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Abstract

Background: Infectious disease is one of the main issues that threatens human health worldwide. The 2019 outbreak of the
new coronavirus SARS-CoV-2, which causes the disease COVID-19, has become a serious global pandemic. Many attempts
have been made to forecast the spread of the disease using various methods, including time series models. Among the attempts
to model the pandemic, to the best of our knowledge, no studies have used the singular spectrum analysis (SSA) technique to
forecast confirmed cases.

Objective: The primary objective of this paper is to construct a reliable, robust, and interpretable model for describing,
decomposing, and forecasting the number of confirmed cases of COVID-19 and predicting the peak of the pandemic in Saudi
Arabia.

Methods: A modified singular spectrum analysis (SSA) approach was applied for the analysis of the COVID-19 pandemic in
Saudi Arabia. We proposed this approach and developed it in our previous studies regarding the separability and grouping steps
in SSA, which play important roles in reconstruction and forecasting. The modified SSA approach mainly enables us to identify
the number of interpretable components required for separability, signal extraction, and noise reduction. The approach was
examined using different levels of simulated and real data with different structures and signal-to-noise ratios. In this study, we
examined the capability of the approach to analyze COVID-19 data. We then used vector SSA to predict new data points and the
peak of the pandemic in Saudi Arabia.

Results: In the first stage, the confirmed daily cases on the first 42 days (March 02 to April 12, 2020) were used and analyzed
to identify the value of the number of required eigenvalues (r) for separability between noise and signal. After obtaining the value
of r, which was 2, and extracting the signals, vector SSA was used to predict and determine the pandemic peak. In the second
stage, we updated the data and included 81 daily case values. We used the same window length and number of eigenvalues for
reconstruction and forecasting of the points 90 days ahead. The results of both forecasting scenarios indicated that the peak would
occur around the end of May or June 2020 and that the crisis would end between the end of June and the middle of August 2020,
with a total number of infected people of approximately 330,000.

Conclusions: Our results confirm the impressive performance of modified SSA in analyzing COVID-19 data and selecting the
value of r for identifying the signal subspace from a noisy time series and then making a reliable prediction of daily confirmed
cases using the vector SSA method.
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Introduction

One of the main issues that threatens human health worldwide
is infectious diseases. Recently, the 2019 outbreak of the new
coronavirus, SARS-CoV-2, which causes the disease known as
COVID-19, has led to a global pandemic [1,2]. The first case
of the virus was recognized and reported on December 31, 2019,
in the city of Wuhan, the capital of Hubei Province in China
[3]. The virus then spread rapidly worldwide and has affected
more than 200 countries [4].

The number of cases and deaths from SARS-CoV-2 globally
are considered to be a serious problem [5,6]. As of May 12,
2020, the number of confirmed cases worldwide was more than
4 million, with approximately 200,000 deaths. Although the
outbreak appears to have abated in China, the virus and its
impact are still spreading globally, and the case numbers are
increasing. This is leading to concerns about variations in the
affected cases and the mortality rate of the pandemic.
Furthermore, there is much concern about the global economic
impact of the crisis. It is now understood that the devastating
influence of the virus on the economy and world health is
without precedent [7].

In addition, several urgent queries related to transmission
dynamics, mitigation, and control measures of COVID-19 have
been raised, and researchers are attempting to use mathematical
modeling to answer these important questions [8]. For example,
the containment of transmission, plans such as quarantine, social
distancing, and contact tracing of infected or suspected carriers,
and lockdowns in regions or countries to address the disease
have been included in the results of model predictions [9,10].

There are several standard epidemiological models for modelling
epidemics, such as the susceptible, infectious, recovered (SIR)
model [11-13]. Many studies have been conducted to model the
pandemic using various methods, such as deep learning-based
models [14], a simple iteration method [15], generalized additive
models [16], which were used to estimate the three parameters
of time-dependent transmission, time-dependent recovery, and
time-dependent death rates from the outbreak; also, a hybrid
model including 2D curvelet transformation, the chaotic salp
swarm algorithm, and a deep learning technique was used to
identify people infected with SARS-CoV-2 from x-ray images
[17].

