e., drug concentration and pulse
duration).
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The right-hand side is precisely the parasite viability (V) as defined in the in vitro
experiments (7, 9). Therefore, we have

V(C0, td) � e��0
td k(C(
),S(
))d
 (17)

where the dependence of V on the initial DHA concentration, C0, is established through
equation 13. Furthermore, we identify � � �0

td k�C�
�,S�
��d
 as the cumulative stress
effect. We have identified the parasite viability as a function of the cumulative stress
effect arising from a dynamic mechanistic model, allowing us to fit our model to
available viability data, and then use the estimated parameters to perform detailed
PK-PD simulations in an in vivo context.

Fitting the model to viability data. Figure 2 shows the fitting result for the early
ring stage. Results for the other stages are provided in Fig. S1 to S3 in the supplemental
material. Parameter estimates and confidence intervals (CI) are given in Table 1. The
model captures the data very well, in particular the dependence of viability on drug
exposure time, which is the key advance we require. Note, as discussed in the
introduction, the standard model (in which there is no stress accumulation) is incapable
of explaining the experimental observations for short exposure times. The standard
model always predicts a faster decrease in viability for a higher drug concentration,
contradicting the data (Fig. 1). This is further confirmed by a statistical comparison of
the dynamic stress model and the standard model both in terms of fit visualization (Fig.
S4 to S7) and the Akaike information criterion (AIC) (Tables S2 and S3). In particular, the
improvement of goodness of fit is most evident for the mid-ring stage (Fig. S5). This
finding comes as no surprise; the estimates for � for the mid-ring stage are small
relative to the �¡∞ value, which recovers the standard (no stress accumulation) model.
This analysis demonstrates that the introduction of a time-dependent stress response,
modulating both the maximal killing rate and the half-maximal drug concentration,
provides a substantially improved explanation for the in vitro experimental data.

TABLE 1 Results of fitting the model to viability dataa

Parameter (unit) Estimate SE

95% CI

Model based
Parametric
bootstrap

Early ring stage
� (h�1) 6.2504 (0.11) 0.5745 5.1243, 7.3765 1.8587, 9.5201
� (h�1) 1.6915 0.1378 1.4215, 1.9616 1.2944, 1.8475
	1 (nM) 990.84 373.49 258.81, 1,722.9 �20,377, 1876.5
	2 (nM) 12.519 1.0631 10.435, 14.602 10.560, 13.553

Mid-ring stage
� (h�1) 0.3729 (1.86) 0.1406 0.0974, 0.6485 0.2515, 0.5035
� (h�1) 1.1224 0.2455 0.6412, 1.6036 0.6934, 1.3371
	1 (nM) 224.39 112.12 4.6466, 444.14 117.37, 301.69
	2 (nM) 9.97 � 10�4 1.26 � 10�4 (7.5, 12.4) � 10�4 (9.8, 10.1) � 10�4

Early trophozoite stage
� (h�1) 1.2290 (0.56) 0.2249 0.7882, 1.6698 0.6331, 1.8059
� (h�1) 5.7434 0.7460 4.2813, 7.2054 1.8799, 7.2729
	1 (nM) 317.64 86.143 148.80, 486.48 �9.4144, 462.98
	2 (nM) 39.570 4.6038 30.546, 48.593 29.315, 46.842

Late trophozoite stage
� (h�1) 2.0906 (0.33) 0.2909 1.5203, 2.6608 1.4406, 2.6302
� (h�1) 2.8626 0.1591 2.5508, 3.1744 2.2851, 3.2810
	1 (nM) 740.02 178.77 389.64, 1,090.41 160.00, 1,071.6
	2 (nM) 41.405 3.6606 34.230, 48.580 35.459, 45.629

