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Multi‑trait association study 
identifies loci associated 
with tolerance of low phosphorus 
in Oryza sativa and its wild 
relatives
Annamalai Anandan1*, Ranjitkumar Nagireddy1, Selvaraj Sabarinathan1, 
Bishal Binaya Bhatta1,2, Anumalla Mahender3, Murugapandiyan Vinothkumar1, 
Chidambaranathan Parameswaran1, Periyasamy Panneerselvam4, Hatanath Subudhi1, 
Jitendriya Meher1, Lotan Kumar Bose1 & Jauhar Ali3*

We studied variation in adaptive traits and genetic association to understand the low P responses, 
including the symbiotic association of arbuscular mycorrhizal (AM) fungal colonization in Oryza 
species (O. sativa, O. nivara, and O. rufipogon). In the present experiment, we performed the 
phenotypic variability of the morphometric and geometric traits for P deficiency tolerance and 
conducted the association studies in GLM and MLM methods. A positive association between the 
geometric trait of the top‑view area and root traits suggested the possibility of exploring a non‑
destructive approach in screening genotypes under low P. The AMOVA revealed a higher proportion 
of variation among the individuals as they belonged to different species of Oryza and the NM value 
was 2.0, indicating possible gene flow between populations. A sub‑cluster with superior‑performing 
accessions had a higher proportion of landraces (42.85%), and O. rufipogon (33.3%) was differentiated 
by four Pup1‑specific markers. Association mapping identified seven notable markers (RM259, 
RM297, RM30, RM6966, RM242, RM184, and PAP1) and six potential genotypes (IC459373, Chakhao 
Aumbi, AC100219, AC100062, Sekri, and Kumbhi Phou), which will be helpful in the marker‑assisted 
breeding to improve rice for P‑deprived condition. In addition, total root surface area becomes a single 
major trait that helps in P uptake under deficit P up to 33% than mycorrhizal colonization. Further, 
the phenotypic analysis of the morphometric and geometric trait variations and their interactions 
provides excellent potential for selecting donors for improving P‑use efficiency. The identified 
potential candidate genes and markers offered new insights into our understanding of the molecular 
and physiological mechanisms driving PUE and improving grain yield under low‑P conditions.

Phosphorus (P) is significant in that it affects the growth and productivity of plants. A high amount of P is usu-
ally present in the soil, but availability is limited as P usually exists in the organic form, carbonate (alkaline) or 
oxide (acidic)1,2. Low P availability is the major constraint in  agriculture3,4, with 20–30% of the applied P readily 
available to plants and the remaining converted to unavailable forms, thus creating water  eutrophication5. As rice 
is the major P utilizer, enhancing P-use efficiency (PUE) is highly required for sustainable production. About 
20 million hectares of world rice cultivation area are under P  deficiency6, while 61.02% of Indian soil is low in 
 P7. Global commercial phosphate reserves are estimated to become depleted in 300 to 400  years8. Around 90% 
of the P-based fertilizer and raw materials are imported, and the 10% indigenous rock deposits hardly satisfy 
India’s domestic  market9. After the introduction of high-yielding varieties (HYVs), the consumption of phos-
phate fertilizer gradually rose to 6.86 million metric tons in 2017–18 from less than 1 million tons (0.132 million 
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MT) during 1965–66 (https:// www. faide lhi. org/ stati stics/ stati stical- datab ase). This suggests that there is a need 
to develop varieties that use P more efficiently and effectively to decrease the phosphate fertilizers needed for 
sustainable rice  production10,11.

Phosphorus is involved in plant growth and is a critical component of nucleic acid, membrane phospholip-
ids, ATP, and NADPH. Upon P starvation, remodeling of cellular processes and high turnover of phospholipids 
into galactolipids and sulfolipids have been  observed12. In addition, environmental factors were also reported to 
have a substantial effect on P-starved plants. Further, arrest in primary root growth occurs by affecting the cell’s 
proliferative capacity at the  meristem12 and root tip due to abundance of iron in acidic soil and red-light-induced 
activation of P uptake mediated by phytochrome-B13. Supplementary to this, a reduction in tissue P concentra-
tion critically affects plant growth, which leads to plant  death14. Therefore, screening genotypes in P-starving 
conditions, understanding the significance of traits and their genetic mechanism, and the nature of heritability 
are important for developing plants tolerant of soil with low P.

Phosphorus efficiency was divided into two separate components: P-acquisition efficiency (PAE) and inter-
nal P-use efficiency (PUE)15. PAE refers to the uptake of P from the soil, and PUE is the use of taken-up P for 
plant growth and development. PUE and PAE in modern rice cultivars can be improved by using the low-P 
tolerance naturally found in landraces or wild species genotypes. Wissuwa et al.16 mapped a major QTL, Pup1, 
on chromosome 12 for tolerance of P deficiency from aus-type rice variety Kasalath. In addition to this, Chin 
et al.17 developed several markers for P-uptake efficiency to assist in breeding programs, among them, marker 
OsPupK46-2 was particularly found associated with P-uptake efficiency. Gamuyao et al.18 termed OsPupK46-2 as 
phosphorus-starvation tolerance 1 (PSTOL1). PSTOL1 promotes high phosphorus uptake by enhancing early root 
 growth18. Globally, plant breeders are introgressing only the PSTOL1 gene from Kasalath (aus) and African rice 
(O. glaberrima Steud.) to improve P uptake, which may narrow down the genetic variability of the PSTOL1 gene. 
In addition, reports have mentioned QTLs associated with P deficiency in root and shoot traits at the seedling 
stage in O. sativa L.19. However, research in response to P deficiency and trait variability contributes to tolerance 
against low P and PAE and research on QTLs between wild and cultivated rice is limited. Wild species are a 
secondary gene pool that is a potential reservoir for unique genes uncommon in improved genotypes. Mapping 
and the identification of additional QTLs responsible for low-P tolerance with a large effect and pyramiding of 
those QTLs may give an additional level of tolerance under soil deficient in P along with yield improvement. 
This can be achieved by exploring new alleles for PAE and PUE.

Wild species of rice and landraces of the upland ecosystem may possess the required genetic resources. In 
addition to PAE and traits involved in low-P tolerance, P’s microbial contribution by symbiotic interaction also 
plays an important role in providing P to plants in exchange for  carbon20. By exploring the soil beyond what is 
reachable to roots and acquiring immobile P, fungal hyphae are efficiently involved in catering to the need of up to 
80% of the P required by the  plant21–23. The impact of mycorrhizae on P uptake under upland soil has been proved 
and associated candidate genes were  reported24. However, the genetic basis of the response of rice cultivars in a 
panel of the population for arbuscular mycorrhizal (AM) fungal colonization under low-P conditions is not well 
established. Earlier reports on QTL identification for traits related to PAE and PUE are from bi-parental map-
ping populations. Reports on association mapping for low P tolerance and exploration at different species levels 
are not available in rice. Association mapping can simultaneously map several QTLs and serve as an excellent 
tool for allele mining by exploring natural variability in the germplasm. This study aimed to understand genetic 
variation in the level of tolerance among a panel of a population (O. sativa, improved varieties and landraces, and 
wild species, O. nivara, and O. rufipogon) containing 120 genotypes shortlisted from 155 through phenotyping to 
explore the distribution of PSTOL1 across species and validated them under P-deficient conditions and identified 
QTLs for multiple traits (23) such as shoot and root system architecture, P accumulation, and colonization of 
AM fungi based on association mapping in response to low-P tolerance.

Results
The present experiment began in order to explore the genetic variation and identification of QTLs associated 
with low-P tolerance in a unique population panel consisting of cultivated and wild relatives of Oryza.

Phenotyping trait distribution pattern for adaptation to low P. The frequency distribution of the 
population had a broad range of variation (Fig. 1). The mean and median were similar for most of the traits 
studied, and this indicates that the distribution frequency was normal. Among the various parameters stud-
ied, shoot length (−0.63), leaf length (–0.42), root length (−0.28), and shoot P content (−0.06) were negatively 
skewed, while the rest of the traits were positively skewed. The kurtosis values ranged from −0.63 to 8.71, the 
parameters were found to be > 3 TDW (total dry weight) (3.50), tiller number (3.69), shoot dry weight (3.87), 
root/shoot dry weight (6.89), root/shoot length (7.50), and root dry weight (8.71), indicating that the frequency 
distribution of the studied population for these traits was platykurtic. AM fungal root colonization ranged from 
10% (improved genotypes) to 80% (landraces), while the average colonization percentage was significantly lower 
in improved genotypes (34%) than in landraces (41%) and wild genotypes (38%). The coefficient of variation 
(CV) of the entire population was reasonable and varied from 23% (SPAD) to 95% (root dry weight) (Table 1). 
The results obtained from the analysis of variance (ANOVA) revealed that significant (P < 0.0001) variation was 
observed among the genotypes for all 23 parameters studied (Table 1). The estimation of heritability (broad-
sense) determines the insight into the extent of genetic control of the particular parameter and phenotypic accu-
racy to promote its breeding value. The estimated broad-sense heritability  (h2) differed from 33.4% (maximum 
root length) to 74.8% (root P content) (Table 2). In addition, traits such as shoot dry weight, total dry weight, 
root-shoot length ratio, top-view plant area, total root length, root projected area, root surface area, root volume, 
mycorrhizal colonization, and root and shoot P content exhibited high  h2 of > 60%.

https://www.faidelhi.org/statistics/statistical-database
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Correlation analyses were executed to determine the correlation coefficient among the parameters associated 
with the traits responsible for low P in rice plants. Among the 23 traits studied, total dry weight had a positive 
correlation with 10 traits, followed by stem thickness, maximum root length, total root length, and total root 
surface area, which exhibited a positive association with eight traits (Fig. 2). In addition, a highly significant posi-
tive association was observed between shoot length and leaf length (r = 0.937), leaf number with tiller number 
(r = 0.8606), shoot dry weight (0.7066), and total dry weight (r = 0.7212). Similarly, shoot and root dry weight 
had a strong positive association between them. Also, the total root projected area exhibited a strong association 
with most of the root parameters, such as maximum root length (r = 0.8056), total root surface area (r = 0.9865), 
root volume (r = 0.8340), and number of root tips (r = 0.7378). The total root surface area also positively associ-
ated with root volume, root tips, and total root length. In contrast, root-shoot dry weight ratio exhibited a strong 
negative association with shoot length (r = −0.7486) and leaf length (r = −0.7114), wherein root P content also 
registered a negative association with shoot dry weight (r = −0.5524), root dry weight (r = −0.5198), and total 
dry weight (r = −0.5678).