The primary objective of this study is the construction of a
reliable, robust, and interpretable model for describing,
decomposing, and forecasting the number of confirmed
COVID-19 cases and predicting the peak of the pandemic in
Saudi Arabia. The rate of mortality in Saudi Arabia is low, less
than 1% at the time of writing this paper (May 12, 2020).
Therefore, we were only interested in new daily cases of people
affected by SARS-CoV-2 in an attempt to detect its peak. The
number of cumulative cases was more than 40,000 as of May
12, 2020.

Because our aim was to analyze the daily data series of
COVID-19, we sought to use a promising, reliable, and capable
method for analyzing time series. A number of methods can be
used to perform such an analysis; however, several of these
methods are parametric and thus have requirements such as
linearity or nonlinearity of a particular form.

An alternative method is to use nonparametric approaches that
are neutral with respect to problematic areas of specification,
such as linearity, stationarity, and normality [18]. These
approaches can represent a reliable and superior means of
decomposing time series data. Singular spectrum analysis (SSA)
is a relatively new nonparametric technique that has been proved
to be effective in several time series applications in different
disciplines, such as genetics and biology [19,20], medicine
[21,22], engineering [23,24], and economics and finance [25,26].
For the history of SSA, see [27,28], and for more details on the
theory of SSA and its applications, refer to [29,30]. A
comprehensive review of the SSA method and descriptions of
its extensions and modifications can be found in [31].

The SSA technique is considered to be a useful tool that can be
applied to solve many problems, such as smoothing; finding
trends in different resolutions; simultaneous extraction of cycles
with small and large periods; extraction of seasonality
components; extraction of periodicities with varying amplitudes;
and simultaneous extraction of complex trends and periodicities
[30]. It should be noted that SSA is not linked with generalized
autoregressive conditional heteroskedasticity, advanced
autoregressive integrated moving average, wavelets, or other
methods of this type. However, it has close links with certain
methods of multivariate statistics and with signal methods such
as projection pursuit and principal component analysis
[30,32,33].

Although signals can be affected by internal or external noise,
which often has unknown characteristics, they can be identified
if the signal and noise subspaces are accurately separated. It is
known that removing noise from any signal is necessary for
analyzing any time series and is helpful in properly decomposing
signals [34].

The main idea of SSA is to analyze the main series into different
components, then reconstruct the noise-free series for further
analysis. This process depends upon two main choices: the
window length L and the number of required eigenvalues,
denoted by r, for reconstruction. Therefore, appropriate selection
of L and r leads to perfect analysis and separability between the
time series components. It was discussed in [35] that for a series
of length N, selecting L=N/4 is common practice. It should also
be mentioned that L needs to be sufficiently large but no larger
than half of the series [29]. In [36], it was shown that for a series
of length N and the optimal selection of the number of
eigenvalues r for reconstructing the signal, the appropriate value
of the window length is median{1, …, N}. Although various
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attempts have been made, no universal rule has been established
for obtaining optimal selections of L and r.

We proposed an approach in [37-39] for the selection of the
value of r for noise reduction, filtering, and signal extraction in
SSA. This approach has also been applied to the distinction of
noise from chaos in time series analysis [40] and for the
correction of noise in gene expression data [41]. In [39], we
developed the approach and introduced new criteria to the
discrimination between epileptic seizure and normal
electroencephalogram (EEG) signals, the filtering of the EEG
signal segments, and elimination of the noise included in the
signal. The approach is mainly used to identify the required
number of eigenvalues or singular values corresponding to the
signal component, which depends on the distribution of the
eigenvalues of a scaled Hankel matrix. The correlation between
eigenvalues, the coefficients of skewness, the kurtosis, and the
variation of the distribution of the eigenvalues were proposed
and proved to be new criteria for the separability between the
signal and noise components, as they can split the eigenvalues
into two groups [38]. Different simulated and real signals were
used to consider different signal-to-noise (SNR) ratios in [38,39]
and were evaluated to show the ability of the approach in the
selection of r.