aViability data are for the 3D7 strain (7). � is fixed to be 1.7892 based on estimates in Table S1 in the
supplemental material. The model-based 95% CI and parametric bootstrap 95% CI are introduced in
Materials and Methods. The rate of stress development, �, can also be understood as the rate at which the
“unstress” state is lost, and the half-life (hours) of the unstressed state can be calculated simply by ln(2)/�
and is shown in parentheses following the estimates of �.
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We also compare the model fits on a logarithmic scale (Fig. S8 to S11). The dynamic
stress model outperforms the standard model overall, particularly so for low concen-
trations and short exposure times, which are the primary point of interest. However, for
some cases of high DHA concentration and long exposure times (e.g., for 4-h and 6-h
exposures at drug concentrations larger than 100 nM), we identify that the dynamic
stress model subtly overestimates the killing effect for early ring and early and late
trophozoite stages (Fig. S8, S10, and S11). Of course, the log scale emphasizes the
subtle effect while obscuring the significantly improved fit for shorter exposure dura-
tions and lower drug concentrations (where the interesting and new dynamic effects
are evident). Furthermore, the limit of detection in the in vitro experiment remains
uncertain, and while we conservatively assumed a detection limit of 0.005 for data
fitting, it may be as high as 0.05. Refitting with a higher detection limit (of 0.05)
provides nearly indistinguishable best fits to the data with no meaningful change in
parameter estimates (data not shown) but does provide even stronger statistical
support for the dynamic stress model over the standard model given the relatively
diminished contribution to the likelihood from low-viability data (more of which now
falls below the detection threshold).

Drug concentration-killing rate curves and stage dependency. The overall im-
pact of parasite killing is determined primarily by the drug concentration-killing rate
curve, which we now consider to be a function of exposure time, generalizing the usual
modeling assumption that the killing rate is an instantaneous function of drug con-
centration. Figure 3 shows the modeled evolution of the concentration-killing rate
curve for the four different life stages of the parasites used in Fig. 1. Except for the
early ring stage, for which the curve reaches its steady state very quickly, the
delayed process of approaching the steady-state killing rate curve for the other
three stages is biologically significant, particularly for the mid-ring stage where a
very strong delay is observed.

Figure 4 shows the estimates and 95% confidence intervals for the four model
parameters �, �, 	1, and 	2 by stage. The delay in the evolution of the drug con-
centration-killing rate curve is determined primarily by the parameter � (Fig. 4A and

FIG 3 Model results showing the evolution of the drug concentration-killing rate curve with drug
exposure duration for different stages. The time after drug exposure, t, is indicated. Note that the y axis
scale differs for different stages.
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Table 1), which reflects the accumulation rate for stress (equation 6). For the early ring
stage, � � 6.25 h�1 and thus S(1 h) � 0.99, indicating that early rings rapidly succumb
to drug exposure. In contrast, the rate of accumulation of stress for mid-ring-stage
parasites is much lower (� � 0.37 h�1), and it would take over 12 h of continued
exposure to drug for S to exceed 0.99. Early and late trophozoite stages display similar
characteristics in terms of the rate of accumulation of stress (Fig. 3). The temporal effect
can also be interpreted by introducing the half-life (Table 1) of the unstressed state,
given by ln(2)/�. Accordingly, � can be seen as the rate at which the unstressed state
is lost. We see that the stress in mid-ring-stage parasites takes approximately 2 h to
reach 50%, while stress accumulates for other stages more rapidly, taking less than half
an hour to reach the same level.

The maximum killing rate, � (Fig. 4B), shows a significant reduction for (early and
mid-) ring-stage parasites than for (early and late) trophozoites, suggesting that young
parasites are more resistant to DHA than mature parasites once (or even when) the
killing effect has reached a steady state. The parameters related to the concentration
required to achieve the half-maximal killing rate, 	1 and 	2, also exhibit stage specificity
(Fig. 4C and D). In particular, the stationary half-maximal killing concentration (Fig. 4D,
	2) shows that ring-stage parasites exhibit a higher sensitivity to drug at steady state
than trophozoites. However, it must be remembered that, particularly for mid-ring-
stage parasites, the progress toward that steady state (governed by �) is slow, and the
net effect of the dynamics of drug-induced killing is best understood through Fig. 3.

