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Abstract: Monocular depth estimation based on unsupervised learning has attracted great attention
due to the rising demand for lightweight monocular vision sensors. Inspired by multi-task learning,
semantic information has been used to improve the monocular depth estimation models. However,
multi-task learning is still limited by multi-type annotations. As far as we know, there are scarcely
any large public datasets that provide all the necessary information. Therefore, we propose a novel
network architecture Semantic-Feature-Aided Monocular Depth Estimation Network (SFA-MDEN)
to extract multi-resolution depth features and semantic features, which are merged and fed into
the decoder, with the goal of predicting depth with the support of semantics. Instead of using
loss functions to relate the semantics and depth, the fusion of feature maps for semantics and
depth is employed to predict the monocular depth. Therefore, two accessible datasets with similar
topics for depth estimation and semantic segmentation can meet the requirements of SFA-MDEN
for training sets. We explored the performance of the proposed SFA-MDEN with experiments on
different datasets, including KITTI, Make3D, and our own dataset BHDE-v1. The experimental
results demonstrate that SFA-MDEN achieves competitive accuracy and generalization capacity
compared to state-of-the-art methods.

Keywords: monocular depth estimation; semantic segmentation; feature fusion; multi-task deep learning

1. Introduction

Depth estimation plays a fundamental role in numerous application scenarios, such
as image reconstruction [1], object detection [2], semantic segmentation [3], pose estima-
tion [4], and medical image processing [5]. There are various sensors available to obtain
depth information based on either active or passive measurement methods. Time-of-Flight
(TOF) [6] is an active sensor that computes depth by the amount of time the infrared
ray takes to travel back and forth between the emitter and the camera. Structured light
cameras can predict depth accurately, even in weak light conditions, but require complex
calibration and expensive costs. Stereo vision systems [7], using the passive measure-
ment method, achieve high-quality depth estimation from rich-textured images via the
configuration of binocular or even multi-view cameras. However, the system structure
parameters, such as focal length and baseline, can greatly affect the calibration precision
of cameras, which limits the flexibility of the stereo vision system. Monocular depth esti-
mation refers to the scene depth recovery from a single two-dimensional image captured
by the camera [8], which benefits the development of lightweight sensors. Nevertheless,
given a two-dimensional image, multiple three-dimensional scenes will be reconstructed,
which indicates that monocular depth estimation is an inherently ill-posed problem. For
the past few years, an emerging computational imaging technology, where deep learning
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technology constrains estimation by extracting additional features, has become a major
approach for monocular depth estimation.

In this paper, a novel network architecture with two branches is proposed to couple
the semantic segmentation feature into a monocular depth estimation network aimed
at improving the robustness and precision of depth estimation models. Generally, for
unsupervised models, a left-view image is fed into the network to generate the disparity
map, which is also known as the inverse depth and could warp the left-view into a
predicted right-view image. Then, the self-supervised loss signal is computed through the
difference between the predicted and the ground truth right-view images. The estimated
depth map can be established by depth = baseline × focal_length/in-verse_depth. In
addition, unsupervised methods learn to simulate a binocular system with the intrinsic
parameters of the training dataset during the process. Thus, unsupervised networks
perform unsatisfactorily on other datasets.

Semantics and depth are different comprehension patterns of an image scene, but have
close relations. Inspired by the work of Stathopoulou et al. [4] who constructed geometric
constraints based on semantics to optimize reconstruction from multi-view images, we
believe multi-task learning via effectively merging semantic segmentation and depth esti-
mation can improve the robustness and generalization capacity of networks. Traditional
multi-task learning for predicting depth and semantic segments simultaneously employs
a multi-term loss, which requires not only semantic annotations, but depth self-labels
referring to stereo images or image sequences from the training datasets. Unfortunately,
there are small datasets available but no large public datasets satisfying these label require-
ments currently. In view of this, we decided to predict depth robustly and accurately, even
without the corresponding result of semantic segmentation. By combining the semantic
information in feature maps with the depth estimation network, we no longer require
joint depth and semantic annotations from the training set. In brief, different datasets for
semantics and depth, respectively, are adopted to train our network.

Obviously, how to effectively deploy semantic information for the improvement of
monocular depth estimation performance is an open issue. To address the problem, we
proposed a novel network architecture to break the severe restriction of dataset annotations;
the main contributions of the current study are as follows:

1. We propose a Semantic-Feature-Aided Monocular Depth Estimation Network (SFA-
MDEN), which fuses multi-resolution semantic feature maps into networks to achieve
better precision and robustness for the monocular depth estimation task.

2. A training strategy termed as Two-Stages for Two Branches (TSTB) is designed to train
the SFA-MDEN. Instead of using the paired semantic label and stereo images for the
input, a dataset for semantic segmentation and another dataset for monocular depth
estimation with similar themes will satisfy the requirement. Therefore, larger datasets
are guaranteed for better use of the semantic information to train our network.

3. Our SFA-MDEN achieves competitive estimation not only on public datasets KITTI [9]
and Make3D [10], but also on our self-built dataset BHDE-v1 (Beihang University
Depth Estimation dataset—version 1), which is a sparse depth dataset created to
validate the generalization of our network.