The remainder of this paper is structured as follows. The
Methods section gives a short description of the modified SSA
approach and its algorithm. In the Results section, we show that
this approach can be used to decompose synthetic data into two
main distinct subspaces, and we then discuss the implementation
of the approach in decomposing and reconstructing series of
COVID-19 daily cases. This section also presents the forecasting
of the COVID-19 pandemic in Saudi Arabia using vector
singular spectrum analysis (VSSA) of the signal extracted by
modified SSA. The Discussion section draws the conclusion of
the paper and suggests ideas for future work.

Methods

The Modified SSA Method: Review
This section presents a short description of the modified SSA
used in this manuscript (for more details, refer to [38]). A time
series was decomposed by the technique into a sum of
components, allowing for identification of each as either a main
or noise component. The goal was to consider the signal as a
whole so that we could identify the appropriate value of r related
to the whole signal component. In other words, we were not
interested in each signal component; thus, the selection of L
rational to the periodicity of the signal components was less
important [30]. Therefore, the modified SSA method focused
on the selection of r to identify the signal subspace.

Consider a one-dimensional series YN = (y1, …, yN) of length
N. Transferring this series into a multidimensional series X1,

…, XK , where Xi = (y1, …, yi+L–1)
T ∈ RL provides ,

where L is an integer (2 ≤ L ≤ N/2) and K = N – L + 1.

A matrix X is a Hankel matrix, in which all the elements along

the diagonal I + j = const are equal. Set B = XXT, denote by λi

(i = 1, …, L) the eigenvalues of B taken in decreasing order of

magnitude (λ1 ≥   λL ≥ 0), and denote by U1, …, UL the
orthonormal system of the eigenvectors of matrix B
corresponding to these eigenvalues. The singular value
decomposition (SVD) of matrix X can be written as follows:

X = X1 + ⋅⋅⋅ + XL              (1)

where . The elementary matrices Xi having rank 1, Ui,
and Vi are the left and right eigenvectors of matrix X. Note that

the collection is called the ith eigentriple of the SVD.

Note also that and , where ║ ║F

denotes the Frobenius norm.

Fundamental to the question of eigenvalue behavior, λi, is that
if the series size increases, there is a corresponding increase in
the eigenvalues. This problem can be overcome if B is divided
by its trace, A = B/tr(B), which provides several important
properties [37]. Let ζ1, …, ζL denote the matrix B eigenvalues
in decreasing order of magnitude (1 ≥ ζ1 ≥ ⋅⋅⋅ ζL ≥ 0). The
simulation is performed to obtain the distribution of ζ1 and to
understand the behavior of each eigenvalue. This helps identify
the value of r. Here, the goal was to establish the distribution
and related forms of ζ1 that would be used to select the
appropriate value of r for removing noise from the COVID-19
series.

It was proved in our previous work [38] that the largest
eigenvalue has a positive skewed distribution for a white noise
process. Therefore, if skew(ζc) (c ∈ {1, …, L})is the maximum,
and the pattern for skew(ζc) to skew(ζL) has the same pattern,
the same as that which emerged for the white noise, then the
first r = c 1 eigenvalues correspond to the signal and the
remaining eigenvalues correspond to the noise. A similar
procedure can be performed using the coefficients of kurtosis
and the variation of ζi. Furthermore, if ρS(ζc–1, ζc) is the

minimum, and the pattern for the set is similar to
what was observed for the white noise, then we select the first
r eigenvalues for the signal and the remainder for the noise
component (for more information, see [38]).

In this research, we used the third and fourth central measure
moments of the distribution, which are the skewness (skew) and
kurtosis (kurt). Skewness is a measure of asymmetry of the data
distribution, while kurtosis describes the distribution of observed
data in terms of shape or peak. We used these measures as
criteria for choosing the value of r, which can be calculated for
a simulation m as follows:
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Moreover, the coefficient of variation (CV), which is defined

as the ratio of the standard deviation σ(ζi) and , can be
calculated mathematically from the following formula:

In addition, the Spearman correlation ρS between the eigenvalues
ζi and ζj (i, j = 1, …, L) was calculated to enhance the results
obtained by those measures:

where dn = xn – yn (n = 1, …, m) is the difference between xn

and yn, which are the ranks of ζi and ζj, respectively, and ζi,n is

the n-th observation for the i-th eigenvalue (ζj), .