Incorporating the delayed drug effect into PK-PD modeling. Having established
the applicability of our model to the in vitro data, we now consider the potential
implications for the in vivo application of artemisinin-based medication. We do so by
incorporating the time dependency on the killing rate into the general PK-PD frame-

FIG 4 Dependence of model parameters on parasite life stage. The parameter estimates are provided in Table 1.
Error bars show the model-based 95% CI for each parameter. (A) The rate of stress development (�) is large for early
rings, indicating minimal time dependence in killing for this life stage. In contrast for mid-ring-stage parasites, the
rate is very small, indicating a substantial accumulation effect. (B) The maximum killing rate is linear in �, indicating
that the maximum killing rate is higher in trophozoites than rings. (C and D) Parameters (	1 and 	2) model the
relationship between stress (S) and the half-maximal drug concentration (equation 8).
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work (equation 3), where we allow for realistic drug PK and a general age structure for
the parasites.

Because the stress accumulation effect is most pronounced for the mid-ring stage of
3D7 parasites (the subject of our study), we begin by considering mid-ring-stage
parasites treated with a single dose of artesunate (2 mg/kg of body weight). The plasma
DHA concentration, C(t), displays biphasic behavior (6):

dC

dt
� �

Cmax

tm
, 0 � t 
 tm

�
ln(2)

t1⁄2
C, t � tm

(18)

where Cmax is the maximum achievable concentration and tm indicates the time at
which that maximum concentration is achieved. Note that the half-life, t1/2, refers to the
in vivo half-life of DHA, which is much smaller than that measured in vitro due to altered
physiological conditions (Fig. 2 and Table S2 in reference 21), i.e., Cmax of 2,820 nM, tm

of 1 h, and t1/2 of 0.9 h per references 2 and 21. The simulated PK data are shown in
Fig. 5A, upper.

The middle and lower panels of Fig. 5A shows the time series for stress, S, and killing
rate, k, as a result of the changing DHA concentration. The black curves are generated
using � � 0.37 h�1, the best-fit estimate from fitting the model to the in vitro data for
the mid-ring stage (Table 1). Decreasing � will delay the increase of S and in turn lead
to a slower and shortened killing rate profile (Fig. 5A, red curves), while increasing � will
do the opposite (Fig. 5A, blue curves). Thus, we consider a lowering of � as a potential

FIG 5 Incorporation of the time-dependent killing rate into the PK-PD model. We study the mid-ring stage for illustrative
purposes. Parameter values are taken from Table 1. (A) Simulated in vivo DHA concentration profile (upper; the in vivo
half-life is approximately 0.9 h [2, 21]), the kinetics for the modulatory stress variable, S (middle; black curve, � � 0.37), and
the transient killing rate S (lower; black curve, � � 0.37) induced by the drug pulse. The middle and lower panels also show
how S and k evolve if � is higher (blue) or lower (red). (B) Killing rate surface as a function of DHA concentration, C, and
the stress, S, and the projection of the trajectory of the effective killing rate (i.e., a projection of the curves in panel A
[lower]) onto the surface. (C) Area under the killing rate curve, an indication of the total amount of killing achievable over
the course of the drug pulse.
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manifestation of (stage-specific) artemisinin resistance. Conversely, � � 1 implies that
parasites accumulate stress rapidly and are rendered nonviable at the stationary rate
[given C(t)] soon after initiation of the drug pulse.

Under the model, the killing rate, k, is now a function of two variables (as clearly shown
by equation 17), the drug concentration, C(t), and the modulatory stress, S(t). We can
represent this graphically by displaying the killing rate as a trajectory on a surface in (C,S)
space (Fig. 5B). In this representation, we can clearly see the effect of � on the evolution of
the killing rate: the trajectory corresponding to a smaller � has less time (controlled by S in
the model) to climb up the killing rate surface, even when the achievable DHA concentra-
tion remains the same.