The remainder of the paper is organized as follows: Section 2 reviews existing monoc-
ular depth estimation models based on deep learning, especially the methods involving
semantics; the structure and the TSTB training strategy of SFA-MDEN are presented
in Section 3; experimental results and analysis are presented in Section 4; and, finally,
Section 5 presents the concluding remarks.

2. Related Works

The method proposed by this paper couples semantic segmentation with monocular
depth estimation networks based on deep learning. Therefore, we introduce the state of
monocular depth estimation research and the improvement with semantic features.
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2.1. Monocular Depth Estimation

Monocular depth estimation refers to predicting the depth map with only a single
view at the test. In 2008, Saxena et al. [11] assumed depth value as a function from the
image features and the related parameters of the model could be learned by a training
set based on MRF (Markov random field). In 2016, the convolutional neural network
(CNN) was applied to learn the parameters as well [12]. However, the assumed functions
in these types of approach cannot handle all the situations, especially the thin structures.
Moreover, the convincible global estimation is hard to reach for the depth values that
are predicted locally. In the meantime, Karsch et al. [13] concentrated on generating the
predictions which are more consistent in context with the input by copying the depth map
from the training set. This approach, known as non-parametric scene sampling, demands
not only that the entire training set is available at the test, but that the test scenes are similar
to the training scenes. With the rapid development of GPU computing power and the
explosive growth of attainable images, CNN has become a crucial solution for ill-posed
issues recently. Therefore, monocular depth estimation based on deep learning, which is
either a supervised method or semi-supervised and unsupervised method, has attracted
increasing attention as well.

Supervised methods for monocular depth estimation can be categorized into two types:
continuous regression problems and discretized ordinal regression problems. Eigen et al. [14]
originally proposed to use the multi-scale feature information for continuous depth prediction
based on CNN. The network consists of a Global Coarse-Scale Network, which estimates
the depth structure of the whole scene, and a Local Fine-Scale Network for refining details.
This approach does not rely on hand-crafted features and infers the depth value directly from
the original input. Using the idea of multi-scale feature fusion, Eigen et al. [15] designed
three scale networks, two of which performed local refinements. The study stated that the
weights of the depth estimation network can be transferred to normal estimation and semantic
segmentation; it revealed the connection among depth, normal and semantic. Later, end-to-end
supervised learning for monocular depth estimation was developed to combine with the
encoder–decoder structure. In the work of Laina et al. [16], the powerful feature extraction
function of ResNet50 [17] is designed as an encoder and its final full connection layer is
replaced by a decoder, which is composed of upsampling operation and convolution layers.
Other researchers selected MobileNet v2 and DPN-92 as the encoder to reduce the number of
network parameters and pass valid information [18,19]. In addition, Lee et al. [20] designed
local planar guidance layers in the decoder, which guided the decoding of different spatial
resolution feature maps from the encoder to generate the desired depth.

Depth variation in a scene is usually randomly distributed. The prediction of extreme
depth in autonomous driving scenarios is usually quite difficult for both algorithms and
human perception. Therefore, some researchers regard the monocular depth estimation
as an ordinal regression task. Continuous depth is discretized into a large number of
intervals, and pixels are classified into corresponding depth intervals by means of network
learning [21]. Nevertheless, such algorithms have to face problems as follows. Firstly, there
are tight connections between different depth interval categories for the consecutiveness of
depth variation. Furthermore, depth discretization brings about quantization error and
swing for estimated depth. Subsequently, Su et al. [22] proposed a soft-regression model
which regresses by a scaling factor and uses an offset term to adjust the depth estimation
and reduce the quantization error. To achieve fast ordinal classification, Kim et al. [23]
proposed another lightweight structure network L-E Net.

To solve the requirements of the monocular depth estimation on the datasets, some
scholars have begun to study semi-supervised methods. Kuznietsov [24] designed a multi-
loss function that combines the supervised loss term, unsupervised geometric consistency
loss, and a regular term. In addition to using sparse depth information, synthetic data are
involved in the following research papers. Amir et al. [25] proposed using a synthetic image
library to train a monocular depth estimation network. To compensate for the domain gap,
a style transfer network was designed. Zhao et al. [26] proposed a two-way style transfer
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network geometry-aware symmetric domain adaptation (GASDA) with multiple weighted
losses, including bidirectional style transfer loss terms and depth estimation terms. The
training process is cumbersome and puts severe requirements on the training datasets.
Synthetic images are an alternative to real images, but they are still difficult to obtain.
Directed against this problem, Ji et al. [27] proposed a new semi-supervised network
framework, which includes a generator and two discriminators, to train the networks
through a small number of high-quality RGB-D image pairs.