A multivariate principal component analysis was carried out to partition the traits associated with low P. 
A trait biplot analysis was composed and displayed for the first two principal components with a lay hold of 
54.28% of the total variability depicted in Fig. 3. Principal component 1 (PC1) and PC2 accounted for 38.52% and 
15.76%, respectively, toward the variability. Among the various traits studied, PC1 was strongly correlated with 
root- and shoot-related traits. PC1 increases with an increase in root volume, total root surface area, projected 
area, total root length, dry weight (shoot and root), stem thickness, and shoot and leaf length. It suggests that 
if root volume increases, the rest of the associated traits will increase, and genotypes would tend to have more 
root volume under P-starved conditions. PC2 had a positive association with SPAD and leaf width. However, 
root P content and root dry weight were negatively associated with PC1 and PC2, respectively. This suggests that 
the roots should translocate observed P and assimilate to expand the above-ground portion in genotypes under 
deficient P. Further, the biplot graph (Fig. 3) categorized the whole population into five major groups. Among 
these five groups, group 3 in quadrant 3 (bottom right) registered high biomass with low tissue P in shoot and 
root. On the contrary, group 2 in quadrant 2 exhibited more root growth with high root P. Other groups (1, 4, and 
5) were presented on the opposite plane of the biplot and showed susceptibility under low P with high tissue P.

Marker segregation and diversity index. A total of 78 primer pairs consisting of microsatellites and 
gene-based markers covering all 12 chromosomes were used to assess the genetic diversity of 120 genotypes. 
Fifty-seven of 78 (73.07%) primers used were polymorphic among the 120 selected genotypes. A total of 154 
alleles were amplified with 57 polymorphic markers, with an average of 2.70 alleles per locus and the number of 
alleles ranging from 2 to 5 (Table 2). The amplification size of the markers ranged from 70 bp (RM30) to 995 bp 

Table 1.  Analysis of variance, mean, range, and broad-sense heritability of 23 traits under P-deficiency 
conditions.

Traits Mean Minimum Maximum CV (%) F ratio P H2 (%)

Shoot length (cm) 20.48 2.55 33.02 36 6.40 0.0001 54.7

Tillers  plant−1 2.00 1.00 6.00 45 3.60 0.0001 42.4

Leaf number  plant−1 8.00 1.00 22.00 46 8.79 0.0001 59.7

Leaf length (cm) 11.19 1.55 23.40 36 6.98 0.0001 56.2

Leaf width (cm) 0.34 0.10 0.88 38 5.70 0.0001 52.6

Stem thickness (mm) 1.44 0.53 2.84 35 3.72 0.0001 43.2

Max. root length (cm) 10.93 2.67 17.92 28 2.61 0.0001 33.4

SPAD 24.28 12.10 38.28 23 3.29 0.0001 40.1

Shoot dry weight (g) 0.39 0.04 2.24 89 20.21 0.0001 67.9

Root dry weight (g) 0.13 0.01 0.78 95 6.85 0.0001 55.9

Total dry weight (g) 0.53 0.05 2.57 91 16.72 0.0001 66.5

Root-shoot length ratio 0.45 0.10 2.00 67 13.08 0.0001 64.4

Total root length (cm) 675.85 101.65 1479.65 41 21.47 0.0001 68.3

Total root projected area  (cm2) 35.54 2.32 76.69 41 11.42 0.0001 62.9

Total root surface area  (cm2) 111.03 7.29 240.92 42 11.35 0.0001 62.9

Root avg. diam. (mm) 0.58 0.22 1.24 32 7.05 0.0001 56.4

Root volume  (cm3) 2.23 0.08 7.65 65 10.28 0.0001 61.7

Root tips 2551.49 318.50 6846.00 40 7.38 0.0001 57.1

Root-shoot dry wt. ratio 0.63 0.26 2.22 55 6.13 0.0001 54.0

Top-view area  (mm2) 1430.52 106.36 4470.78 61 25.11 0.0001 69.3

Mycorrhiza colonization (%) 37.26 10.00 80.00 38 259.88 0.0001 74.4

Shoot P (mg  g−1) 1.20 0.34 1.92 24 201.29 0.0001 74.3

Root P (mg  g−1) 0.95 0.05 3.52 69 872.82 0.0001 74.8
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S. no Marker Allele no
Min. size of 
alleles (bp)

Max. size of 
alleles (bp)

Major allele 
frequency

Gene 
diversity (He)

Heterozygosity 
(Ho) PIC

Shannon’s 
index (I)

Nei’s genetic 
diversity 
index (Nei)

Average 
heterozygosity

1 RM1112 3 100 110 0.601 0.487 0.020 0.378 0.714 0.488 0.460

2 RM1272 4 100 140 0.524 0.537 0.124 0.433 0.846 0.532 0.500

3 RM16 2 190 210 0.876 0.217 0.035 0.194 0.373 0.216 0.211

4 RM169 2 165 175 0.646 0.457 0.053 0.353 0.672 0.479 0.421

5 RM200 3 100 120 0.789 0.341 0.256 0.296 0.587 0.339 0.350

6 RM219 3 190 210 0.688 0.456 0.625 0.388 0.724 0.429 0.417

7 RM224 3 130 155 0.745 0.406 0.204 0.363 0.756 0.430 0.394

8 RM229 3 115 125 0.835 0.283 0.073 0.256 0.538 0.293 0.262

9 RM2334 3 130 200 0.471 0.565 0.291 0.468 0.932 0.577 0.543

10 RM235 3 125 140 0.573 0.551 0.227 0.471 0.914 0.563 0.458

11 RM237 3 125 135 0.797 0.332 0.052 0.292 0.570 0.316 0.299

12 RM242 3 195 230 0.753 0.393 0.021 0.346 0.696 0.408 0.370

13 RM254 2 150 165 0.991 0.018 0.000 0.018 0.045 0.015 0.011

14 RM259 2 150 160 0.767 0.357 0.008 0.294 0.547 0.361 0.343

15 RM26 2 100 120 0.885 0.204 0.010 0.183 0.350 0.198 0.177

16 RM261 2 130 135 0.902 0.177 0.000 0.161 0.496 0.316 0.244

17 RM28073 2 550 580 0.881 0.209 0.031 0.187 0.375 0.217 0.224

18 RM28102 3 160 180 0.775 0.366 0.112 0.326 0.637 0.352 0.349

19 RM283 3 145 160 0.845 0.275 0.176 0.257 0.574 0.297 0.265

20 RM287 3 100 125 0.722 0.418 0.085 0.354 0.693 0.416 0.372

21 RM297 4 140 180 0.525 0.570 0.238 0.484 0.984 0.577 0.527

22 RM30 4 70 100 0.569 0.572 0.413 0.503 1.025 0.572 0.537

23 RM306 2 155 170 0.806 0.313 0.012 0.264 0.526 0.343 0.310

24 RM3166 4 105 160 0.970 0.058 0.020 0.057 0.166 0.061 0.085

25 RM3295 4 80 120 0.505 0.585 0.263 0.502 1.003 0.590 0.560

26 RM3307 3 170 185 0.500 0.624 1.000 0.553 1.035 0.623 0.612

27 RM3343 2 140 150 0.626 0.468 0.748 0.359 0.652 0.459 0.383

28 RM335 5 100 150 0.505 0.642 0.476 0.585 1.215 0.655 0.631

29 RM3688 2 100 115 0.842 0.266 0.010 0.231 0.441 0.270 0.284

30 RM410 4 170 250 0.446 0.649 0.522 0.581 1.159 0.654 0.626

31 RM439 2 245 260 0.787 0.336 0.027 0.279 0.522 0.338 0.325

32 RM47 2 225 230 0.947 0.101 0.000 0.096 0.221 0.109 0.101

33 RM481 5 110 180 0.474 0.604 0.295 0.525 1.055 0.594 0.553

34 RM510 2 120 130 0.849 0.849 0.023 0.224 0.440 0.269 0.158

35 RM514 3 250 260 0.521 0.588 0.300 0.507 0.946 0.576 0.528

36 RM521 2 240 270 0.861 0.861 0.008 0.210 0.365 0.210 0.212

37 RM5349 3 110 125 0.583 0.506 0.052 0.402 0.776 0.509 0.477

38 RM5463 3 155 175 0.720 0.420 0.095 0.357 0.712 0.433 0.361

39 RM5485 2 140 160 0.945 0.103 0.000 0.098 0.199 0.095 0.059

40 RM553 2 155 165 0.754 0.371 0.026 0.302 0.548 0.362 0.333

41 RM574 2 150 155 0.828 0.285 0.031 0.244 0.451 0.278 0.258

42 RM5814 2 100 130 0.500 0.500 1.000 0.375 0.693 0.500 0.500

43 RM589 3 155 175 0.715 0.432 0.169 0.374 0.758 0.440 0.418

44 RM590 2 130 140 0.763 0.362 0.030 0.297 0.572 0.383 0.374

45 RM5926 3 110 160 0.818 0.312 0.106 0.286 0.603 0.319 0.288

46 RM6911 2 130 150 0.649 0.456 0.447 0.352 0.663 0.470 0.447

47 RM6966 3 140 180 0.663 0.468 0.071 0.387 0.776 0.478 0.476

48 RM7555 3 100 120 0.943 0.108 0.021 0.104 0.276 0.122 0.120

49 RM9 4 120 160 0.668 0.495 0.239 0.442 0.911 0.499 0.478

50 SSR12-17.4 2 450 480 0.788 0.334 0.047 0.278 0.519 0.336 0.330

51 K20-1 2 240 243 0.782 0.331 0.000 0.281 0.521 0.342 0.312

52 K20-2 2 982 995 0.606 0.478 0.000 0.364 0.693 0.500 0.500

53 K29-3 2 248 236 0.784 0.338 0.000 0.281 0.534 0.350 0.324

54 K29-1 2 206 212 0.630 0.466 0.043 0.357 0.641 0.449 0.328

55 PAP1 2 520 590 0.775 0.348 0.014 0.288 0.543 0.358 0.357

Continued
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(K20-2). The major allele frequency of the primers ranged from 0.446 (RM410) to 0.991 (RM254). In addition, 
genetic diversity (He) ranged from 0.018 (RM254) to 0.861 (RM521), with an average of 0.407. Heterozygosity 
(Ho) ranged from 0 (RM254, K20-2, K20-1, K29-3, RM261, RM5485, RM47) to 1 (RM3307, RM5814), with 
an average of 0.175. The PIC values of all 57 polymorphic primer pairs ranged from 0.018 (RM254) to 0.585 
(RM335), with an average of 0.326. Shannon index (I) ranged from 0.045 to 1.215, with an average of 0.641, and 
Nei’s genetic diversity index (Nei) ranged from 0.015 to 0.655, with an average of 0.392. The average heterozygo-
sity estimated by POPGENE ranged from 0.011 to 0.631, with an average of 0.364.