We can also consider the net cumulative effect of the drug pulse. As described
earlier, � � �0

td k�C�
�,S�
��d
 represents the cumulative stress effect, which can be used
to indicate drug efficacy. In the in vivo simulation, � is simply the area under the
effective killing rate curve (i.e., the area under the curve in the lower panel of Fig. 5A).
For mid-ring-stage parasites with � � 0.37, the cumulative stress effect (Fig. 5C, black
bar) corresponds to a reduction in viability of approximately 99.75% over the drug
pulse. Further numerical exploration indicates that a roughly 3-fold increase or de-
crease in � leads to a significant difference in the cumulative stress effect (Fig. 5C, blue
and red bars) and, in turn, a difference of a few orders of magnitude in viability.

In summary, the results presented in Fig. 5 indicate that the temporal drug effect
significantly affects the in vivo parasite killing and thus should be considered in
model-based prediction of clinical treatment. Furthermore, the visualization of the
killing rate trajectory on the (C,S) plane surface suggests a clear evolutionary strategy
for the parasite to escape drug pressure, particularly given the short elimination half-life
of artemisinin and its derivatives. An ability to outlast the short drug pulse provides an
effective means of escape quite distinct from any changes in susceptibility, as are
typically considered by a change in the maximal killing rate or drug concentration
required to achieve half-maximal killing.

To fully explore the consequences of accumulation effects on the pharmacodynam-
ics of antimalarial treatment, we simulated the time course of total viable parasite count
under a standard AS7 dosing regimen (i.e., a dose of 2 mg/kg artesunate every 24 h for
7 days) for both the 3D7 strain and a hypothetical strain which exhibits a slower rate
of stress development during the mid-ring stage. Some key simulation details are
provided in the legend to Fig. 6. We initiated the simulation with 1012 parasites per
patient with a normally distributed age distribution, with a mean of 10 h p.i. and
standard deviation of 2 h p.i. (Fig. 6, inset). For the laboratory 3D7 strain, the model
predicts that effective parasite clearance is achieved immediately following the third
dose of artesunate (at 48 h in the model) (Fig. 6, green curve). In contrast, for the
hypothetical strain which exhibits a slower development of the stress response during
the mid-ring stage (i.e., � is reduced for this, but no other, stage), we observe a clear
and substantial delay in parasite clearance. In detail, the red curve in Fig. 6 shows the
parasitemia curve for a resistant strain that has a � value of 0.1 h�1 for the mid-ring
stage (with all other parameters [across all stages] unchanged). This simulation has an
a priori rationale given previous studies that indicate that field isolates from Pailin
(western Cambodia) display a reduced sensitivity to artemisinin-based therapies during
the ring stage of infection (6, 8, 9). We note that while this simple simulation does not
incorporate the process of splenic clearance or the immune response (which are also
important for in vivo parasite clearance; see Discussion), its behavior is consistent with
clinical observations of a 1.5 to 2 times longer time to clearance for resistant strains
compared to sensitive strains (6).

In addition, we also compare the in vivo simulation result generated by using the
standard killing rate model to the results shown in Fig. 6 (i.e., the results generated by
using the dynamic stress model) in Fig. S12. The two models produce qualitatively
similar results. Parasites are killed in a stepwise manner associated with the time of drug
administration. However, the stress model predicts a much faster parasite clearance
than the standard model. This is due to the different ways in which the dynamic stress
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and traditional models explain the in vitro data. Without an accumulation effect, the
standard model does its best to explain the in vitro data by having a lower maximal
killing rate (of course, this leads to poor fits compared to the dynamic stress model, so
little confidence should be placed in the extrapolated in vivo parasite-time curve). In
turn, the lower estimates for kmax compared to � (and higher estimates for Kc compared
to 	2) lead to slower parasite killing in the in vivo context. We note that, like for all
PK-PD studies that attempt to translate from the in vitro to in vivo context, care must
be taken as the in vivo environment may result in quantitative changes to the values
of key model parameters (13). Accordingly, the key finding from our in vivo simulation
is a qualitative, not quantitative, one. We have demonstrated how a change in the rate
of accumulation of stress may influence the clearance time and how ignoring stress
may provide vastly different predictions for the clearance time. Conducting such a
quantitative translation exercise to the in vivo context using the techniques of Zaloumis
et al. (13) will be the subject of future work.