These measures of difference between the eigenvalues related
to the signal and noise components can specify the cutoff point
of separability, namely, the number of leading SVD components
that are separated from the residual. Therefore, the final cutoff
point of separability between the signal and noise components
obtained by the suggested measures corresponds to the rank
estimation.

The eigenvalues can be split into two groups by using the above
criteria; the first group corresponds to the signal, and the second
corresponds to the noise component. Furthermore, the Spearman
correlation ρS between ζi and ζj was calculated to support the
outcomes obtained by those measures. The absolute value of
the correlation coefficient was considered; 1 shows that ζi and
ζj have a perfect positive correlation, while 0 indicates there is
no correlation between them. The matrix of the absolute values
of the Spearman correlation gives a full analysis of the trajectory
matrix, and in this analysis, each eigenvalue corresponds to an
elementary matrix of the SVD. Note that if the absolute value
of ρS is close to 0, the corresponding components are almost
orthogonal; however, if it is close to 1, the two components are
far from being orthogonal, and thus it is difficult to separate
them. Therefore, if ρS=0 between two reconstructed components,
these two reconstructed series are separable. The results of ρS

between the eigenvalues for the white noise are quite large (see
[38]), which aids the discrimination of the noise part.

Once r is identified, the matrices Xi can be split into two groups.
Therefore, Equation 1 can be written as

X = S + E              (6)

where is the signal matrix and is the noise
matrix. We then use diagonal averaging to transform matrix S
into a new series of size N (see [29]).

The Algorithm
The algorithm consisted of two main stages. The steps in the
first stage used the coefficients of skewness, kurtosis, variation,
and correlation to help obtain the optimal value of r for the
separability between signal and noise, as these coefficients split

the eigenvalues into two groups. The steps in the second stage
were used to reconstruct the free noise series.

The steps in Stage 1 are outlined below:

1. Map a one-dimensional time series YN = y1, …, yN into s
multidimensional series X1, …, XK with vectors Xi = (yi, …,

yi+L–1) ∈ RL, where the window length L is an integer; 2 ≤
L ≤ N/2, and K = N – L + 1. This step gives us the Hankel

matrix .
2. Compute the matrix A = XXT/tr(XXT).
3. Decompose matrix A as A = PΓPT, where Γ = diag(ζi, …,

ζL) is the diagonal matrix of the eigenvalues of A that has
the order (1 ≥ ζi, …, ζL ≥ 0) and P = P1, …, PL is an
orthogonal matrix whose columns are the corresponding
eigenvectors.

4. Simulate the original series m times and calculate the
eigenvalues for each series. We simulate yi from a uniform
distribution with boundaries yi – a and yi – b, where a =
|yi–1 – yi| and b = |yi – yi+1|.

5. Compute the skewness coefficient for each eigenvalue,
skew(ζi). If skew(ζc) is the maximum, and the pattern for
skew(ζc) to skew(ζL) has a similar pattern to that of the
white noise, select r = c – 1.

6. Compute the coefficient of kurtosis for each eigenvalue,
kurt(ζi). If skew(ζc) is the maximum, select r = c – 1.

7. Compute the coefficient of variation, CV=ζi. The result of
the CV splits the eigenvalues into two groups; the
eigenvalues from ζi to ζc–1 correspond to the signal, and
the remaining eigenvalues, which have an almost U shape,
correspond to the noise.

8. Compute the absolute values of the correlation matrix
between the eigenvalues and represent them in a 20-grade
grey scale from white to black corresponding to the values
of the correlations from 0 to 1. This matrix also splits the
eigenvalues into two groups; the eigenvalues from ζi to ζr

correspond to the signal, and the remaining eigenvalues
correspond to the noise.