Because there is no need for deep labels, self-supervised learning has attracted the
attention of scholars. According to the input images for training, self-supervised learning
can be categorized into two classes: based on stereo image pairs and based on image
sequences. Algorithms based on stereo image pairs were firstly proposed by Garg et al. [28]
who adopted the encoder–decoder architecture to estimate the inverse depth map and gen-
erated the self-supervised loss by warped stereo views. Not only is a novel idea presented
that does not rely on the ground truth depth during the training process, improvements
on the loss functions and network structures are also developed in this research [28]. The
left–right consistency loss is proposed by Godard et al. [29] to ensure structure similarity
of bidirectional disparities. Following [29], Goldman et al. [30] constructed a Siamese
network to predict bidirectional disparities. Inspired by the idea of the image scale pyra-
mid, Poggi et al. [31] designed PyD-Net for real-time use. In recent years, Ye et al. [32]
introduced a dual-attention module to enhance feature representations. Attention mech-
anism has also been researched to improve the edges of depth maps [33] and general
contextual information [34].

The unsupervised methods based on stereo image pairs simulate the stereo vision
system, utilizing neural network learning, and create a virtual binocular system [35]
through monocular images, while the other type of unsupervised method based on image
sequence simulate the camera movement through multi-frame images. Zhou et al. [36]
proposed an end-to-end approach, where the supervision signal comes from the left and
right adjacent frames, which are warped to the target frame based on the perspective
projection model, and the training cost is computed by comparing the warped frame
with the real target frame. Afterward, some improvements are achieved on this basis. To
encourage the consistence of multi-frames, the three-dimensional geometry loss terms [37]
and the traditional reconstruction loss terms [38] are put forward successively. In the last
two years, there have also been some advances in estimating the depth of occluded and
moving objects. Godard et al. [39] proposed Monodepth2, which estimated accurate depth
for occluded object boundaries using the minimum reprojection loss and ensured camera
motion assumptions through an auto-masking loss filtering out pixels of the dynamic
objects, which move at the same velocity as the camera. Inspired by [39], as for occlusions,
Ramamonjisoa et al. [40] designed a displacement field to resample pixels of occlusion
boundaries. Concerning object motions, structure constraints about the object size [41]
are introduced to model objects in 3D, and a self-discovered mask [42] is designed to
infer moving objects automatically. As for real-time performance, Liu et al. [43] designed
MiniNet with a periodic module to reduce network parameter. Wang et al. [44] designed
a depth normalization layer to handle the generation of smaller depth values, which are
caused by the commonly used smoothness items [29]. Additionally, Yin et al. [45] proposed
the GeoNet, which joins learning of monocular depth, optical flow, and ego-motion with
an adaptive geometric consistency loss.

2.2. Monocular Depth Estimation with Semantics

As mentioned earlier, semantics and depth are the scene understanding of different
patterns, so some scholars are also committed to improving monocular depth estimation
with semantic guidance. Research in this area is mainly developed in the manner of multi-
task learning. Cpolla et al. [46] proposed training networks for semantic segmentation,
depth estimation, and instance segmentation jointly. Ramirez et al. [47] proposed adding a
supervised semantic segmentation decoder so that the encoder can learn features that are
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conducive to semantics. Mousavian et al. [48] used a fully connected CRF to capture the
contextual relationship between semantic cues and depth cues to improve the accuracy of
the final result. These methods put strict requirements on the training sets, requiring the
input image to have a multitude of different types. For the joint tasks of semantic segmen-
tation and depth estimation, both depth labels and pixel-by-pixel semantic annotations are
necessary. However, there are very few large public databases that meet this requirement.
To solve this very problem, Nekrasov et al. [49] proposed using the expert system trained
on other semantic corpus to perform semantic segmentation on the datasets with depth
labels in order to balance the number of annotations. Additionally, Yue et al. [50] proposed
the semantic monocular depth estimation network SE-Net, which includes one part for
estimating the preliminary depth map and another part for estimating a semantic weight
map, which aims to adjust the preliminary prediction and construct a final depth map. The
two parts are trained on the different datasets, and the result of semantic segmentation is
used as a post-process step for depth map optimization. The above shows that methods
with semantic supports are trapped in the dilemma of severe requirements on datasets that
semantic annotations and corresponding depth labels are necessary simultaneously.

In this paper, based on the encoder–decoder structure, we propose a dual-branch
framework which fuses semantic features into the monocular depth estimation network
without requiring the ground truth depth. Compared to existing methods, we train the
network through a TSTB strategy based on two different datasets with a similar theme to
overcome the limitation of datasets, which effectively avoids the data acquisition dilemma.

3. Methodology

In this section, we introduce the framework and training strategy of SFA-MDEN,
which predicts the depth from a single image with semantic guidance.

3.1. Framework and Training Strategy

As mentioned previously, monocular depth estimation with semantic optimization
demands semantic corpus and stereo pair sets in a large public dataset, which is unap-
proachable. Fortunately, there are available training datasets for depth prediction and
semantic segmentation, respectively. SFA-MDEN is designed to implicitly couple semantic
features into depth estimation without requiring two correspondent annotations (stereo
image pairs are also thought of as depth annotations in a sense).