S. no Marker Allele no
Min. size of 
alleles (bp)

Max. size of 
alleles (bp)

Major allele 
frequency

Gene 
diversity (He)

Heterozygosity 
(Ho) PIC

Shannon’s 
index (I)

Nei’s genetic 
diversity 
index (Nei)

Average 
heterozygosity

56 PAP3 2 260 500 0.539 0.497 0.713 0.373 0.690 0.496 0.493

57 PAP4 2 320 350 0.644 0.458 0.115 0.353 0.674 0.481 0.440

Average 2.7 – – 0.717 0.407 0.175 0.326 0.641 0.392 0.364

Table 2.  Details of primers used for genotyping 120 rice genotypes and their estimated molecular genetic 
diversity parameters. Additional primers evaluated: K41, K42, K43, K45, K46-1, and K46-2 (dominant 
markers); PAP5, RM142, RM164, RM184, RM24386, RM247, RM291, RM322, RM444, RM492, RM5314, 
RM536, RM538, SSR12-12.8, and ESSR12-20.2 (monomorphic primers).

Figure 2.  Pearson correlation matrix among the 23 traits measured under P deficiency for 155 rice genotypes. 
The color denotes the correlation, where 1 represents a complete positive correlation (dark blue) and −1 
represents a complete negative correlation (dark red) between two traits. A large circle denotes strong 
correlation and a small circle indicates a weaker correlation.
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Figure 3.  PCA biplot graph representing genotypes in two main principal components for traits measured 
under P-deprived conditions, and these two components explained 38.52% and 15.76% of the variance, 
respectively. The vector’s direction and length indicate the traits’ contribution to the first two components in the 
PCA. The transparency of the trait vectors represents the contribution to the variance in the dataset, ranging 
from 2% (lightest) to 6% (darkest). Genotypes were divided into five groups based on their level of tolerance. 
Groups 1 and 2 consisted of improved genotypes with high tissue P in root and more root growth, respectively. 
Group 3 consisted of the mixture of landraces, O. rufipogon, O.nivara, and positive checks. Group 4 consisted 
of a mixture of all species with more shoot P and Group 5 had O. nivara and O. rufipogon together with higher 
root-shoot dry weight ratio.

Table 3.  AMOVA between sub-populations and fixation indices of 120 genotypes for low-P tolerance in rice.

Source df Sum of squares Mean sum of squares Est. var % of variation

Among populations 4 315.417 78.854 1.047 6

Among Individuals within populations 115 3543.646 30.814 13.278 71

Within individuals 120 511.000 4.258 4.258 23

Total 239 4370.063 – 18.583 100

F-statistics Value P (rand >  = data) – – –

Fst 0.056 0.001 – – –

Fis 0.757 0.001 – – –

Fit 0.771 0.001 – – –
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Analysis of molecular variance (AMOVA) and principal coordinate analysis (PCoA). In this 
study, 120 genotypes were divided into five populations based on their ecology and species level (irrigated, low-
land, upland, O. nivara, and O. rufipogon) to determine the genetic differentiation among them. Maximum vari-
ation (71%) was found among the individuals, followed by within individuals (23%), and minimum variation 
existed among the populations (6%) (Table 3). The deviation from Hardy–Weinberg’s prediction was calculated 
using Wright’s F statistics. The  FIS and  FIT values for all the loci were 0.757 and 0.771, respectively, while  FST was 
0.056 between the populations. The NM value of the assumed population was 2.003. The PCoA explained that 
the first two components accounted for 20.97% of the total genetic variation among the assumed population 
(Fig. 4). Most of the genotypes were plotted on the right side of the plot, including wild species. However, all wild 
accessions from populations 4 (O. nivara) and 5 (O. rufipogon) were plotted in the separate quadrant on the plot’s 
right side. Twenty-four accessions of populations 1 (irrigated; 10 in number), 2 (shallow lowland; 6 in number), 
and 3 (upland; 8 in number) were plotted on the extreme left side of the plot. Nei genetic distance congregated 
the five populations into three major clusters. Populations 4 and 5 were grouped into separate clusters, while 
populations 1 and 2 stayed together. The highest pairwise Nei genetic distance was noticed between population 
1 (irrigated) and population 4 (O. nivara) (0.1158), followed by population 5 (O. rufipogon) with population 1 
(0.1046) and population 2 (lowland) with 4 (0.1023). Minimum genetic distance was observed between popula-
tions 1 and 2 (0.0248), followed by that between populations 2 and 3 (upland) (0.0269).

Genetic diversity and population structure. Cluster and population structure analyses were carried 
out with the data generated with all 78 primers collectively, with and without 13 Pup1-specific markers. The 
cluster analysis based on unweighted neighbor-joining with 10,000 bootstraps with all the primers understudy 
grouped 120 genotypes into three major clusters (Fig. 5a). Cluster-I (blue) constitutes 45 genotypes divided into 
three major sub-clusters; all the wild cultivars fell into this cluster. Sub-cluster I-1 constitutes only two genotypes, 
Kamesh and ASD 16, followed by five genotypes (Kouni, AC100142, AC100175, Phalguni, and AC100010) 
grouped into Sub-cluster I-2. The rest of the 38 genotypes, including all the wild species and a few improved 
varieties (Meher, Sadabahar, Subhadra, Parijat) and landraces (Dular, IC459373, Sekri, Sukhapanki, Longmanabi 
A, Dular, and Harishankar), were grouped into Sub-cluster I-3. Cluster-II (green) was divided into six sub-
clusters with 65 genotypes, most of which are improved varieties, including CR Dhan 801, whereas Cluster-III 
(red) was grouped as a separate cluster with nine genotypes (Akhiyaturfa, KumbhiPhou, ChakhaoAubi, Kabuk-
Phou, Rajeshwari, Longmanabi, Khitish, CR-Dhan103, LeimaPhou) of the northeastern states of India with two 
improved lines (Fig. 5a). Similarly, cluster analysis carried out with 65 low-P linked markers separated 120 geno-

Figure 4.  Principal coordinate analysis (PCoA) of the five sub-populations (Pop 1 (irrigated), Pop 2 (rainfed 
lowland), Pop 3 (upland), Pop 4 (O. nivara), and Pop 5 (O. rufipogon)) were plotted into three major clusters. 
(a) AMOVA showed maximum variation among the individuals, followed by within individuals and between 
populations. The genetic variability estimated by the fixation index revealed (Fst = 0.11) indicates the existence 
of moderate genetic differentiation within the population. (b) Nei genetic diversity among the assumed 
sub-population using principal coordinate analysis (PCoA). The assumed five sub-populations (Population 1 
(irrigated), Population 2 (rainfed lowland), Population 3 (upland), Population 4 (O. nivara), and Population 5 
(O. rufipogon)) were plotted into three major clusters.
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types into three groups (Fig. 5b). Cluster-I (green) represented only improved lines of 65 in number, whereas 
Cluster-II (red) grouped 47 genotypes comprising wild species and a few O. sativa (landraces and improved 
lines). Cluster-III (blue) had eight genotypes, with seven improved varieties and one wild accession.

Cluster analysis with 13 Pup1-specific markers grouped all 120 genotypes into three major clusters (Fig. 5c). 
Cluster-I (red) was further divided into three sub-clusters. A mono-genotypic cluster with genotype Hiranmayi 
was formed separately as Sub-cluster I-1, while Sub-cluster I-2 consisted of 15 genotypes with 12 O. sativa (lan-
draces and improved varieties) and three wild accessions. In Sub-cluster I-3, 29 genotypes of improved varieties 
and landraces were grouped. On the other hand, Cluster-II (green) separated 45 genotypes into three sub-clusters: 
II-1 (10), II-2 (16), and II-3 (19). Sub-clusters II-2 and II-3 consisted of most of the wild accessions. Cluster-III 
(blue) represented 30 genotypes, which were further divided into three sub-clusters with 14 (III-1), 13 (III-2), 

Figure 5.  Unrooted tree using unweighted neighbor-joining (UNJ) method depicting clustering pattern of a 
panel population of 120 accessions in response to all 78 primers collectively, with and without Pup1 markers. 
(a) 78 primers grouped genotypes into three major clusters. Cluster-I (blue) constitutes 45 genotypes that were 
divided into three major sub-clusters. Cluster-II (green) was divided into six sub-clusters with 65 genotypes, 
most of them being improved varieties, including CR Dhan 801 and Kasalath. Cluster-III (red) was grouped as 
a separate cluster with nine genotypes of northeastern states of India with two improved lines. (b) The cluster 
analysis with 65 low-P linked markers separated 120 genotypes into three groups. Cluster-I (green) represented 
only 65 improved lines Cluster-II (red) grouped 47 genotypes comprising wild species and a few O. sativa 
(landraces and improved lines) and Cluster-III (blue) had eight genotypes with seven improved varieties and 
one wild accession. (c) The cluster analysis with Pup1-specific markers grouped 120 genotypes into three major 
clusters. Cluster-I (red) consisted of 48 genotypes and was further divided into three sub-clusters. Cluster-II 
(green) separated 45 genotypes into three sub-clusters and Cluster-III (blue) represented 30 genotypes that were 
further divided into three sub-clusters with 14 (III-1), 13 (III-2), and 3 (III-3) genotypes. The positive checks 
Dular and Kasalath were grouped into sub-cluster III-2 with IC459373, multiple-stress-tolerant CR Dhan 801, 
Poongar, Sekri, Kouni, AC10062, AC100326, AC100284, AC 100281, AC 100135, and AC 100117.
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and 3 (III-3) genotypes. Those with known low-P tolerance, such as Dular and Kasalath, were grouped into sub-
cluster III-2 with IC459373, multiple-stress-tolerant CR Dhan 801, Poongar, Sekri, Kouni, AC10062, AC100326, 
AC100284, AC 100281, AC 100135, and AC 100117.