DISCUSSION

Artemisinin resistance has arisen as the major impediment to the continued success
of malaria control programs. With new drugs likely to be some time away from
licensure and widespread use, how we maintain the effectiveness of artemisinin-based
therapies is an important and urgent problem to resolve. In this paper, we have
introduced a novel mathematical model that allows for the detailed investigation of the
time-dependent response of P. falciparum parasites to the artemisinins. We have
established the significant influence of the parasite stress response on killing and
incorporated this into a simulation of in vivo parasite clearance. This is the first study to
our knowledge to incorporate the novel time-dependent drug effect into a fully
mechanistic PK-PD model, and it constitutes an essential step toward development of
a comprehensive framework that can be used to optimize existing dosing regimens.

Validated against detailed in vitro experimental data (7, 9), the key feature intro-
duced in our model is the concept of dynamic (accumulating) stress (S) and the
parameter governing the time scale of that process (�). The time evolution of stress
determines the development of the killing rate and therefore the probability of parasite
survival (as assessed in vitro by viability). This conceptualization of stress, applied to the

FIG 6 Simulation of parasite killing under a standard treatment of 2 mg/kg artesunate every 24 h. The
inset shows the age distribution of a total of 1012 parasites (per patient) at the start of treatment [�N(10,
22)]. The parasite multiplication factor is assumed to be 10 (6, 13), which means that 10 new parasites are
produced once a parasite reaches 48 h p.i. (i.e., r � 10 in the model). The PK profile is a series of repeated
DHA concentration profiles every 24 h (i.e., repeated simulations of DHA concentration profile shown in
Fig. 5A, upper). The black triangles indicate when the doses are given. The green curve corresponding
to the laboratory 3D7 strain is generated using the parameters in Table 1, while the red curve is
generated using the same set of parameters except for reducing � for mid-ring stage to be 0.1 h�1 to
simulate a more resistant strain. With limited information, we simply divide the 48-h life cycle into early
ring stage (0 to 6 h p.i.), mid-ring stage (6 to 26 h p.i.), early trophozoite (26 to 34 h p.i.), and late
trophozoite (34 to 48 h p.i.) in the simulation. The modulatory variable S is assumed to follow equation
6 only when DHA concentration, C, is �0.1 nM (i.e., C* � 0.1 nM), and S is immediately reset to zero when
the DHA concentration drops below 0.1 nM.
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artemisinin derivatives, has been shown to not only capture the in vitro viability data
published in reference 7 but also identify the relative contributions of drug concen-
tration and stress response in determining the effective killing effect.

Specifically, the estimate for �, which determines the strength of the delay, shows
that mid-ring-stage 3D7 parasites exhibit a substantially more delayed response to DHA
exposure than do parasites at other stages. This is consistent with the original analyses
presented in Klonis et al. (7), where a semimechanistic (but not dynamic) cumulative
effective dose (CED) model was used for interpretation of stage-specific drug effects.
Klonis et al. also reported an unexpected finding that early-ring-stage parasites exhib-
ited a hypersensitivity to DHA compared to mid-ring-stage parasites. Our model results
(Fig. 4) show that a rapid induction of maximal killing (i.e., a rapid increase in S), rather
than a large increase in the magnitude of the maximum killing rate itself, is the primary
explanation for this hypersensitivity.