The steps in Stage 2 are outlined below:

1.
Calculate the approximated signal matrix , that is,

, where r is obtained from the first stage, and

, where Ui and Vi represent the left and right
eigenvectors of the trajectory matrix, respectively.

2.
Averaging over the diagonals of the matrix gives a
one-dimensional series, which is the approximate signal

.

The capabilities of modified SSA using different types of
synthetic data, including series generated from chaotic map
systems with different SNR ratios, are presented in [38]. This
study confirms that the approach works promisingly for any
series that is mixed with a low or high noise level.

Each eigenvalue or singular value contributes to the trajectory
matrix decomposition. We can consider the ratio to be the
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characteristic of matrix Hi to Equation 1. Therefore, 
is considered to be characteristic of the optimal approximation
of H by matrices of rank r.

Results

Separability in Synthetic Data
It should be noted that using the standard criteria in basic SSA,
the weighted correlation (w-correlation) for separability and
grouping (for more information, see [29]), does not always
provide good separability and correct selection of r, especially
for real data.

It was shown in [38] that the results based on skew, kurt, CV,
and ρS are more accurate than those obtained by the
w-correlations for small window lengths, particularly for data
in which a linear trend is included in the series.

We therefore used modified SSA—in particular, some of the
proven criteria on the distribution of ζi, as given in the previous
sections—to identify r. The results were plausible and reliable.

Below, we provide a synthetic example to show the capability
of the approach before applying it to the COVID-19 data; for
more examples considering different types of series and
evaluations with different criteria, refer to [38].

In the following example, a white noise process was added
to an exponential trend series:

Yt = α1 + α2 exp(α2t) +               (7)

where t=(1, …, N), N=42, α1=10, α2=0.09, and is a Gaussian
white noise process with variance 1 (see Figure 1). It is obvious
that the number of eigenvalues required to reconstruct the signal
for this series is 2, as we have added a constant to the
exponential curve, which corresponds to the rank estimation
(see [29]).

Figure 1. Realization of the simulated exponential trend series.

Based on observations of the w-correlations and the logarithm
of the eigenvalues, one may use only the first component to
extract the signal (see Figure 2). However, using the suggested
measures and criteria gives the correct value of r. Figure 3 shows
the kurtosis coefficient of ζi (i=1, …, L). The maximum value
of the kurtosis coefficient is considered as one of the rules and

indicators used for the start of the noise. It is clear that the
maximum kurtosis coefficient of ζi is obtained for ζc=3.
Therefore, the number of eigenvalues required to extract the
signal is r = c – 1 = 2. Similar results were obtained using the
values of skew and CV (see Figure 4).

Figure 2. Left: w-correlation matrix for the seven reconstructed components of the simulated series. Right: logarithms of the seven eigenvalues of the
simulated series. w-correlation: weighted correlation.
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Figure 3. Kurt of ζi for the simulated series. Kurt: kurtosis.

Figure 4. Left: skew of ζi for the simulated series. Right: CVs of ζi for the simulated series. CV: coefficient of variation; skew: skewness.

In addition, the Spearman correlation coefficient between ζi

and ζi+1 was calculated; Figure 5 (left) shows the correlation
between ζi and ζi+1. For the correlation coefficient, the minimum
value of ρS between ζi and ζi+1 was used as another indicator
for the cutoff point. The results were similar to those that

emerged using other criteria and confirmed that the approach
works properly. Different criteria, such as root mean square
error and mean absolute error, were used in [38] to evaluate the
approach, and the results confirmed that the modified approach
is a promising one.

Figure 5. Left: Spearman correlation of (ζi,ζ(i+1). Right: matrix of Spearman correlation between (ζi,ζj).