Similarly, the genetic relationship among the genotypes was also determined by a model-based simulation, 
STRU CTU RE 2.3.4, separately for all 78 markers under study, 13 low-P gene-specific markers (Pup1), and 65 
primers without Pup1 markers (Figs. 6a–c, 7a–c). The simulation, by using all 78 primers, identified the highest 
log-likelihood with the number of populations set at three (K = 3) (Pritchard et al. 2000). Structure harvester 
of Evano table (http:// taylo r0. biolo gy. ucla. edu) analysis showed that, at K = 3, ΔK = 248.51, where the value 
was the highest in both independent burns (Fig. 6a). At K = 3, all 120 genotypes were divided into three sub-
populations (SP). Among the 120 accessions studied, 25 accessions of wild species and landraces were placed 
in SP1, and 44 accessions fitted in SP2 comprising only improved genotypes. Similarly, 24 improved genotypes 
were grouped in SP3, and the rest of the wild species and landraces (27 genotypes) were grouped as an admixture 
(Fig. 7a). The fixation index (Fst) value ranged from 0.1880 in sub-population 1 of wild species to 0.5507 in sub-
population 3 of improved fixed lines. The average distance (expected heterozygosity) was maximum (0.1261) 
between sub-population 1 of wild species and sub-population 3 of improved lines, whereas minimum distance 
was observed among sub-populations 1 to 2 (0.0797). The value of alpha (0.1270) reflects the relative admixture 
level between populations of less than 1, signifying origin mainly from one population (and each population is 
equally probable).

On the other hand, without a Pup1-specific marker, the 65 low-P linked markers identified the highest 
log-likelihood with the number of populations set at three (K = 3), with ΔK of 179.01 (Fig. 6b). Among the 120 
genotypes, 46 genotypes of improved varieties were placed in SP1, and 24 genotypes fitted in SP2 comprising wild 
species and upland (landrace and improved) varieties. Similarly, 24 improved genotypes were grouped in SP3, 
and the rest of the wild species, landraces, and improved (26) accessions were grouped as an admixture (Fig. 7b). 
Fst values of the sub-populations are 0.2111 for sub-population 2 (wild and upland), 0.2760 for sub-population 1 
(improved), and 0.5471 for sub-population 3 (improved). Allele frequency divergence between sub-populations 
1 and 3 was maximum (0.1283), while minimum divergence was observed between sub-populations 1 and 3 
(0.0768). The average distance (expected heterozygosity) between genotypes is high in population 2 (0.2863) 
and minimum with sub-population 3 (0.1623). The alpha value was nearer to zero (0.1226), suggesting that no 
admixture and population might have originated from one population.

The simulation using 13 Pup1-specific markers identified the highest log-likelihood with the number of 
populations set at two (K = 2), with ΔK = 106.29 (Fig. 6c). At K = 2, all 120 genotypes were divided into two 
sub-populations. Twenty-five genotypes of only improved varieties were placed in SP1, 63 genotypes fit in SP2 
comprising improved varieties (including CR Dhan 801), wild species, and a few landraces (Dular, Kasalath, 
and IC459373), and the rest of the 32 genotypes of wild species and improved varieties were grouped as an 
admixture (Fig. 7c). The Fst value of sub-population 1 was 0.6382, and that of sub-population 2 was 0.3718. 
The allele frequency divergence among the two sub-populations was 0.2847, and the average distance (expected 
heterozygosity) among genotypes in the same sub-population was high in population 2 (0.2252) and minimum 
in population 1 (0.1548). The alpha value of the Pup1-specific markers is 0.3285, which signifies origin mainly 
in one population (and each population is equally probable).

Association of markers with traits related to low P. In this study, both a generalized linear model 
(GLM) and mixed linear model (MLM) were used for association analysis at P-value < 0.005, FDR at the 5% level, 
and  R2 > 7.5. In the GLM, 61 markers were associated with 110 QTLs (data not shown), and in MLM 16 mark-
ers were associated with 29 QTLs (Table 4). The  R2 value of the associated markers for GLM ranged from 0.075 
(RM283) to 0.190 (RM297), and for MLM it was from 0.076 (K29-3) to 0.149 (RM297). The marker F-value for 
GLM ranged from 7.95 (RM283) to 23.75 (RM297), and for MLM it ranged from 7.53 (K29-3) to 14.85 (RM297). 
A total of 19 QTLs for different traits were predicted on four chromosomes (1, 8, 11, and 12). A maximum of 
five QTLs (qARD8.1, qLL8.1, qSL8.1, qTRP8.1, and qTSA8.1) associated with average root diameter, leaf length, 
shoot length, total root projected area, and total surface area were identified on chromosome 8, followed by five 
QTLs (qNT11.1, qRDW11.3, qRV11.3, qSDW11.2, and qTDW11.2) found associated with tiller number, root dry 
weight, root volume, shoot dry weight, and total dry weight on chromosome 11 (Table 5). Five QTLs were har-
bored on chromosome 12, followed by four QTLs on chromosome 1, three on chromosome 3, and two (qRL6.1 
and qTRL6.1) on chromosome 6. In the MLM, nine of 23 traits under study were associated with more than one 
marker. The traits tiller number, root biomass (RDW), and root length were associated with a maximum of three 
markers on different chromosomes. Similarly, AM fungal root colonization (C%) was associated with two mark-
ers on chromosomes 2 and 4, with phenotypic variability (PV) ranging from 8.0 to 10.0%.

Among 29 QTLs observed in the MLM, 12 were associated with root parameters such as root dry weight 
(RDW), root length (RL), total root length (TRL), total surface area (TSA), average root diameter (ARD), total 
root projected area (TRPA), root volume (RV), and root biomass (RDW), with recorded PV from 10.32% to 
14.97% on six chromosomes (1, 3, 6, 8, 11, and 12). Out of 16 markers associated with 29 QTLs, marker RM6966 
on chromosome 8 had an association with five traits, LL, ARD, TRPA, TSA, and SL (shoot length), and explained 
PV of 7.7% to 10.7%. Similarly, RM5926 on chromosome 11, RM297 on chromosome 1, RM242 on chromo-
some 9, and K41 on chromosome 12 are associated with four, three, two, and two different traits, respectively, 
linked with low-P tolerance. Among the Pup1-specific markers, K20-2, K29-3, and K41 on chromosome 12 were 
associated with root dry weight, stem thickness, root length, and top-view area, with PV of 7.6% to 11.6%. The 
marker PAP1 developed from NRRI on chromosome 11 was associated with tiller number with a PV of 7.7%.

http://taylor0.biology.ucla.edu
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Figure 7.  Distribution pattern of 120 rice accessions based on low-P linked markers and Pup1-specific 
markers determined by a model-based simulation, STRU CTU RE 2.3.4. Grouping of accessions is based on (a) 
78 markers, (b) 65 markers linked to low P, and (c) Pup1-specific markers. The number indicates the order of 
genotypes as mentioned in Table 1S.
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Prediction of QTLs underlying candidate genes for traits associated with low‑P toler-
ance. Twenty-nine QTLs related to traits measured under P starvation associated with 15 markers were con-
sidered to identify candidate genes (Table 6). Three markers, RM283 (chromosome 1), RM297 (chromosome 1), 
and RM242 (chromosome 9), associated with leaf number (qNL1.1), biomass (qRDW 1.1, qTDW 1.1, qSDW 1.1), 
leaf length (qLL9.), and tiller number (qNT 9.1) were found to have an association with growth promoter genes 
(auxin (Os09t0491740), brassinosteroid (Os01t0178500), and strigolactone (Os01t0746400)). Traits related to 
roots such as root length (qRL6.1), average root diameter (qARD8.1), root projected area (qTRPA8.1), and root 
surface area (qTSA8.1), associated with markers RM30 and RM6966, were found to be linked with candidate 
genes of phosphate starvation regulator (Os06t0664800) and phosphate transporter (OsPT6, Os08g0564000), 
respectively. On the other hand, tiller number (qNT3.1 and qNT11.1) was associated with markers RM2334 and 
PAP1 on chromosomes 3 and 11, respectively, linked with locus Os03t0672900 and Os11t0149100 responsible 
for the regulation of plant growth and purple acid phosphatase (EC:3.1.3.2) involved in the acquisition and use 
of organic P.

The network analysis of these candidate genes in the QTL interval region was analyzed using the riceFREND 
database, and it revealed the coexpression pattern of the genes (Fig. 1S). A total of seven candidate genes were 
explored to construct gene networks, and their interactions were disposed of in Supplementary Fig. S1. Besides, 
the loci information and functions of the associated genes were given in Table 2S. These reported genes are 
functionally associated with physiological and molecular pathways in biotic and abiotic stress tolerance mecha-
nisms and also uptake the nutrient element regulated by the phytohormone biosynthesis pathways. Insilico 
expression analysis of these genes indicates that most genes are highly expressed in root tissues based on the 
RiceXPro database. The sum of nodes and edges of coexpressed genes of the seven-candidate genes were 72 and 
134 respectively. Among the seven putative candidate genes, the locus Os08g0564000 located on chromosome 8 

Table 4.  Association of marker alleles with associated traits for low P in rice detected by MLM (Q + K) 
analysis in a set of 120 genotypes. SL shoot length (cm), NT tillers  plant−1, NL leaf number  plant−1, LL leaf 
length (cm), LW leaf width (cm), SG stem thickness (mm), RL max. root length (cm), SPAD, SDW shoot dry 
weight (g), RDW root dry weight (g), TDW total dry weight (g), TRL total root length (cm), TRPA total root 
projected area  (cm2), TSA total root surface area  (cm2), ARD average root diameter (mm), RV root volume 
 (cm3), RT root tips, TPA top-view area  (mm2), C% mycorrhiza colonization (%), SP shoot P (mg  g−1), and RP 
root P (mg  g−1).