We also examined, through simulation of the full PK-PD model, how a cumulative
stress response affects in vivo parasite dynamics. We considered the standard AS7
artesunate treatment regimen (a dose of artesunate every 24 h for 7 days). Parasites
that are more able to withstand exposure (i.e., that have a lower �) during the mid-ring
stage remain in circulation for a significantly greater period of time, with PD profiles
that reflect those from patients infected with resistant strains. These results agree with
those we have previously presented using the CED model (see Fig. 7 in reference 9), but
we emphasize that the results presented here (Fig. 6) arise from a fully mechanistic
PK-PD model. This is an important distinction as, by construction, our PK-PD model
accounts for the ageing and natural replication dynamics of the parasite population,
the time-varying nature of the drug concentration, and the interaction (killing) between
parasite and drug in a self-consistent and biologically realistic way. This provides our
model with enhanced predictive power compared to the CED model, which, while
empirically useful, was not well suited to in vivo simulation. We emphasize that our in
vivo simulations provide predictions of the number of viable parasites. However, in vivo
assays cannot distinguish between viable and nonviable parasites or detect seques-
tered parasites. As such, further advances in experimental assays are required to fully
test the predictions from these simulations.

We have referred to the modulatory variable, S, throughout the paper as a stress. We
have done so to provide guidance as to possible biological interpretations of S, but for
now an incomplete understanding of the mechanism of action of the artemisinins limits
the degree to which our phenomenologically based model can be correlated with
specific biological stresses induced by exposure to artemisinins. Recent work (22, 23)
confirms earlier studies (24) suggesting that artemisinins exert their activity by alkylat-
ing multiple targets within the parasite. Reports of growth retardation, quiescence, and
dormancy following artemisinin exposure (7, 9, 25, 26) are reminiscent of the cytostatic
stress response observed in other organisms (27, 28). Further developments in under-
standing the mechanistic underpinnings of artemisinin activity are required to further
refine our model for stress. The details of any of these processes, were they to be
confirmed to be associated with cumulative stress effects, would be able to be
incorporated into our model in a straightforward manner through adjustment of the
equations governing the time evolution of kmax and Kc.

An immediate implication of our model concerns the possible mechanism by which
the malaria parasite attains resistance to artemisinin. Drug resistance is typically
characterized by an increase in the drug concentration required (in vitro or in vivo) to
achieve maximal (or half-maximal) killing. However, our exploratory analysis suggests
that increasing tolerance to stress (i.e., reducing �) can also underpin drug escape.
Indeed, the experimental results from reference 9, in which resistance can be overcome
through application of proteasome inhibitors, such as carfilzomib, support this possi-
bility. Furthermore, if such a mechanism were at play, then long-lived drugs acting on
the same (or a similar) pathway and subject to the same resistance mutations would
not result in a resistance phenotype when applied for extended periods (as S would still
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saturate and a high rate of killing would be achieved). This is precisely the behavior
observed for OZ439 (half-life over 10 h) in recent experiments (21).

We also emphasize that the purpose of this study was not to determine the optimal
structure (from a statistical perspective) for a model of stress accumulation, because the
in vitro data do not provide any direct insight into the underlying mechanisms of stress.
Rather, based on an analysis of the in vitro data, we established (i) the necessity for
generalizing the standard killing rate model to capture the novel exposure time-
dependent killing effect and (ii) the potential importance of the temporal effect in in
vivo parasite clearance. To achieve this, it was sufficient to choose a simple mechanistic
model that is able to explain the available viability data and that is statistically superior
to the standard model. The novelty of our model lies not in its particular functional form
but in its ability to capture the time dependency in exposure and killing.

The model we have introduced, while overcoming restrictions of the standard PK-PD
approach and successfully capturing the complex dynamics observed in reference 7 for
the 3D7 strain, has a number of limitations. Most importantly, equation 6 assumes a
drug concentration-independent increase in S, while C is greater than C*, and then an
instantaneous return to zero when the drug concentration drops below C*. However,
this simple approach to modeling the stress, S, reflects the current limitations on our
understanding of the mechanism of action of the artemisinins. With further data on
how the drugs act, the dynamics of stress in the model can be adjusted to reflect the
improved understanding. One important avenue to pursue is to examine how parasites
that survive exposure to an initial drug pulse respond to a subsequent drug pulse. Does
their stress (S) return to zero, or do they display some memory of previous exposure
and thereby presumably succumb more quickly upon subsequent exposure? If such
recovery exists, what is the typical time scale in relation to the life cycle? Such
possibilities are (i) able to be probed experimentally using previously published tech-
niques (7, 9) and (ii) able to be readily incorporated into more complex models of the
form introduced in this paper. Moreover, it is possible that the killing parameters kmax

