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Background: Intracranial aneurysm (IA) is the most common and is the main cause of spontaneous subarachnoid hemorrhage (SAH).
The underlying molecular mechanisms for preventing IA progression have not been fully identified. Our research aimed to identify the
key genes and critical pathways of IA through gene co-expression networks.
Methods: Gene Expression Omnibus (GEO) datasets GSE13353, GSE54083 and GSE75436 were used in the study. The genetic data
were analyzed by weighted gene co-expression network analysis (WGCNA). Then the clinically significant modules were identified
and the differentially expressed genes (DEGs) with the genes were intersected in these modules. GO (gene ontology) and KEGG
(Kyoto Gene and Genomic Encyclopedia) were used for gene enrichment analysis to determine the function or pathway. In addition,
the composition of immune cells was analyzed by CIBERSORT algorithm. Finally, the hub genes and key genes were identified by
GSE122897.
Results: A total of 266 DEGs and two modules with clinical significance were identified. The inflammatory response and immune
response were identified by GO and KEGG. CCR5, CCL4, CCL20, and FPR3 were the key genes in the module correlated with IA.
The proportions of infiltrating immune cells in IA and normal tissues were different, especially in terms of macrophages and mast
cells.
Conclusion: The chemotactic system has been identified as a key pathway of IA, and interacting macrophages may regulate this
pathological process.
Keywords: intracranial aneurysm, IA, weighted gene co-expression network analysis, WGCNA, Gene Expression Omnibus, GEO,
chemotaxis, immune infiltration

Introduction
Cardiovascular disease is still the leading cause of death worldwide. Among cardiovascular diseases, aneurysm is not as
widely known and has been studied less well than coronary heart disease, but the serious consequences of aneurysm
cannot be underestimated. An aneurysm is an abnormal bulge or swelling in an arterial blood vessel. The underlying
disease progression involves weakening of the arterial wall, leading to the risk of progressive expansion or even rupture
of the aneurysm.1,2 Intracranial aneurysm (IA) develops in the cerebral artery and is characterized by local dilation of the
cerebral artery.3 Saccular aneurysm is the most common, and is the main cause of spontaneous subarachnoid hemorrhage
(SAH).4 Multifactorial pathophysiological changes after SAH usually lead to irreversible brain damage, and cause a high
incidence of medical complications and mortality.5–7 Individuals affected by SAH are younger than those affected by
other forms of stroke, with an average age of 50 years,8,9 and survivors often experience dysfunction and/or cognitive
impairment for a long time.10,11
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Despite numerous studies over the past several decades, the pathophysiological mechanisms underlying the forma-
tion, development, and rupture of aneurysms have yet to be fully elucidated, hindering optimal treatment.12–14 The
pathological features of IA are considered to be due to the destruction of extracellular matrix (ECM), leading to damage
to the structural integrity of the arteries.15,16 Inflammation is considered to be a core response throughout the occurrence
and development of disease.17,18 The complex inflammatory response involves a series of pathological processes,
including matrix metalloproteinase (MMP) activation, vascular smooth muscle cell (VSMC) apoptosis, macrophage
infiltration, and activation of intracellular oxidative stress.19–22 Macrophages infiltrate the arterial wall due to the actions
of inflammatory chemokines.23 Macrophages express and release MMPs, destroying the ECM of the arterial wall, which
in turn leads to the recruitment of other inflammatory cells, aggravating the degeneration and weakening of the arterial
wall, and ultimately leading to the formation and growth of aneurysms.17,23,24 These data indicate the critical role of
immune and inflammatory processes in the formation and development of IA.

With advances in microarrays, high-throughput sequencing, and bioinformatics analysis, the transcriptome changes
and molecular mechanisms of many diseases can be readily determined. Through in-depth analysis of differentially
expressed genes (DEGs) between different samples, such as using GO (gene ontology) and KEGG (Kyoto Gene and
Genomic Encyclopedia) to analyze the functions or pathways enriched by DEGs, using protein–protein interactions (PPI)
to predict the interaction between proteins, using CIBERSORT to study the degree of immune cell infiltration, and its
like, which enable us to a more comprehensive and profound understanding of the disease.25–27 By constructing a scale-
free weighted network, weighted gene co-expression network analysis (WGCNA) can be used to study biologically
significant gene sets related to sample characteristics, and explore the core genes of internal modules that are closely
related in co-expression modules.28,29 In this study, the microarray data of IA patients and normal arteries from public
databases were examined by WGCNA to identify important modules closely related to IA, which may provide a better
understanding of the molecular mechanisms underlying IA.