The backbone of SFA-MDEN consists of an unsupervised monocular depth estimation
network DepthNet and a supervised semantic segmentation network SemanticsNet, as
shown in Figure 1a,b. Both networks adopt the encoder–decoder architecture with long-
skip connections as the backbone. Depth differs from semantics, but there exists an implicit
and tight interplay between them. Adjacent pixels are segmented to different semantic
areas, which often means that occlusion, lighting changes, etc., have occurred, and usually
result in a significant fluctuation in depth. Adjacent pixels segmented to the same semantic
areas represent a single object, of which the depth usually varies continuously. Feature
maps from the SemanticsNet reflect the depth fluctuation from another view. Therefore,
we merge the corresponding scale feature maps in the dual branches and decode them to
construct the final depth map, as shown in Figure 1c.

Aiming to break the limitation that the input image is required to have a multitude of
different types of annotations, a Two-Stages for Two Branches (TBTS) training strategy is
designed, which trains the branches independently and incorporates the two branches into
a single network. In our SFA-MDEN, the DepthNet and SemanticsNet are the two branches.
In Stage 1, DepthNet and SemanticsNet are trained separately using different datasets. For
DepthNet, we use the KITTI datasets for training to obtain the initial weight of DepthNet
in Stage 2. For SemanticsNet, the CityScapes [51] corpus is used to enable the Semantics
Encoder to extract multi-scale semantic features. In Stage 2, semantic feature maps and
depth feature maps in the corresponding scale are cascaded in the channel dimension.
The details of the networks are introduced in Section 3.2. The parameters of Semantics
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Encoder are frozen and can extract semantic features from different scales. Semantics
Decoder and DepthNet employ the parameters obtained in Stage 1 as the initial weights,
and are trained on the KITTI datasets to achieve monocular depth estimation combined
with semantic features.
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Figure 1. Overview of SFA-MDEN. The symbol RGB~P(depth) means that the input RGB image is
required to have depth annotations for training. Similarly, RGB~P(semantics) means the requirement
of semantics labels. (a) DepthNet: an unsupervised network to predict depth map as the main branch
of SFA-MDEN, (b) SemanticsNet: a network for semantic segmentation to generate multi-resolution
semantic feature maps for SFA-MDEN, (c) The overall framework of SFA-MDEN

Based on the TSTB training strategy, our SFA-MDEN has achieved monocular depth
estimation based on the stereo sets of KITTI and semantic corpus of Cityscapes.
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3.2. Network Architectures

Theoretically, the architecture of SFA-MDEN can be applied to any encoder–decoder
structure. In this work, Light-Weight RefineNet [52] is adopted as the backbone. Addi-
tionally, ResNet50 without the fully connected layer is applied as the encoders. The main
architecture of SFA-MDEN is shown in Figure 2. The input image is fed into Depth Encoder
and Semantics Encoder separately. The two encoders, which are composed of ResBlocks
from ResNet50, extract feature maps with four different resolutions, including 1/4, 1/8,
1/16, and 1/32, with the baseline of the input image. The detailed structures of partial
modules are presented in the form of a legend, and the important modules are illustrated
in Figure 3.

Depth–Semantics-Fusion (DSF) unit. The DSF unit, as shown by the dash-dotted
line in Figure 2, achieves the fusion between different types of feature maps with the same
resolution, with detailed structure in Figure 3a. The semantic feature maps generated
by the Semantics Encoder are fine-tuned through an adaptive convolution operation for
the monocular depth estimation task. The adaptive semantic features differ from depth
features in geometric expression. Therefore, concatenation in channel dimension is adopted
for the feature map fusion. BatchNorm layer is introduced to adjust the distribution of
concatenated feature maps to avoid gradient vanishing and exploding. After the activation
operation of ReLU, the feature group passes a convolution and the two types of features
are fused to hunt for the new features.

Multi-Resolution Feature Fusion (MRFF) unit. The MRFF unit is employed to fuse
the same type of features with different resolutions, as shown by the dotted line in Figure 2.
The detailed structure is illustrated in Figure 3b. The lower resolution feature maps
are bilinear, interpolated to be consistent with the higher resolution. The same type of
feature maps in the corresponding channel are similar in geometric structure, and feature
combination is carried out by adding items in an element-wise manner. After the feature
maps are fused and activated, the feature map content of each channel increases.

Chained Residual Pooling (CRP) unit. The CRP unit [46] is established as a chain
of pooling sub-blocks, each of which contains a max-pooling layer and a convolution
operation, as denoted in Figure 3c. For each pooling sub-block, the output of previous
blocks is taken as the input. Therefore, the CRP unit could pool features with multiple
window sizes and fuse them together via the manner of element adding. Thus, it can
capture information from a large region of the fused features and promote decoding.

3.3. Loss Function

Our SFA-MDEN is trained through the bidirectional loss items on four scales, in-
cluding full, half, quarter, and eighth resolution. The bidirectional disparities contain the
disparity from right to left view, denoted with superscript l, and the disparity from left
to right view, denoted with the superscript r. The bidirectional loss on a single scale s
consists of three weighted contributions as defined in Equation (1). The loss items are
computed based on the bidirectional disparities. k denotes the corresponding weight with
kre = 1, kds = 0.1, klr = 1. Additionally, the loss function of DepthNet is the same.