S. no Trait Marker QTL name Chromosome Position (Mb) F-value P-value q-value R2

1 NL RM283 qNL1.1 1 4.89 8.5916 0.0042 0.0238 0.0864

2 RDW RM297 qRDW1.1 1 32.09 14.8585 0.0002 0.0214 0.1497

3 SDW RM297 qSDW1.1 1 32.09 11.2506 0.0011 0.0192 0.1128

4 TDW RM297 qTDW1.1 1 32.09 12.2008 0.0007 0.0245 0.1225

5 C% RM521 qMC2.1 2 10.81 10.2264 0.0019 0.0211 0.1033

6 NT RM2334 qNT3.1 3 26.55 9.8392 0.0023 0.0177 0.0994

7 RL RM200 qRL3.1 3 13.40 8.6489 0.0041 0.0245 0.0872

8 TRL RM200 qTRL3.1 3 13.40 8.8771 0.0036 0.0232 0.0896

9 C% RM1272 qMC4.1 4 35.33 8.2245 0.0051 0.0224 0.0831

10 LW RM574 qLW5.1 5 3.39 8.5373 0.0043 0.0232 0.0847

11 RL RM30 qRL6.1 6 27.25 9.8689 0.0022 0.0189 0.0995

12 TRL RM3343 qTRL6.1 6 29.10 8.4423 0.0045 0.0220 0.0852

13 ARD RM6966 qARD8.1 8 27.32 8.4513 0.0045 0.0230 0.0844

14 LL RM6966 qLL8.1 8 27.32 10.6437 0.0015 0.0194 0.1075

15 SL RM6966 qSL8.1 8 27.32 7.6362 0.0068 0.0258 0.0771

16 TRPA RM6966 qTRP8.1 8 27.32 7.9047 0.0060 0.0253 0.0799

17 TSA RM6966 qTSA8.1 8 27.32 7.9043 0.0060 0.0243 0.0798

18 LL RM242 qLL9.1 9 18.64 8.4178 0.0046 0.0213 0.0850

19 NT RM242 qNT9.1 9 18.64 9.8677 0.0022 0.0206 0.0997

20 NT PAP1 qNT11.1 11 2.43 7.5937 0.0070 0.0254 0.0767

21 RDW RM5926 qRDW11.3 11 28.33 7.6993 0.0066 0.0260 0.0776

22 RV RM5926 qRV11.3 11 28.33 12.3362 0.0007 0.0342 0.1246

23 SDW RM5926 qSDW11.2 11 28.33 11.6389 0.0009 0.0240 0.1167

24 TDW RM5926 qTDW11.2 11 28.33 11.0476 0.0013 0.0182 0.1109

25 RDW K29-3 qRDW12.2 12 15.42 7.5396 0.0072 0.0236 0.0760

26 RL K41 qRL12.1 12 0.26 7.5762 0.0071 0.0248 0.0764

27 SG K20-2 qSG12.2 12 15.41 11.4432 0.0010 0.0210 0.1156

28 SG K41 qSG12.1 12 0.26 8.9909 0.0034 0.0234 0.0908

29 TPA K20-2 qTPA12.2 12 15.41 10.1975 0.0019 0.0194 0.1051
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had functionally associated with eight known genes (OsRLCK266, OsWRKY32, OsRAM2, OsbHLH023, OsCP25, 
OsNPC4, OsERD6, and OsCP29). Similarly, other locus had functional associated with genes related to root 
growth and auxin.

Identification of rice germplasm with QTLs related to low‑P tolerance traits such as root 
growth and shoot and root biomass. A total of seven rice accessions were found to tolerate P-deficient 
conditions, including tolerant checks Dular and Kasalath. Among them, the genotypes IC459373, Chakhao 
Aumbi, AC100219, AC100062, and Sekri exhibited a par or higher shoot and root dry weight with better root 
growth than the checks in P-starved conditions. Genotype IC459373 outperformed the checks, while Chakhao 
Aumbi and AC100219 performed significantly better under low P. Amid the favorable QTLs detected, six QTLs 
(Table 7) were found in Sekri, followed by five QTLs detected in Chakhao Aumbi having a high tiller number 
and biomass. The genotypes IC459373 and Kasalath had four QTLs each. Therefore, these accessions could be 
used as donors in a breeding program to improve PUE in rice.

Discussion
Researchers globally for long been trying to understand the critical role of P in plant growth and development 
mediated through signaling and metabolism to develop P-efficient cultivars in several crops. Considering the 
area occupied and the importance of rice, improving PUE is catching the attention of rice researchers. Because 

Table 5.  Allelic variant of associated markers and favorable allelic and related phenotypic traits of the panel 
population. Mean with ± is the standard deviation of the specific allele. Values with different alpabhet across 
allelic variant are significantly different with each other at p < 0.05. Values in parenthesis next to the favorable 
allele denotes the number of genotypes carrying that specific favorable allele. SL shoot length (cm), NT tillers 
 plant−1, NL leaf number  plant−1, LL leaf length (cm), LW leaf width (cm), SG stem thickness (mm), RL max. 
root length (cm), SPAD, SDW shoot dry weight (g), RDW root dry weight (g), TDW total dry weight (g), 
TRL total root length (cm), TRPA total root projected area  (cm2), TSA total root surface area  (cm2), ARD 
average root diameter (mm), RV root volume  (cm3), RT root tips, TPA top-view area  (mm2), C% mycorrhiza 
colonization (%), SP shoot P (mg  g−1), RP root P (mg  g−1).

Marker Trait Alleles Favorable allele

Allelic variant

A B C D

RM297 RDW 4 C(9) 0.08 ± 0.06ab 0.08 ± 0.06b 0.19 ± 0.23a 0.07 ± 0.09b

RM5926 RV 3 C(11) 0.36 ± 0.63b 1.70 ± 0.83a 1.91 ± 1.83a –

RM297 TDW 4 C(9) 0.47 ± 0.43ab 0.33 ± 0.38b 0.87 ± 1.03a 0.34 ± 0.45b

RM5926 SDW 3 A(9) 0.63 ± 0.74a 0.25 ± 0.30b 0.23 ± 0.38b –

K20-2 SG 2 B(90) 1.19 ± 0.61a 1.40 ± 0.70a – –

RM297 SDW 3 C(9) 0.39 ± 0.37ab 0.25 ± 0.32b 0.68 ± 0.79a –

RM5926 TDW 2 A(9) 0.78 ± 0.91a 0.33 ± 0.36b 0.29 ± 0.45b –

RM6966 LL 3 A(30) 11.03 ± 5.32a 10.21 ± 5.04a 1.00 ± 1.74b –

K20-2 TPA 2 B(41) 1065.01 ± 832.38a 1311.65 ± 994.78a – –

RM521 MC 4 A(7) 50.28 ± 25.04a 37.88 ± 12.04ab 29.98 ± 18.01b 46.20 ± 22.39ab

RM242 NT 3 C(5) 1.43 ± 1.26b 1.55 ± 0.96b 2.86 ± 1.84a –

RM30 RL 4 D63) 6.69 ± 5.22b 8.25 ± 5.51b 7.04 ± 4.07b 11.12 ± 11.18a

RM2334 NT 3 C(15) 1.44 ± 0.79b 1.36 ± 1.02b 2.01 ± 1.65a –

K41 SG 1 A(50) 1.45 ± 1.20 – – –

RM200 TRL 3 C(4) 411.86 ± 309.84b 535.63 ± 287.45ab 816.25 ± 560.80a –

RM200 RL 3 B(80) 7.67 ± 5.09b 10.44 ± 4.68a 9.19 ± 6.18ab –

RM283 NL 3 B(97) 6.38 ± 6.40a 6.75 ± 3.45a 2.30 ± 3.22b –

RM3343 TRL 2 B(82) 440.91 ± 484.40b 561.08 ± 234.64a – –

RM242 LL 3 C(5) 9.83 ± 7.81b 10.17 ± 5.39ab 12.61 ± 1.66a –

RM574 LW 2 A(4) 0.44 ± 0.32b 0.35 ± 0.14b – –

RM6966 ARD 3 A(30) 0.47 ± 0.22b 0.45 ± 0.21a 0.06 ± 0.11b –

RM1272 MC 4 A(3) 47.27 ± 41.62a 13.03 ± 20.52b 33.36 ± 14.87ab 29.59 ± 20.06ab

RM6966 TRPA 3 A(30) 30.26 ± 19.35a 28.09 ± 16.23a – –

RM6966 TSA 3 A(30) 95.06 ± 60.80a 88.27 ± 51.01a 5.33 ± 11.22b –

RM5926 RDW 3 A(9) 0.14 ± 0.17a 0.07 ± 0.06b 0.06 ± 0.07ab –

RM6966 SL 3 A(30) 19.97 ± 9.52a 18.83 ± 9.16a 2.47 ± 4.22b –

PAP1 NT 1 A(53) 1.56 ± 0.61 – – –

K41 RL 1 A(51) 9.53 ± 5.85 – – –

K29-3 RDW 2 A(40) 0.10 ± 0.13a 0.07 ± 0.06b – –
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of finite P fertilizer and its availability only in specific regions around the  globe4, the applied P fertilizer becomes 
unavailable to plants because of high reactivity with soil particles and microbial  activity25,26. Exploring the large 
unavailable form of soil-bound P would be an alternate strategy to mitigate these factors. In addition, increasing 
the tolerance level through PUE, acquiring P from the soil by exploring the adjacent area and by modifying the 
root architecture, secretion of root exudates, and symbiotic association with AM fungi would be advantageous. 
Attempts were made to improve P efficiency in rice through classical plant breeding by transferring targeted traits 
with limited  success27. The available germplasm in gene banks has sufficient genotypic variation to improve P 
efficiency, but the major obstruction in identifying and developing P-efficient genotypes is the lack of a screening 
facility with low-P soil. Predominantly, the identification of P-efficient genotypes is driven by biomass produc-
tion of shoot or root under P-deficient soil. To overcome this impediment, QTLs/genes related to traits that 
improve P-use efficiency need to be identified to introgress them into an elite background. Wild species and 

Table 6.  Co-localization of significant markers and candidate genes believed to be involved in low-P tolerance 
identified in the panel population. SL shoot length (cm), NT tillers  plant−1, NL leaf number  plant−1, LL leaf 
length (cm), LW leaf width (cm), SG stem thickness (mm), RL max. root length (cm), SPAD, SDW shoot dry 
weight (g), RDW root dry weight (g), TDW total dry weight (g), TRL total root length (cm), TRPA total root 
projected area  (cm2), TSA total root surface area  (cm2), ARD average root diameter (mm), RV root volume 
 (cm3), RT root tips, TPA top-view area  (mm2), C% mycorrhiza colonization (%), SP shoot P (mg  g−1), RP root 
P (mg  g−1).