The correlation matrix also enables us to distinguish and separate
the different components from each other. Therefore, the
correlation matrix of ζi identifies the separability between the
components. If the absolute value of the correlation coefficient
between ζi and ζj is small, then the corresponding components
are almost orthogonal; however, if the value is large, then the

corresponding series are far from being orthogonal, and thus
they are not neatly separable. It is clear that the signal can be
separated from the noise, as the top right-hand pattern from the
correlation matrix is related to the white noise process (see
Figure 5, right).
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COVID-19 Data Analysis
The daily numbers of confirmed cases of COVID-19 in Saudi
Arabia [42] were used in this research. First, we used data from
the first 42 days, from March 2 to April 12, 2020. The aim was
to analyze the data, make predictions from April 13, 2020, and

detect the peak. The number of daily cases series is shown in
Figure 6. Second, we updated our data on May 20, 2020, to
include values from April 13 to May 12, 2020; thus, the total
became 81 values. This did not affect the required number of
eigenvalues for the reconstruction stage, as will be discussed
in the following section.

Figure 6. Time series of daily confirmed COVID-19 cases in Saudi Arabia (March 2 to April 12, 2020).

Separability and Selection of the Components
Starting with the first set of COVID-19 data, as mentioned
earlier, because our aim was to extract the signal as a whole,
we could choose any value for L, with the goal to find the best
choice of r. Furthermore, in our previous research [38], we
showed that it is possible to use a small window length when
analyzing exponential series, like the series of COVID-19 cases.
The selection of L=7 provided the best and most reasonable
results with the required r that would be obtained by the
proposed approach.

The results based on these measures in extracting the signal for
forecasting gave a curve with a likely peak. However, the
predictions using various other choices for L and r did not
indicate any end or peak for the pandemic and in fact showed

exponential increases; such increases are impossible, as the
pandemic will not continue forever. This finding also supports
the obtained results. Therefore, the next important task was the
selection of the number of eigenvalues r required for the
reconstruction and building of the model for forecasting.

Figure 7 illustrates the coefficients of skewness and kurtosis
for each eigenvalue and the results of the matrix correlations
and the correlations between ζi and ζi+1 for L=7. As shown by
the results, for the COVID-19 daily series, the maximum values
of skew and kurt are observed for ζc=3, and the minimum value
of ρS is obtained between ζc–1=3 and ζc=3. In addition, the matrix
of the Spearman correlation for ζi and ζj splits the eigenvalues
or the components into two groups, which indicates that the
value of r is 2.
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Figure 7. Coefficients of skewness (top left) and kurtosis (top right) for each eigenvalue and the correlations between ζi and ζi+1 (bottom left) and

the results of the matrix correlations (bottom right) for L=7.

Figure 8 shows the results of the reconstructed series obtained
by using L=7 and eigentriples r=2. The red and black lines
correspond to the reconstructed series and the original series,
respectively. It appears that the reconstructed series that was

obtained is good. However, it will be shown later that the
reconstructed series using the whole data set is better than this
fitted series.

Figure 8. Plot of the first time series of daily COVID-19 cases in Saudi Arabia and the fitted curve.

Prediction of Daily Cases of COVID-19 Using VSSA
After obtaining the reconstructed series, the next aim was to
predict the data for daily new cases from April 13 to August
2020. There are two main forecasting methods in SSA: VSSA
(VSSA) and recurrent singular spectrum analysis (RSSA). The
VSSA forecasting algorithm is the most widely used in SSA
[29]. Generally, this method is more robust than RSSA,
especially when a series contains outliers or when facing large
shocks in the series [43]. Therefore, we focused on the use of
the VSSA algorithm for forecasting in this research, as
recommended in [18].

Vector Forecasting Algorithm
To perform SSA forecasting, the basic requirement is that the
series satisfies a linear recurrent formula (LRF). The series YN

= [y1, …, yN] satisfies an LRF of order L 1 if

Yt = a1yt-1 + a2y2 + ⋅⋅⋅ + aL–1yt–L+1, t = L + 1, …, N (8)

The coefficient vector A = a1, …, aL–1 is defined as follows:
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where , is the vector of the first L – 1 components
of the eigenvector Uj, and πj is the last component of Uj (j = 1,
…, r).