Methods
Data Collection and Preprocessing
This study was performed using transcriptome data of IA patients available from a public database (Gene Expression
Omnibus, [GEO], https://www.ncbi.nlm.nih.gov/geo/). Datasets related to IA—GSE13353, GSE54083, and GSE75436—
were included in the analysis and downloaded from the GEO database. The three datasets contained a total of 72 samples,
including 25 normal samples and 47 IA samples. The raw data were processed by the RMA (Robust Multi-Array
Average) method in the affy (version 1.70.0) R package.30 The missing values were filled using the impute (version
1.66.0) R package. After merging the three datasets, the batch effects were removed by limma (version 3.48.1) and sva
(version 3.40.0) R packages.31,32 Additionally, approval for this study was obtained from the Ethics Committee of the
First Affiliated Hospital of Nanchang University. The workflow of the present study was in Figure 1.

Differentially Expressed Gene Analysis
After the above processing of the datasets, we used the limma (version 3.48.1) R package to filter the DEGs between the
IA and normal samples.31 The threshold values were set as adjusted, p < 0.05 and |log2FC| > 1.5. Thermogram analysis of
DEGs was conducted using the pheatmap (version 1.0.12) R package.33

Functional and Pathway Enrichment Analyses and Principal Component Analysis
GO annotation contains three categories, ie, biological process (BP), cell component (CC), and molecular function (MF),
which can be used to identify the biological attributes of genes and gene sets for all organisms.34 The KEGG is
a comprehensive database integrating information on genome, chemistry, and system function.35 The KEGG database
associates the gene catalogs obtained from completely sequenced genomes with the system functions at the cell, species,
and ecosystem levels. To explore the biological functions of the candidate gene modules, the online tool, WebGestalt
(version 6.8, http://www.webgestalt.org/), was used for GO and KEGG enrichment analyses, for the genome protein-
coding was used as reference set.36 In the analyses, p < 0.05 was taken to indicate significant enrichment of DEGs. The
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results of the analyses were downloaded from the web and the figures of enrichment analyses were drawn using the
ggplot2 (version 3.3.5) and dplyr (version 1.0.7) R packages.37 Principal component analysis (PCA) is a multivariate
statistical method to examine the correlations between multiple variables.38 By deriving a few principal components from
the original variables, they retained as much information about the original variables as possible and were not related to
each other. PCAwas conducted on the all genes set and DEGs subset to identify differences in the transcriptome patterns
between the IA and normal samples.

Co-Expression Network Construction by Weighted Gene Co-Expression Network
Analysis
The WGCNA (version 1.70–3) R package was used to construct the weighted gene co-expression network.29 Genes with
the top 25% variance were selected for the subsequent analysis step. The soft power threshold β was determined by the
“pickSoftThreshold” function and the screening criterion of β was an R2 of scale-free fit > 0.85. Topological overlap
measure (TOM) matrices were obtained from adjacency matrices to detect gene modules of the co-expression networks.
Based on the TOM matrices, the average linkage hierarchical clustering method was used to construct clustering
dendrograms with a minimum module size of 50. Similar gene modules were merged, with a threshold of 0.25. The

Figure 1 Work flow chart of this study.
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expression profiles of each module were summarized using the eigengene (ME) module and the correlation between the
module and clinical status was calculated. The Pearson’s correlation and Student’s asymptotic p-value were calculated by
the relative functions in the WGCNA (version 1.70–3) R package.29 Key modules will be detected and further analyzed
for GO, KEGG and protein–protein interactions (PPI).

Hub Gene Identification and Receiver Operating Characteristic Curve Analysis
The online tool, String (version 11.0, https://string-db.org/), which is designed for predicting protein–protein interactions
(PPI) based on the evidence of experiments and database information, was used to construct a PPI network of all the
DEGs and DEGs overlapped with the WGCNA modules.39 Cytoscape software (version 3.8.2) was used for further
analysis of PPI networks and hub gene selection.40 The top 10 hub genes in DEGs and each module were selected with
the maximal clique centrality (MCC) method using the cytoHubba plugin in Cytoscape.41 The genes with the top 10
MCC values were considered hub genes and visualized together with their connected nodes. Hub genes were used to
conduct receiver operating characteristic (ROC) curve analysis with GraphPad software (version 8.0) to show the
potential diagnostic value of these genes. Hub genes were validated using the GSE122897 dataset.

Evaluation of Aneurysm-Infiltrating Immune Cells
CIBERSORT is a deconvolution algorithm based on gene expression, which can accurately quantify the relative levels of
different immune cell types in a complex gene expression mixture through a set of barcode gene expression values.42 The
analysis of infiltrating immune cells on the genes set was carried out using R (version 4.1.0) and the signature genes of 22
types of infiltrating immune cells (LM22 (22 immune cell types)) and CIBERSORT software source code in R were
downloaded from CIBERSORT (https://cibersort.stanford.edu/). A filter to remove samples with p > 0.05 from the data
was deployed to ensure accurate prediction of the samples. After data processing, three normal and 24 IA samples were
included in the follow-up analysis.