Marker associated Trait QTL LOC Chr Position Description

RM283 NL qNL1.1 Os01t0178500-02 1 4073916–4076438
Cross-talk of auxin and brassinos-
teroid signaling pathways, plant 
morphogenesis

RM297 RDW, TDW, SDW qRDW 1.1, qTDW 1.1, qSDW 1.1 Os01t0746400-01 1 31225458–31228566

Control of lateral bud outgrowth, 
regulation of tillering, strigolac-
tones biosynthesis, strigolactone 
and cytokinin controlled mesocotyl 
elongation in darkness

RM2334 NT qNT 3.1 Os03t0672900-01 3 26576580–26579053 Cell wall deposition, regulation of 
plant growth and development

RM1272 C% qMC 4.1 Os04t0688300-01 4 35207157–35208610 Haem peroxidase, plant/fungal/bacte-
rial family protein

RM30 RL, qRL 6.1 Os06t0664800-01 6 27456955–27459557 Phosphate starvation regulator

RM6966 LL, ARD, TRPA, TSA, SL, qLL 8.1, qARD 8.1, qTRPA 8.1, qTSA 
8.1, qSL 8.1, Os08g0564000 8 28332207–28334033 Phosphate transporter (OsPT6)

RM242 LL, NT qLL 9.1, qNT 9.1 Os09t0491740-01 9 18978153–18983471 Auxin efflux carrier domain-contain-
ing protein

PAP1 NT qNT 11.1 Os11t0149100-01 11 2271010–2274026
Purple acid phosphatase (EC:3.1.3.2), 
improvement in phosphate acquisi-
tion and use

Table 7.  List of genotypes identified with their QTL details and reaction against P deficiency in rice. SL shoot 
length (cm), NT tillers  plant−1, NL leaf number  plant−1, LL leaf length (cm), LW leaf width (cm), SG stem 
thickness (mm), RL max. root length (cm), SPAD, SDW shoot dry weight (g), RDW root dry weight (g), TDW 
total dry weight (g), TRL total root length (cm), TRPA total root projected area  (cm2), TSA total root surface 
area  (cm2), ARD average root diameter (mm), RV root volume  (cm3), RT root tips, TPA top-view area  (mm2), 
C% mycorrhiza colonization (%), SP shoot P (mg  g−1), RP root P (mg  g−1).

S. no Genotype SL NT RL SDW RDW TRPA TSA RV QTLs

1 Dular 25.93 3.50 11.55 1.220 0.270 54.72 171.91 4.25 qTRL 6.1, qLL 9.1, qNT 11.1

2 Kasalath 26.75 3.00 12.33 1.246 0.268 33.48 105.18 1.48 qRDW 1.1, qTDW 1.1, qSDW 1.1, qNT 11.1

3 IC459373 28.93 3.33 15.12 1.459 0.278 57.36 180.20 2.78 qNT 3.1, qTRL 6.1, qLL 9.1, qNT 11.1

3 ChakhaoAumbi 29.22 3.00 10.20 1.870 0.260 44.24 138.98 4.20 qNL 1.1, qRDW 1.1, qTDW 1.1, qSDW 1.1, qNT 3.1

4 AC100219 26.10 3.33 16.30 1.570 0.290 54.44 133.85 6.53 qNT 3.1, qTRL 6.1, qNT 11.1

5 AC100062 26.23 3.00 10.32 1.350 0.310 35.84 112.61 4.33 qNL 1.1, qNT 3.1, qTRL 6.1

6 Sekri 30.48 3.17 11.62 1.120 0.300 50.29 157.99 5.50 qRDW 1.1, qTDW 1.1, qSDW 1.1, qRL 6.1, qLL 9.1, qNT 11.1

7 Abhishek 14.48 1.83 7.42 0.100 0.040 6.30 19.78 0.30 qNT 11.1

8 AC100282 9.05 1.00 4.40 0.04 0.01 2.32 7.29 0.08 –

9 Jagabandhu 15.10 1.50 5.15 0.065 0.020 8.14 25.57 0.33 –

10 Kanchan 17.85 1.50 6.27 0.082 0.021 12.97 40.75 0.53 –

11 Hiranmayi 17.78 1.00 9.47 0.051 0.023 13.63 42.83 0.83 –

12 Parijat 15.12 2.00 9.17 0.084 0.027 16.41 51.55 0.74 –
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landraces possess higher genetic diversity than modern/improved varieties, which serve as a reservoir of genetic 
diversity and help to use the beneficial alleles in breeding programs for crop development. This research work 
attempted to study the genetic diversity, structure, and association between markers and traits measured under 
low-P conditions among the selected subset of the population comprising wild species, landraces, and improved 
varieties with multiple traits.

Figure 8.  Relationships between shoot biomass, total root surface area (TRSA) and mycorrhizal colonization 
with P under deficient condition. (a) The negative association between shoot biomass and root P concentration 
suggests that an increase in biomass (shoot) in deprived P was associated with the dilution effect of P. (b) 
The line indicates the fitted results representing the relationship between total P of plant tissue and possible 
parameters (TRSA and mycorrhizal colonization) involved in P uptake under P deficient condition. The 
contribution of improved P uptake of TRSA was high compared to mycorrhizal colonization.
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Evaluation and identification of genotypes with tolerance to low P. This study included acces-
sions of improved genotypes, landraces, O. nivara, and O. rufipogon from nine provinces of India. The frequency 
distribution and CV exhibited substantial variability, and adaptation to P starvation was observed among the 155 
accessions of Oryza species. Similarly, ANOVA revealed the presence of significant variation among genotypes 
for all the parameters observed. In addition, traits such as biomass and tissue P measured under low P registered 
a high  h2 of > 67%. Similarly, high heritability of 81% to 91% was reported by Wang et al.28 for total above-ground 
biomass, total above-ground P uptake, and P translocation efficiency in P-starved conditions. Therefore, the 
presence of moderate to high genetic advance with high  h2 offers an opportunity to improve the selection of 
traits at the early generation based on shoot biomass, total root length, tissue P content, mycorrhizal coloniza-
tion, and the geometric trait of top-view area for improving low-P tolerance in rice. The strong positive correla-
tion between shoot and root biomass and inter-correlation among the root parameters show the possibility of 
improving P-efficient genotypes. The negative association between root P content and shoot dry weight (Fig. 8a) 
suggests that genotypes with desired root architecture QTLs such as Pup1 coupled with high-affinity P trans-
porters (PHT1 family) would be supportive of using available P efficiently in P-deprived  soil14. Besides, TRSA 
had become the higher contributor for improved P uptake under deficit P than mycorrhizal colonization. This 
was clear from Fig. 8b, and non-linear regression showed that 33% of P uptake would be through TRSA, while 
the role of mycorrhizae in P uptake was minimum (4%) in the present experiment. The multivariate principal 
component analysis also suggests the importance of roots under P-starved conditions to improve shoot growth. 
Genotypes such as upland landraces of northeast India, a few genotypes of improved upland varieties, O. nivara, 
O. rufipogon, and known tolerant genotypes Dular and Kasalath were categorized under group 3 with high bio-
mass and low tissue P in both shoot and root, whereas genotypes of the improved varieties were put in groups 1 
and 2 with high tissue P in the root and low P in the shoot. Conversely, O. nivara and O. rufipogon were grouped 
together (group 5) with high tissue P, root diameter, root-shoot weight ratio, and root-shoot length ratio, while 
group 4 had a mixture of all species with more shoot P. This suggests that genotypes of group 5 (O. nivara and O. 
rufipogon) can extract, upload, and translocate P from the rhizosphere to the shoot in low-P soil. The symbiotic 
association between AM fungi and plants (Fig. 9) was significantly higher in groups 3 and 2 (41%), in which they 
have a good root system (Fig. 3). The improved genotypes of group 1 had minimum colonization of 30% with a 
poor root system. It is well-known that rice plants with more root biomass positively correlate with AM fungal 
root  colonization29.

Genetic diversity and distribution of Pup1 among Oryza spp.. Elucidating molecular genetic diver-
sity helps breeders estimate rice germplasm’s genetic constitution and select donors to develop a systematic 
and effective breeding program. Fifty-six of 78 markers exhibited polymorphism (73%), which gave rise to 154 
alleles, less than in our previous  study30. We obtained 128 alleles from 39 polymorphic primers, and more than 
reported by Donde et al.31, 154 alleles from 65 polymorphic markers. The present average of 2.7 alleles per locus 
was lower than that of many other research reports; for example, Noyer et al.32 analyzed 419 rice accessions using 
16 SSR markers and reported an average of 9.1 alleles per locus. The higher average number of alleles per locus 
than in the present study (2.24) may be due to the use of a larger number of genotypes. This study’s average PIC 

Figure 9.  Root and AM colonization in different rice genotypes found in low-P soil as shown by trypan blue 
staining. (a,e) Dular, (b,f) Kasalath, (c,g) Sekri, and (d,h) AC100219.
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value was 0.326, which was a bit higher than that of Xu et al.33 (0.31), who studied the association mapping of 
cold tolerance in improved japonica rice germplasm.

Cluster analysis based on unweighted pair group method with arithmetic mean (UPGMA) with all 78 markers 
and excluding gene-specific Pup1 grouped 120 genotypes into three clusters. Under both conditions (excluding 
and including the Pup1), the wild species were grouped into a single cluster and might have a similar type of 
P-efficiency mechanism under P deficiency. However, all explored wild species (30 in number) might have lower 
diversity because they share common geographical boundaries such as Odisha and neighboring province West 
Bengal of India. This coincides with several studies on assessing genetic  diversity34–36. On the other hand, those 
wild species were separated from O. sativa L. (landraces and improved genotypes). Similarly, Xu et al.33 studied 
the genetic diversity in 103 rice germplasm accessions comprising O. rufipogon and O. sativa genotypes, and 

Figure 10.  Distribution of primers used for association mapping and detected QTLs on 11 chromosomes of 
rice. Distances on the map are in Mbp presented on the left-hand side of the chromosomes. Markers highlighted 
in red are found associated with adaptive traits under P-deprived conditions. [SL shoot length (cm), NT tillers 
 plant−1, NL leaf number  plant−1, LL leaf length (cm), LW leaf width (cm), SG stem thickness (mm), RL max. root 
length (cm), SPAD, SDW shoot dry weight (g), RDW root dry weight (g), TDW total dry weight (g), TRL total 
root length (cm), TRPA total root projected area  (cm2), TSA total root surface area  (cm2), ARD average root 
diameter (mm), RV root volume  (cm3), RT root tips, TPA top-view area  (mm2), MC mycorrhiza colonization 
(%), SP shoot P (mg  g−1),  RP root P (mg  g−1)].
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grouped both of them in separate clusters, which are in support of our study. The UPGMA cluster analysis with 
13 gene-specific Pup1 markers grouped all 120 genotypes into three major clusters (Fig. 5c). Cluster-III (blue) 
grouped 25% (30 accessions) of the studied population, including the tolerant genotypes Dular and Kasalath 
having Pup1. However, this cluster again sub-divided into three sub-clusters (III-1 (14 in number), III-2 (13 in 
number), and III-3 (3 in number)) based on the presence of gene-specific Pup1 markers. Among the three sub-
clusters, sub-cluster III-2 had grouped 13 genotypes that include six landraces (42.85% of the total population), 
five O. rufipogan (33.3%), one O. nivara (AC 100117) (6.66%), and one improved variety (CR Dhan 801) (1.31%). 
The performance of those 13 genotypes registered 28.42% shoot length, 83.41% root biomass, and 90.49% root 
volume, with 35.88% top-view area, higher than in the genotypes secured in the other two sub-clusters. On the 
other hand, out of 13 gene-specific Pup1 markers, K29-3, K41, K43, and K45 played an important role in dif-
ferentiating genotypes between these sub-clusters. To corroborate this, Chin et al.17 reported K29-1, K29-3, K41, 
K43, K45, and K46-1 as core markers to differentiate genotypes that differ in Pup1 allele constitutions. Further, 
Neelam et al.37 substantiated that O. rufipogon collected from India has high PUE with a differential functional 
allele of PSTOL1.