Ls = kre(Ll
re + Lr

re) + kds(Ll
ds + Lr

ds) + klr · (Ll
lr + Lr

lr), s = 1, 2, 3, 4 (1)

The first term, defined as Equation (2), denotes the image reconstruction error by
computing the difference between the original left view Il and the warped image Ĩl . N in
Equations (2)–(4) denotes the number of pixels with valid depths.

Ll
re =

1
N ∑

i,j

τ

2
[1− SSIM(Il

i,j, Ĩl
i,j)] + (1− τ)‖Il

i,j − Ĩl
i,j‖ (2)
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The disparity smoothness term, as (3), is deployed to encourage the gradient variation
of the estimated disparity to approximate that of the input image. δx and δy represent the
image gradients along the width and the height, and d denotes the estimated disparity in
Equations (3) and (4). The gradient discontinuity loss is decayed by an exponential weight
when corresponding discontinuity occurs on the input.

Ll
ds =

1
N ∑

i,j

∣∣∣δxdl
i,j

∣∣∣e−‖δx Il
i,j‖+

∣∣∣δydl
i,j

∣∣∣e−‖δy Il
i,j‖ (3)

The last term encourages the consistency of the predicted bidirectional disparities,
defined as Equation (4). A warped left-view disparity, constructed by projecting the
right-view disparity, is encouraged to be coherent with the estimated left-view disparity.

Ll
lr =

1
N

∣∣∣∣dl
i,j − dr

i,j+dl
i,j

∣∣∣∣ (4)

As for the training of SemanticsNet, we use the CrossEntropyLoss function, as defined
in Equation (5). M denotes the number of categories, yc is the one-hot vector to indicate
the ground truth, while pc is the probability that the sample falls into the category c.

Lsemantics = −
M

∑
m=1

yc log(pc) (5)

4. Experiments and Analysis

In this section, we compare our SFA-MDEN with existing supervised methods, self-
supervised methods, and methods with semantic assistance. We consider two datasets
for training, KITTI and Cityscapes. To evaluate our models, we test on the KITTI eigen
split and analyze the performance of the model. In particular, to evaluate the estimation
quality of relative location between pixels, two metrics, named Scale Invariant Error (SIE)
and Absolute Relative Error of Relative Depth (ARERD), are computed. Meanwhile, we
test the model directly on the Make3D datasets without any fine-tuning to validate the
generalization performance of SFA-MDEN. Finally, a self-made dataset BHDE-v1 is applied
to further evaluate the generalization ability and robustness of SFA-MDEN.

4.1. Implementation Details and Metrics

According to the TSTB training strategy, the training process is divided into two stages.
In Stage 1, we train the DepthNet and SemanticsNet on different datasets, respectively. For
DepthNet, we split the dataset as Eigen et al. [14] to compare with existing works. There are
61 scenes in total, divided into a test split of 20 scenes containing 697 image pairs, a training
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set of 22,600 image pairs, and the validation set of the remaining 888 image pairs from
the remaining 32 scenes. We use the Adam optimizer with the hyper-parameter β1 = 0.9,
β2 = 0.999, and ε = 10−8 with learning rate α = 0.0001 and a batch size of 4. We flip the
input images with a chance of 50% and add color augmentation for data augmentation.
The corpus of Cityscapes is applied to train the supervised. SemanticsNet. The corpus
consists of 5000 high-resolution images with 19 categories of fine semantic annotations
from 50 cities. The training set includes 2975 images, with another 500 for validation, and
the remaining 1525 for test. We select the mini-batch SGD with a momentum parameter of
0.9 and the initial learning rate of 10−4 as the optimizer. Random crop, random mirror, and
random scaling are applied to augment the training set. Stage 2 is the training of the overall
SFA-MDEN. Only the training set of KITTI is used. The hyper-parameters are almost the
same as the DepthNet in Stage 1. The learning rate is set as 10−4 for the first 30 epochs, and
is halved every 10 epochs thereafter. The proposed SFA-MDEN is trained on a computer
configured as: 2.20 GHz × 8, Intel(R) Core (TM) i7-8750H CPU, and a single GeForce RTX
2080 Mobile GPU card with 8GB RAM.

Similar to previous works, we adopt four error metrics and three accuracy metrics to
evaluate the models firstly, as follows:

• Absolute relative error: AbsRel = 1
N

N
∑

i=1

|D̂i−Di|
Di

• Square relative error: SqRel = 1
N

N
∑

i=1

|Di−D̂i|2
Di

• Linear root-mean-squared error: RMSE(linear) =

√
1
N

N
∑

i=1

∣∣D̂i − Di
∣∣2

• Logarithm root-mean-squared error: RMSE(log) =

√
1
N

N
∑

i=1

∣∣log D̂i − log Di
∣∣2

• Threshold accuracy (%correct): δ = max(Di
D̂i

, D̂i
Di
) < T (T is the threshold and can be

assigned as 1.25, 1.252, 1.253)

where D̂i denotes the predicted depth, Di denotes the ground truth depth, the subscripts i
and j are the pixel index, and N represents the total number of valid pixels.