Consider the following matrix:

Π = U∇U∇T + (1 – v2)AAT              (10)

Let us now define the linear operator:

where = span{U1, …, Ur} and

where Y∆ is the vector of the last L – 1elements of YN. The vector
Zj is defined as follows:

where are the reconstructed columns of the trajectory matrix
of the i-th series after grouping and leaving out noise
components. Now, by constructing matrix Z = [Z1, …, ZK+h+L–1]

and performing diagonal averaging, a new series 

is obtained, where from the h terms of the VSSA
forecast.

As discussed above, the best values for reconstruction were L=7
and r=2. The values of L=6 and r=3 were the second-best
choices based on the criteria presented earlier. For forecasting,
the results of these two choices were compared by using the
complement statistical test introduced in [44], which is proposed
for distinguishing between the predictive accuracy of two sets
of forecasts. It is a nonparametric test founded upon the

principles of the Kolmogorov-Smirnov test and known as the
KS predictive accuracy (KSPA) test. The test is useful for
serving two different purposes. First, 2-sided KSPA is used to
determine if there is a statistically significant difference between
the distribution of forecast errors. Second, the 1-sided KSPA
test exploits the principles of stochastic dominance to determine
whether the forecasts with lower error also produce a
stochastically smaller error than forecasts from a competing
model, and it then allows for differentiation between the
predictive accuracy of the forecasts [45].

The 2-sided KSPA test indicated that there was no statistically
significant difference between the distribution of forecast errors
at a 95% confidence level (P=.56). Moreover, there was
insufficient evidence based on the one-sided KSPA test at the
5% significance level to conclude that the stochastic errors are
different (P=.76). Therefore, the results confirm that there is no
statistically significant difference between the two forecasts.

Consequently, we also concentrated only on the best values
obtained, L=7 and r=2, for forecasting. Similar procedures were
followed for the new data updated on May 20, 2020. The same
values of L and r were used to analyze the new data and also
for predicting confirmed cases 3 months ahead. Figure 9 shows
the updated data and the reconstructed series by the first two
eigentriples. It is obvious that the reconstructed series was
obtained precisely. Figure 10 shows the two curve predictions
and the overall actual data; the red curve is the prediction using
the first set of data, and the blue curve is the prediction using
the updated data set. It is clear that there is no great difference
between the two curves, as the peak appears around the end of
May in the red curve and toward the end of June in the blue
curve, which was obtained using the updated data. In addition,
the end of the pandemic is predicted to occur between July and
the middle of August, with the total number of infected people
at approximately 330,000.

Figure 9. Plot of the entire time series of daily COVID-19 cases in Saudi Arabia and the fitted curve.

JMIRx Med 2021 | vol. 2 | iss. 1 | e21044 | p. 9https://xmed.jmir.org/2021/1/e21044
(page number not for citation purposes)

AlharbiJMIRx Med

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 10. Comparison of the two forecasting scenarios with actual observations. Pred: predicted.

Discussion

A modified SSA approach was used in this research for the
decomposition and forecasting of COVID-19 data in Saudi
Arabia. The approach was examined in our previous research
and was applied here to the analysis of COVID-19 data.

In the first stage, the first 42 values of confirmed daily cases
(March 2 to April 12, 2020) were used and analyzed to identify
the value of r for separability between the noise and signal.
After obtaining the value of r, which was 2, and extracting the
signals, VSSA was used for the prediction and determination
of the pandemic peak. In the second stage, we updated the data
and included 81 daily values. We used the same window length
and number of eigenvalues for the reconstruction and forecasting
of the points 90 days ahead. The results of both forecasting

scenarios indicated that the peak would occur around the end
of May or June and the crisis would end between the end of
June and the middle of August 2020, with a total number of
infected people of approximately 330,000.

All our results confirm the impressive performance of modified
SSA in analyzing the COVID-19 data and selecting the value
of r for identifying the signal subspace from a noisy time series,
then making an accurate prediction using the VSSA method.
Note that we did not examine all possible window length values
in this research, and for forecasting, we only used basic VSSA.

In future research, we will include more data and consider
different window lengths L, which may provide better
forecasting. In addition, chaotic behavior in the COVID-19 data
will be examined, as some of our results show strange patterns,
as can be found in chaotic systems.
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