By considering all 78 markers and excluding gene-specific Pup1 markers, the model-based simulation STRU 
CTU RE 2.3.4 divided the population into three sub-populations, similar to the distance-based model. Conversely, 
the gene-specific Pup1 markers grouped the population into two sub-populations. The grouping of genotypes 
with distance and model-based analysis was similar at the genetic level with markers linked to low P, including 
exclusive markers or exclusive gene-specific Pup1 markers. It suggests that traits other than early root growth 
(Pup1-specific markers) in differentiating low-P tolerance must be documented. AMOVA revealed a higher 
proportion of variation among the individuals, while a lower proportion of variation was observed among the 
populations. A similar observation of a higher proportion of variation among the individuals was reported by 
Verma et al.38 and Islam et al.39. Genotypes of the present study belonged to different species of Oryza (sativa, 
rufipogon, and nivara), wherein the species sativa includes genotypes of landraces and from improved upland, 
lowland, and irrigated ecosystems, which resulted in a higher proportion of variation among the individuals 
than among the populations. Within-individuals that had registered higher variation indicated a high level of 
heterozygosity at each locus in wild genotypes and landraces. The Fst value was minimum in the case of sub-
populations containing wild genotypes (0.20), while a high Fst index of 0.55 was observed in improved geno-
types, suggesting that they are fixed and homozygous in nature. The alpha value determined by the model-based 
simulation STRU CTU RE 2.3.4 under three circumstances was nearer to zero (0.12) in two instances, which 
suggests that the individuals are from one population, while the Pup1 gene marker represented with 0.3285 
suggests that the variation arising in a specific region might be variation in the Pup 1 indel region. The value 
of NM (2.0) indicated possible gene flow between the populations and low genetic differentiation for the trait 
 studied40,41. Therefore, a hypothesis has been proposed that the Pup1 region or gene with low-P tolerance might 
have been introgressed from O. rufipogon into O. sativa. This may be supported in this study by the frequency of 
tolerant accessions of O. rufipogon outnumbering those of O. nivara. Further, Neelam et al.37 substantiated that 
O. rufipogon (IRGC 106506) accessions performed significantly better under limited P, with 2.5 times higher 
root weight than the positive control.

In the present association study, both GLM and MLM were used to assess the association between traits and 
markers. However, the number and degree of association-related traits are based on the dataset and model used. 
MLM, unlike GLM, is more accurate and has a robust algorithm to improve the calibration. It integrates structure 
and kinship matrix, which rectifies the false-positive error expected due to population structure and  relatedness42. 
Hence, MLM has been popularly used by several researchers for studying marker-trait association. In the GLM, 
61 markers were associated with 110 QTLs; in the MLM, 16 markers were associated with 29 QTLs. The total 
number of QTLs and distribution of the markers are displayed in Fig. 10. The unique population exploited in 
this study was associated with 78 markers linked to low P with multiple traits screened under deficient P. Not 
much study was carried out on the traits selected in this study in reference to the association with tolerance of 
P deficiency. This resulted in the identification of novel and interesting QTLs for multiple traits. We reported 
16 markers (RM6966, RM1272, RM200, RM2334, RM242, RM283, RM297, RM30, RM3343, RM521, RM574, 
RM5926, PAP1, K20-2, K29-3, and K41) associated with 29 QTLs for 17 traits (ARD, C%, LL, LW, NL, NT, RDW, 
RL, RV, SDW, SG, SL, TDW, TPA, TRL, TRPA, and TSA) under low-P conditions in rice. Overlapping of markers 
for tolerance of low P suggests a high correlation between the traits. For instance, marker RM6966 was found 
to be associated with several root-related traits necessary for low-P conditions. Similarly, RM242 and RM297 
were linked to shoot and root biomass. Thus, the pleiotropic effect of markers unravels the genetic correlation 
among the  traits30 measured under low P. Marker RM30 on chromosome 6 was observed to be significantly 
associated with root length  (R2 = 9.9%), and was co-localized with a QTL reported for root elongation ratio 
under P deficiency with PV of 19.9%. The tolerance imparted by this QTL might be due to the positive regula-
tion of the candidate gene Phosphate starvation regulator (Os06t0664800) at 0.15 Mb to the right of qRL6.1 on 
chromosome 6. The network analysis of locus Os06t0664800 by the riceFREND database revealed that it has 11 
nodes and 19 edges. It was found that coexpression patterns of the genes were highly expressed in roots, specifi-
cally in protophloem sieve elements and promote root elongation (OsbHLH068)43. Similarly, marker RM6966 
from this study suggested that three QTLs were controlling root traits of low-P tolerance in rice, which were 
co-localized with the QTLs qRS8b, qRDW8, and qRN8b reported by Li et al.19 for root traits located in the same 
genomic region under P deficiency with a PV of 11.04%. The  R2 values of traits associated with marker RM6966 
varied from 7.7% to 10.7%. The well-documented high-affinity phosphate transporter (OsPT6) gene located on 
chromosome 8 at 28.3 Mb within this QTL region proved to be involved in long-distance transport of P from 
root to shoot, and it aids in the accumulation of  biomass44 under P-deficient conditions. Insilico coexpression 
pattern of the gene Os08g0564000 revealed that most of the genes involved in root development and signaling 
pathways during abiotic stress (phosphoesterase family protein; OsNPC4)45. The coexpression network and 
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expression analysis suggest that the resulting gene network provides the molecular pathways and the biological 
function of each gene. This piece of information would be useful to explore the role of novel genes related to the 
target trait of interest in the breeding program.

On the other hand, marker RM242 located on chromosome 9 was a hotspot for biomass accumulation under 
P-deficient conditions, for which two important QTLs, qLL 9.1 and qNT 9.1, were identified to be associated 
with low-P conditions, with  R2 ranging from 8.50% to 9.97%. Marker RM242 was reported to be associated 
with increasing root length under irrigated conditions and drought stress and was used in a marker-assisted 
 backcross46 to improve root length in rice genotype Kalinga III. Goncharova et al.42 also reported RM242 to be 
involved in increasing relative biomass and nitrogen-use efficiency. The locus Os09t0491740 is located 0.33 Mb 
away from marker RM242 involved in auxin efflux situated in the plasma membrane. Similarly, markers RM283 
and RM297 were also linked with the growth promoter genes brassinosteroid (Os01t0178500) and strigolactone 
(Os01t0746400).

Four PAP markers (1 to 4) associated with purple acid phosphatase were developed at ICAR-NRRI to identify 
genotypes having candidate gene OsPAP21b. The gene OsPAP21b was reported to be up-regulated under phos-
phate  deprivation47 and proved to be a major plant enzyme involved in releasing P from organophosphates that 
remain unavailable for plants before  mineralization48. Among the four markers, PAP1 at 2.42 Mb on chromosome 
11 exhibited polymorphism across genotypes, which co-localized with tiller number with PV of 7.6% under P 
deprivation. Among the Pup1-specific markers, the  R2 value of K20-2 registered a maximum of 11.5% for stem 
thickness and 10.5% for geometric trait top-view area, followed by the Pup1 core marker K41, which exhibited 
association with stem thickness of 9%. Another core marker, K29-3, was associated with root dry weight. There-
fore, it is believed that Pup1 is involved in the accumulation of biomass in addition to early rooting in P-deficient 
conditions. On the other hand, markers RM521 and RM1272 were associated with mycorrhizal colonization % 
on chromosomes 2 and 4, respectively, with an  R2 value of 10.3% and 8.3%. The symbiotic association between 
the rice plant and soil fungi mycorrhiza is well known under P-deficient conditions and fulfills 80% of  P21–23.

Here, several reliable associations between traits measured under P deprivation and molecular markers were 
established. Notably, six markers (RM297, RM30, RM6966, RM242, RM283, and PAP1) would be more useful in 
predicting the identification of genotypes under P-deprived conditions. Typically, an association panel is a diverse 
set of populations that harbors multiple alleles at any given locus (which requires identifying favorable alleles 
rather than using the whole genome for hybridization), which are identified phenotypically. Identification and 
breeding for favorable alleles of the trait of interest from wild genotypes and landraces into modern cultivars will 
help breeders arrive at a new improved variety with wider adaptability. Therefore, a set of five potential genotypes 
(IC459373, Chakhao Aumbi, AC100219, AC100062, and Sekri) having a set of favorable alleles would be used 
appropriately to improve the PUE of rice. Among the selective potential genotypes, IC459373 and AC100219 
contain the QTLs qNT3.1 and qNT11.1 for tiller numbers, while Dular had only one QTL qNT11.1. However, 
the tiller number between the three genotypes were uniform even they had additional QTLs for the same trait. 
A more number of QTLs for same trait might have complimentary effect under stress condition for maximizing 
the root length, which is highly essential for low P condition. This may be observed in the correlation between 
tiller number and maximum root length (Fig. 2). Therefore, genotypes having multiple QTL for same trait may 
be explored to utilize them in the breeding program to improve the PUE in rice. As these genotypes (IC459373 
and AC100219) having better performance with additional QTLs, they need to be studied further and we are in 
it. Besides , the identified alleles need to be evaluated to understand the advantage of using them and their effect 
on different genetic backgrounds.

Identifying suitable donors and improving PUE in rice, potential candidate genes, and markers associated with 
these traits under low P is a central research area in rice breeding. Therefore, in this study, we demonstrated a 
selected population panel having significant trait variations. The positive correlation between the traits explained 
the possibility of improving genotypes for P-deprived soil in a holistic manner. Notably, a negative association was 
observed between root P content and biomass. The trait total root surface area had become the major contributor 
for improved P uptake under deficit P than mycorrhizal colonization. The geometric trait of the top-view area 
exhibited a positive association with maximum root length and root volume, suggesting using a non-destructive 
approach in screening genotypes under low-P conditions, which is the first report to the authors knowledge 
as well as based on available scientific documentation. The genotypes were divided into three groups based on 
distance and model-based analysis, while gene-specific Pup1 markers classified the panel into two groups. This 
suggests that traits other than early root growth (Pup1-specific markers) in differentiating low-P tolerance must 
be documented. This unique panel serves to find the association between traits and primers and facilitates the 
identification of donors with a combination of adaptive traits necessary for low-P conditions. Further, the identi-
fied linked markers are highly valued when determining variation for a target trait. The markers RM259, RM297, 
RM30, RM6966, RM242, RM184, and PAP1 were highly associated with traits responsible for low-P conditions 
in rice. The multiple traits related to these genome regions are promising resources for improving and under-
standing PUE and are also more useful as a breeding tool in predicting genotypes under P-deprived conditions.