The aforementioned four error metrics assess the accuracy of the predicted depth for
merely a single pixel but, in some application scenarios, the accuracy of the relative depth
between pixels is given more attention, for instance, the detection system for the landing
site of an unmanned aerial vehicle (UAV). Therefore, we also employ SIE, as shown in (6),
which was designed as a loss function by Eigen et al. [14], to evaluate the performance of
our network. SIE represents the mean square error of the relative depth between each pair
of pixels in log domain. n represents the number of point pairs.

SIE =
1
n∑

i,j
((log D̂i − log D̂j)− (log Di − log Dj))

2 (6)

Inspired by SIE, we design another metric ARERD, as shown in (7), which refers to
the relative error of the point-pair distance directly.

ARERD =
1
n∑

i,j

∣∣D̂i − D̂j
∣∣− ∣∣Di − Dj

∣∣∣∣Di − Dj
∣∣ (7)

4.2. Eigen Split of KITTI

We compare the performance of the proposed SFA-MDEN with existing monocular
depth estimation algorithms. For accuracy evaluation, ground truth depth values are
generated sparsely by reprojecting 3D points from Velodyne laser into the left input color
camera. To weaken the threats caused by the rotation of the Velodyne, the motion of the
vehicle, and the surrounding objects, along with occlusions, the cropping scheme proposed
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by [14] is adopted, which contains approximately 58% in height and 93% in width of
the image.

Table 1 shows the comparison results with the supervised methods [12,14], the unsu-
pervised methods [28,29,36,37,45,50], and the estimation methods related to semantics [50]
at 80 m and 50 m caps. First, our algorithm has achieved a clear improvement compared to
the most listed supervised and unsupervised methods in all metrics under both depth caps,
except Yue et al. [50]. The reason is that Yue et al. [50] established a semantic weight map to
optimize the estimated depth map, which takes advantage of semantic information as well.
Even so, there is a narrow margin between our SFA-MDEN and Yue et al. [50] in metrics of
Sq Rel, RMSE log, and δ < 1.253. Furthermore, the Abs Rel of SFA-MDEN is 0.023 smaller,
the RMSE of SFA-MDEN is 0.135 m smaller, and the threshold accuracy δ < 1.25 is 2.9%
higher compared to Yue et al. [50]. Second, SFA-MDEN achieves considerable advances
by merging the feature maps from SemanticsNet compared to the original DepthNet. All
error metrics have been prominently reduced. Not only is Abs Rel declined by 16.67%, but
Sq Rel is also decreased by 6.25%. Moreover, RMSE and RMSE log are decreased by 7.54%
and 9.24%, respectively. The three metrics of threshold accuracy are increased by about
1%. The effectiveness of semantic features for monocular depth estimation is demonstrated
and the validity of SFA-MDEN can be supported powerfully.

In addition to the quantitative comparison, some qualitative samples are exhibited in
Figure 4. The results of our SFA-MDEN are compared to Godard et al. [29] and DepthNet.
According to the samples, the depth variation of the same object is more continuous, such
as building surfaces with windows in outputs of SFA-MDEN. Furthermore, the depth
variation of the object boundaries is more evident for our method. As shown in Figure 4,
outlines of vehicles and road signs and are sharper and more plausible.

In addition to comparison with above methods, to illustrate the competitiveness
of SFA-MDEN, we compare our method with other models with semantic guidance, as
shown in Table 2. It should be noted that the training set and test set of these methods
are not the same. First, Nekrasov et al. [49] use a teacher network to annotate semantic
labels of KITTI to pretrain the target model. They have achieved outstanding results on
the 46 test images of KITTI-6 on RMSE and RMSE log, even compared with methods in
Table 1, which demonstrate the superiority of the semantic guide. Nevertheless, the expert
systems can affect the accuracy of the model greatly and the whole process is tedious.
Our SFA-MDEN does not depend on other models. Second, Ramirez et al. [47] pretrained
their network on Cityscapes with about 3000 finely semantically annotated stereo images,
fine-tuned the network on 160 stereo images with semantic labels of KITTI 2015, and tested
on another 40 images. Observably, the model performs poorly due to the small dataset.
We have compared Yue et al. [50] with our model quantitatively in Table 1. According to
Table 2, generally speaking, SFA-MDEN performs the best estimation in the metric Abs
Rel and δ < 1.252. Moreover, our model ranks second in Sq Rel and RMSE. Although
SFA-MDEN comes last in RMSE log and δ < 1.253, there is a narrow margin between these
methods. In conclusion, our method has achieved a competitive performance compared to
the state-of-the-art methods with semantic auxiliary.

We can evaluate the models through diverse metrics and, in practice, we select the
network according to the application. As previously mentioned, in certain application
scenarios, such as the detection system for the landing site of UAVs, the precision of relative
depth estimation accuracy between point pairs is of more concern. Therefore, the metrics
of SIE and ARERD defined in Equations (6) and (7) are used to evaluate the models, as
shown in Table 3. The model from Godard et al. [29] and DepthNet are selected to compare
with SFA-MDEN due to their comparable performance on most metrics, as seen in Table 1.
According to Table 3, our SFA-MDEN has achieved superior performance compared to the
other two. Compared to DepthNet without the semantic information, SFA-MDEN achieves
a decrease of 18.64% on the metric SIE and a decrease of 14.95% on the metric ARERD. We
conclude that, after merging the semantic information into depth estimation, the accuracy
of the positional relationship between pixels has been improved.
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Table 1. Monocular depth estimation evaluation using the split of Eigen et al. [14] on the KITTI dataset [9]. For datasets, K = KITTI, and CS = Cityscapes, CS + K means that the model is
pretrained on the Cityscapes and finetuned on the KITTI. For methods with semantics, the dataset for semantic segmentation training is in brackets. We highlight the best results with the
underline in each depth cap. The results of Garg et al. [28] are only capped at 50 m.