and Kc are modulated by distinct (or even multiple) stress responses. While such effects
could be captured by a more flexible dynamic stress model by allowing parameters
governing the time dependence for these two processes (i.e., �) to be distinct, suffi-
ciently detailed data are not yet available to justify exploration of such extensions.
Another area for improvement in the approach taken here is in translating from the in
vitro to in vivo situation. For example, our simple simulations assume there is no killing
of parasites due to immune response mechanisms triggered within the host. While the
immune response is unlikely to play a major role during the early stages of infection,
as infection progresses its effects would be anticipated to become more significant.
Therefore, given the fact that both the drug effect and immune response are dynamic
in nature, it will be important to explore how differences in the timing of drug
application and activation of various immune mechanisms affect parasite clearance and
optimization of drug regimens. In the meantime, our results provide new insight into
how P. falciparum responds to drug. Our model provides an enhanced predictive
platform for evaluating the likely efficacy of alternative artemisinin-based drug regi-
mens, directly contributing to the efforts to maintain effective control of malaria.

MATERIALS AND METHODS
In this section, we introduce the statistical methods for model parameter estimation. Estimates of the

model parameters (�, �, �, 	1, and 	2) for each parasite stage (early ring, mid-ring, early trophozoite, and
late trophozoite) were obtained using nonlinear mixed-effect (NLME) modeling to fit equation 17
separately to the viability data for each stage. For each stage, the data with different drug concentrations
were fitted simultaneously. (Note that the stage-dependent estimate of � suggested a very limited
variation [see Table S1 in the supplemental material] and thus was fixed later to be the mean of the four
estimates in Table S1 to reduce uncertainty; main results in the paper were based on a fixed �.) To
account for the dependency between duplicate measurements, the residual error term was partitioned
into between- and within-duplicate components that were assumed to be uncorrelated and normally
distributed with means of zero and variances of �b

2 and �w
2 , respectively. The M3 method was used to

account for viability data below the quantification limit of 0.005 (29).
Model-based 95% confidence intervals were calculated using asymptotic standard errors (square root

of the inverse Fisher information) with an estimate of �1.96� asymptotic standard errors. Ninety-five
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percent parametric bootstrap confidence intervals for the model parameters (Table 1 and Table S1) and
predictions (Fig. 2 and Fig. S1 to S3) were calculated by (i) generating 500 parametric bootstrap data sets
by simulating from the fitted NLME model; (ii) obtaining bootstrap estimates of the model parameters
and predictions by refitting the NLME model to each parametric bootstrap data set; and (iii) calculating
basic bootstrap confidence intervals for each parameter and prediction: 2 times the estimate minus the
97.5th percentile of bootstrap estimates and 2 times the estimate minus the 2.5th percentile of bootstrap
estimates (30). Parametric prediction intervals for a new viability measurement (Fig. 2 and Fig. S1 to S3)
were calculated at the observed pulse durations and DHA concentrations by (i) simulating 500 viability
data sets from the fitted NLME model and (ii) calculating the 2.5th and 97.5th quantiles of the viability
measurements simulated at each observed pulse duration and DHA concentration.

NONMEM 7.3.0 (ICON Development Solutions, Ellicott City, MD) and Perl-speaks-NONMEM 3.7.6 (31)
were used to perform the NLME modeling of the viability data and obtain asymptotic standard errors and
to perform the simulation-estimation procedure required to construct the 95% parametric bootstrap
confidence intervals and the simulations necessary to calculate 95% parametric prediction intervals.
MATLAB (version 2014b; The MathWorks, Natick, MA) was used to summarize and visualize the fitting
results.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.00618-17.

SUPPLEMENTAL FILE 1, PDF file, 0.4 MB.
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