Methods
Plant materials. The population consisted of 155 rice accessions (Table 1S) comprising 41 wild species (21 
Oryza rufipogon, 19 O. nivara, and 1 O. spontanea), 37 landraces, and 77 improved varieties originating from 
eight provinces of India. Seeds were obtained from ICAR-National Rice Research Institute (NRRI), Cuttack, 
Odisha; the Regional Research & Technology Transfer Station (RRTTS), Coastal zone, Bhubaneswar; and Orissa 
University of Agriculture and Technology (OUAT), Bhubaneswar. The seed materials were collected from the 
NRRI gene bank, and appropriate permission was obtained to collect and use them in the current study. Thus, 
the study complies with local & national regulations.
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Growing conditions and experimental design. Phenotyping for phosphorus stress in a cement tank. All 
the accessions under study were screened in a cement tank for a low-P tolerance facility located at NRRI, Cuttack 
 (20o27′09" N,  85o55′57" E, 26 masl). The genotypes were direct-seeded in tanks containing low-P soil (< 3 kg/ha; 
0–15-cm layer, pH 4.9) with 20 cm X 15 cm between genotypes in three replicates during June 2019. Average 
day/night temperatures were 33.6/26.0 °C, and relative humidity was 85.9% in bright sunlight. Before sowing, 
seeds of all the accessions were heat-treated at 50 °C for 45 h in a hot-air oven to break seed dormancy. The soil 
was irrigated every other day and, 15 days after sowing, the seedlings were thinned, leaving only two seedlings 
per hill. Chlorophyll content was measured for three plants of each accession on the 44th day from the date of 
sowing by using a SPAD meter (SPAD-502, Konica Minolta). On the next day (45th day), the plants were up-
rooted and morphological traits, shoot length (cm), number of tillers, number of leaves, 3rd-leaf length (cm) 
and width (cm), stem thickness (mm), maximum root length (cm), and root-shoot length ratio were recorded 
for three plants of each genotype. Subsequently, root traits (total root length (cm), projected root area  (cm2), root 
surface area  (cm2), average root diameter (mm), root volume  (cm3), and number of root tips) were recorded for 
each genotype per replication and analyzed by WinRHIZO Pro 2013e (LA 2400, Regent Instruments Inc.). The 
plant samples were dried in a hot-air oven at 60 °C for 5–6 days and shoot, root, and total dry weight and root-
shoot dry weight ratio were recorded in grams. In addition, the plant’s top-view area was measured using open-
source Image J  software49. Images of each accession were taken using a 12-megapixel Nikon camera at 1.5-m 
distance, and the pixels were changed into  mm2 as the top-view area of the  plant49,50. To quantify total P, the dried 
plants were powdered around 300 mg shoot and 90 mg root samples following the phospho molybdo vanadate 
colorimetric method. P concentration in the digest was determined using a Cystronicx UV Spectrophotometer 
at 420 nm, and total shoot and root P contents were determined on a mg/g dry weight basis. Additionally, to 
strengthen these data, mycorrhiza colonization was observed.

To study AM fungal root colonization, root samples were collected from all the genotypes, washed thoroughly, 
cut into small pieces (0.5 to 0.7 cm), and put in falcon tubes containing 15 to 20 ml of 10% KOH. Care was taken 
when the root samples became immersed inside the KOH solution. Further, the samples were autoclaved at 
121 °C at 15 psi pressure for 15 min and washed under running tap water until the roots became clear in color. 
Each sample was treated with 10 to 15 ml of 2% HCL for 5 min and washed under running tap water. Finally, 10 
to 15 ml of 0.05% trypan blue in lactoglycerol was added depending upon root volume and this was left overnight 
at room temperature. Root samples were rinsed with lactoglycerol (without stain) and slides were prepared with 
10 root pieces on each slide for observation under a stereomicroscope to check the root colonization. Percentage 
of root colonization was determined as per the formula described by McGongigle et al.51 : Percentage of coloniza-
tion = (number of root segments colonized/total number of root segments) × 100.

Statistical analysis. To study the effect of variation due to P in 155 accessions, descriptive statistics, box 
plot, ANOVA, and broad-sense heritability  (H2) were calculated using Windostat 7.5 software with 23 traits 
measured under low-P conditions. Principal component analysis (PCA) was performed on a matrix of mor-
phometric and geometric traits to assess the variability in traits for tolerance of P deficiency with 155 rice geno-
types to differentiate the genotypes based on their performance under low-P conditions. The PCA analysis was 
executed using the PCA function from the FactoMine R  package52 in R. The corrplot functions from the corrplot 
 package53 in R (version 3.6.3) were used to find the effect of low P on the various genotypes.

Genotyping. DNA isolation, quantification, and PCR amplification. Based on the level of tolerance and 
phenotypic information, a panel of 120 accessions was shortlisted from 155 accessions for genotypic study based 
on their distribution pattern. The total genomic DNA was extracted from young leaves following the modified 
CTAB  method54. Further, the DNA samples were quantified by a Nanodrop spectrophotometer (Thermo Scien-
tific) and diluted to a working stock of 50 ng µl−1. PCR amplified the isolated DNA samples with a 10 μl reaction 
containing 20 ng of DNA, 10 mM Tris–HCl, 1.5 mM  MgCl2, 0.2 unit of Taq DNA polymerase (New England 
Biolabs), 50 μM of dNTPs (New England Biolabs), and 0.1 μM each of forward and reverse primers using a T100 
(Bio-Rad, USA) thermal cycler. Thermal cycler reaction was performed as mentioned: initial denaturation at 
94 ºC for 10 min, the mixture was cycled 35 times at 94 ºC for 45 s for denaturation, followed by annealing at 
55–60 ºC for 45 s (following the TM values of the primer) and 72 ºC of extension for 60 s, and followed by a final 
extension at 72 ºC for 10 min. The samples were run on a 3.5% agarose gel by using bromophenol blue as a dye 
and a 50 bp ladder (New England Biolabs) for 1 h in 0.5X tris–acetic acid–EDTA (TAE) buffer. The resolved PCR 
bands were documented in a gel documentation system (Gel Doc XR + , Bio-Rad, USA), and the images were 
stored for analysis. In this study, with the prior information, 78 low-P QTL-linked primers (Table 2), including 
13 Pup1-specific  markers55, were used to map the QTLs associated with traits related to low P and the genetic 
architecture of the population panel.

Genetic diversity, population structure, and association analysis. The molecular size of the amplified fragments 
was determined by image lab software using 50 bp DNA ladders as the standard. Amplification of DNA sam-
ples with the primers was scored as per the molecular size or ’1’ for amplified regions and ’0’ for unamplified 
regions. A data matrix with ’0’ and ’1’ or the molecular size was prepared depending on the amplification, and 
the data matrix underwent further analysis. Genetic diversity parameters, major allele frequency, gene diver-
sity, heterozygosity, and the polymorphic information content (PIC) were calculated for each SSR locus using 
Power marker software version 3.2556. An un-rooted tree with a bootstrap value of 1000 was used to construct 
an unweighted neighbor-joining tree (Nei 1972) using Darwin 6.0  software57. Analysis of molecular variance 
(AMOVA) was generated using the GenAlex 6.502 program to describe the presence of molecular variance 
components within and between the population differentiation among the five assumed sub-populations58 and 
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to estimate the F statistics comprising the deviations from Hardy–Weinberg expectation across the popula-
tion  (FIT), within-population  (FIS), and for correlation of alleles between the sub-populations  (FST). In addition, 
Shannon’s Information index observed and expected homozygosity, observed and expected heterozygosity, Nei’s 
genetic diversity index, and the number of migrants (NM) between the assumed sub-populations were calcu-
lated by POPGENE program version 1.3159.

The genotypic data of the genotypes under study were analyzed for possible population structure with the 
model-based program STRU CTU RE 2.3.460 using a length of the burn-in period of 1,00,000, followed by 10,000 
Markov chain Monte Carlo (MCMC) replications. At least ten runs of STRU CTU RE were performed by set-
ting the number of sub-populations (K) from K = 1 to K = 10. To find the true K-value, ad hoc statistics ∆K 
was  followed61 using Structure Harvester version 0.6.9462. In this study, both model and distance-based cluster 
analysis were carried out with the data generated with all 78 primers collectively, excluding 13 Pup1-specific 
markers and only with Pup1-specific markers to realize the distribution of the PSTOL1 gene across species 
and the significance of other markers under low P. Further, to determine the genetic relatedness between traits 
measured under low P, the rice genotypes and primers were analyzed by the general linear model (GLM) and 
mixed linear model (MLM) in TASSEL version 5.2.6363. False discovery rate (FDR) was used to obtain q-values 
(adjusted P-values) as described by earlier  studies64. A significant association between markers and traits was 
identified based on their  R2 and P-value.

Candidate gene analysis underlying a QTL region and coexpression of gene assay. The associated traits and SSR 
markers aligned to the IRGSP 1.0 genome in The Rice Annotation Project (https:// rapdb. dna. affrc. go. jp/ viewer/ 
gbrow se/ irgsp1/) to retrieve the genes associated with linked markers. The sequence on either side of each linked 
marker extended from 500 kb left and 500 kb right and was marked as a QTL region and meticulously searched 
to find the genes associated with low P tolerance. The interval on either side of the associated marker can be 
called an interval of the QTL  genome65. Furthermore, we have performed the coexpression of gene assay for each 
putative candidate gene based on the guide gene approach using the riceFREND database (https:// ricef rend. dna. 
affrc. go. jp/) to identify the coexpressed genes. This approach provided the details of coexpressed genes, func-
tional information associated with reported genes, and transcription factors. The direct link of this database with 
RiceXPro (https:// ricex pro. dna. affrc. go. jp/) helps to understand the insilico expression of these candidate genes. 
This integrative process in two databases allows the number of nodes of the gene interactions, and the ranking 
of nodes helps identify the groups of functionally related  genes66.
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