Method Supervision Semantics Datasets Cap (m)
Error Metrics Accuracy Metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [14] Depth No K 80 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. Fine [14] Depth No K 80 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [12] Depth No K 80 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Yin et al. [45] Sequence No K 80 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Zhou et al. [36] Sequence No K 80 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Zhou et al. [36] Sequence No CS + K 80 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Mahjourian et al. [37] Sequence No CS + K 80 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Godard et al. [29] Stereo No K 80 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Yue et al. [50] Stereo Yes (CS) K 80 0.143 1.034 5.505 0.219 0.809 0.937 0.977
DepthNet only Stereo No K 80 0.144 1.168 5.808 0.249 0.828 0.930 0.963

SFA-MDEN Stereo Yes (CS) K 80 0.120 1.095 5.370 0.226 0.838 0.939 0.972

Zhou et al. [33] Sequence No CS + K 50 0.190 1.436 4.975 0.258 0.735 0.915 0.968
Mahjourian et al. [37] Sequence No CS + K 50 0.151 0.949 4.383 0.227 0.802 0.945 0.974

Yin et al. [45] Sequence No K 50 0.147 0.936 4.348 0.218 0.810 0.941 0.977
Garg et al. [28] Stereo No K 50 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al. [29] Stereo No K 50 0.140 0.976 4.471 0.232 0.818 0.931 0.969
Yue et al. [50] Stereo Yes (CS) K 50 0.137 0.792 4.158 0.205 0.826 0.947 0.981

DepthNet only Stereo No K 50 0.140 1.010 4.724 0.239 0.812 0.925 0.966
SFA-MDEN Stereo Yes (CS) K 50 0.116 0.956 4.361 0.217 0.848 0.948 0.974
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Figure 4. Qualitative samples on the Eigen split of KITTI. (a) The input RGB images, (b) ground truth depth maps,
(c) outputs of Godard et al. [31], (d) outputs of DepthNet, (e) outputs of the proposed SFA-MDEN. Our method achieves the
plausible estimation quality on the surfaces and boundaries.

Table 2. Comparison between monocular depth estimation methods with semantic auxiliary and SFA-MDEN. For datasets,
K = KITTI, CS = Cityscapes, K-6 = KITTI-6, and K (200) denotes the 200 images Ramirez et al. [50] used in KITTI. We
highlight the best results with an underline. Nekrasov et al. [43] only reported the evaluation metrics of RMSE and
RMSE log.

Method Supervision Datasets Cap
Error Metrics Accuracy Metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Nekrasov et al. [43] Depth K-6, K, CS 80 m - - 3.453 0.182 - - -
Ramirez et al. [40] Stereo CS, K (200) 80 m 0.143 2.161 6.526 0.222 0.850 0.939 0.972

Yue et al. [44] Sequence K, CS 80 m 0.143 1.034 5.505 0.219 0.809 0.937 0.977
SFA-MDEN Stereo K, CS 80 m 0.120 1.095 5.370 0.226 0.838 0.939 0.972

Table 3. Evaluation on the metrics of SIE and ARERD. We highlight the best results with an underline.

Method SIE ARERD

Godard et al. 0.051 0.0855
DepthNet only 0.059 0.0642

SFA-MDEN 0.048 0.0546

The UAV landing system not only demands the accuracy of relative depth, but requires
different accuracy with different working height according to the user guide of DJI UAV [53].
According to the user guide, there are four working depth intervals which are (0, 20],
(10, 30], (30, 60], (60, 80]. Therefore, we evaluate the precision of pixels in the depth
intervals and visualize the results as Figure 5. As shown in Figure 5, firstly, most trends
in the metrics indicate that, as the depth increases, the prediction accuracy decreases.
Secondly, Abs Rel shows a downward trend in the last two intervals. It can be interpreted
that Abs Rel is defined as the absolute error divided by the ground truth depth value, and
the absolute error of the estimation does not increase as much as the ground truth with the
depth getting higher. Thirdly, SIE also shows a downward trend in the last two intervals.
The reason can be explained as the large depth changes slower in the logarithmic domain,
so the relative distance between the point pairs is smaller and the SIE is reduced.
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Figure 5. Quantitative comparison depth estimation precision in different depth ranges of the SFA-MDEN. (a) Abs Rel,
(b) Sq Rel, (c) RMSE, (d) RMSE log, (e) ARERD, (f) accuracy metrics (δ < 1.25, δ < 1.252, δ < 1.253), and (g) SIE.

4.3. Make3D

Experiments on KITTI have indicated the estimation performance of SFA-MDEN.
To evaluate the generalization of our SFA-MDEN, we compare it to other methods on
the Make3D test set [10], which contains 134 images and the corresponding depth maps.
Although our SFA-MDEN is trained on the KITTI and Cityscapes and is directly tested
at a center crop of 2 × 1 ratio as [29] on the Make3D dataset, we still achieve comparable
results, as shown in Table 4. First, we almost outperform all unsupervised methods, which
illustrates the superiority of our SFA-MDEN. Second, compared to supervised methods
which are trained with the ground truth depth of Make3D, the results of our SFA-MDEN
without fine-tuning on the Make3D set are still comparable. Experimental results on
the Make3D set show the strong generalization capacity of our SFA-MDEN even if it is
applied to a different domain directly without fine-tuning. Qualitative results can be seen
in Figure 6.

Table 4. Monocular depth estimation evaluation on the Make3D dataset. We highlight the best results with an underline,
and bold numbers rank second in each metric.

Method Supervision Sq Rel Abs Rel RMSE Log10

Karsch et al. [13] Depth 4.894 0.417 8.172 0.144
Liu et al. [12] Depth 6.625 0.462 9.972 0.161

Laina et al. [16] Depth 1.840 0.204 5.683 0.084
Zhou et al. [36] Sequence 5.321 0.383 10.470 0.478

Godard et al. [29] Stereo 11.990 0.535 11.513 0.156
Wang et al. [44] Stereo 4.720 0.387 8.090 0.204

SFA-MDEN Stereo 4.181 0.402 6.497 0.158

4.4. Self-Made Datasets: BHDE-v1

In addition to the above public datasets, we captured a small dataset BHDE-v1 of,
in total, 140 frames of images with the resolution of 1920× 1080 in order to validate the
generalization capacity of our SFA-MDEN. An image example is illustrated in Figure 7.
The captured subject of the dataset is the plain land as the area in the red rectangle window
dropping out the protrusions. We obtain the depth value from the camera to the plain
land, which is 21.678 m, through the laser rangefinder GLM80. The measurement error
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of GLM80 is ±1.5 mm in the measurement range of 80 m, which is much less than that of
the estimation from models. Thus, the measured depth can be viewed as the ground truth.
Areas in the green rectangle windows are from the surrounding buildings with continuous
depth, which we have not annotated.
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SFA-MDEN and the model from Godard et al. [29], which performs well on the Eigen
split of KITTI, are tested without fine-tuning on the BHDE-v1 dataset. Table 5 presents the
quantitative results and Figure 8 illustrates the qualitative samples. As can be seen, the
precision metrics of our SFA-MDEN are superior to Godard et al. [29], with a depth range
of about 20 m. Moreover, SFA-MDEN indicates stronger robustness to the shadows and
illumination, as shown in Figure 8. As for the floor gaps in the input image, the output of
Godard et al. [29] shows significant depth changes, while our SFA-MDEN performs more
robustly. In conclusion, our SFA-MDEN is verified to achieve better generalization and
powerful robustness on different datasets.
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Table 5. Monocular depth estimation evaluation on the BHDE-v1 of SFA-MDEN and the model in Godard et al. [29].

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SFA-MDEN 0.142 0.562 3.266 0.167 0.775 0.959 0.980
Godard et al. 0.240 1.822 5.738 0.310 0.489 0.791 0.917
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5. Conclusions and Discussion

Monocular depth estimation based on deep learning achieves higher flexibility com-
pared to binocular systems, which promotes the application of lightweight vision sensors.
In this paper, inspired by multi-task training, a novel network architecture abbreviated as
SFA-MDEN, which merges semantics-related features into the monocular depth estimation
network, is proposed to predict the depth map for preferable precision, robustness, and
generalization capacity. A Two-Stages for Two Branches training strategy is designed
to train the SFA-MDEN on two large public datasets, KITTI for depth estimation and
Cityscapes for semantic segmentation. In Stage 1, two branches are trained independently
based on respective datasets, with the unsupervised DepthNet trained on the stereo sets of
KITTI and the supervised SemanticsNet trained on the corpus of Cityscapes. In Stage 2,
the SFA-MDEN is constructed by the feature fusion between semantics and depth and is
trained on the stereo sets of KITTI, with the pretrained parameters of Stage 1 as the initial
weights. At inference, the semantic features are extracted by the SemanticsNet branch and
delivered to fuse with the depth feature extracted by the DepthNet branch. Experiment
comparisons on the Eigen split of KITTI demonstrate the superiority of our proposed
SFA-MDEN, even compared to existing methods with semantic auxiliary. Additionally,
experiments on Make3D datasets have exhibited the generalization of SFA-MDEN, which
is tested without fine-tuning, and experiments on our self-made datasets BHDE-v1 validate
the robustness against the variation of shadow and illumination.

In future work, the relation between semantics and depth could be exploited further.
Additionally, the loss function on account of traditional image reconstruction constraints is
worthy of attention. Our future work will focus on improving the unsupervised monocular
depth estimation with the semantic guidance in a lightweight network structure.
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