Statistical Analysis
Data preprocessing, DEG screening, WGCNA, and immune cell infiltration analysis were performed in R (version 4.1.0).
Functional annotation analysis was performed by WebGestalt (version 6.8, http://www.webgestalt.org/). PPI network
analyses were conducted using String (version 11.0, https://string-db.org/). Hub genes were mined using MCC with
CytoHubba in Cytoscape (version 3.8.2). The ROC curves were drawn with GraphPad (version 8.0). In all analyses, p <
0.05 was taken to indicate statistical significance.

Results
DEGs and Related Pathways
According to the adjusted p < 0.05 and |log2FC| > 1.5, we screened 266 DEGs, of which 162 were upregulated and 104
were downregulated in the IA group compared to the normal group (Figure 2A and B). The top 10 DEGs based on fold
change are shown in Table 1 (information for all DEGs is listed in Table S1). To investigate the biological functions of
these DEGs, we performed enrichment analysis on GO-BP (Figure 2C) and KEGG (Figure 2D) gene sets (GO-BP and
KEGG IDs and further detailed information are provided in Table S2, GO-CC and GO-MF are provided in Figure S4A
and B). The results of GO-BP enrichment analysis indicated that inflammatory response, defense response, immune
response, and leukocyte activation were significantly enriched, suggesting that immune processes may play essential
roles in IA formation and development. Correspondingly, KEGG pathway enrichment analysis suggested that the
chemokine signaling pathway, Toll-like receptor signaling pathway, and complement and coagulation cascades may
participate in the IA process.

Principal Component Analysis
PCA was performed on the overall genes and DEGs to determine the expression patterns in IA compared to normal
samples. According to PCA on all genes, PC1 and PC2 accounted for 52.1% and 7.7% of gene expression value
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variation, respectively (Figure S1A, Table S3). The variation proportions of PC1 and PC2 were 44.9% and 20.2%,
respectively, in PCA of the DEGs (Figure S1B, Table S3). In addition, the PCA visualization graphs illustrated that there
was indeed a difference between the IA and normal groups (Figures 3A, B, S1C and D).

Weighted Gene Co-Expression Network Construction
WGCNA was performed on 25 normal samples and 47 IA samples. The sample clustering dendrograms are shown in
Figure 4A and all samples were located in the clusters and passed the cutoff thresholds. A scale-free network was
constructed with a soft threshold of 7 and a correlation coefficient threshold of 0.85 (Figure 4B). The gene modules were
detected based on the TOM, and five modules were finally detected (Figure 4C and D). Three modules (red, pink, and
blue) were markedly correlated with IA (Figure 4E) (detailed information of genes in each module are provided in Table

Figure 2 Identification and analysis of differentially expressed genes (DEGs). (A) Heatmap for DEGs. (B) Volcano plot for DEGs. (C) Gene set enrichment analysis of Gene
Ontology biological process (GO-BP) among all the DEGs. (D) Gene set enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) among all the DEGs.
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S4). The genes within blue and pink modules were significantly correlated with IA (Figure 4F–H). Therefore, the blue
(1789 genes) and pink (486 genes) modules were defined as the key modules that were highly correlated with IA.

Enrichment Analysis of Key Modules
To explore the physiological and pathological pathways related to IA, the DEGs were intersected with the genes in the
blue and pink modules, respectively. GO-BP and KEGG pathway enrichment analysis were performed. The results

Table 1 DEGs with Top-10 Fold-Change Between Normal and IA Samples

Gene Symbol Official Full Name Log2(Fold-Change) Adj.P.Value

Up-regulated

COL11A1 Collagen Type XI Alpha 1 Chain 4.26 <0.001

EME2 Essential Meiotic Structure-Specific Endonuclease Subunit 2 3.63 <0.001

ADAMTS10 ADAM Metallopeptidase With Thrombospondin Type 1 Motif 10 3.51 <0.001

HTRA4 HtrA Serine Peptidase 4 3.24 0.006

DAPL1 Death Associated Protein Like 1 3.17 <0.001

CUZD1 CUB And Zona Pellucida Like Domains 1 3.16 0.002

ZIC2 Zic Family Member 2 3.16 <0.001

TMEM121B Transmembrane Protein 121B 3.05 0.007

TREM2 Triggering Receptor Expressed On Myeloid Cells 2 2.87 <0.001

C5orf46 Chromosome 5 Open Reading Frame 46 2.82 <0.001

Down-regulated

CASQ2 Calsequestrin 2 −3.16 <0.001

ITLN1 Intelectin 1 −3.13 <0.001

RBPMS2 RNA Binding Protein, MRNA Processing Factor 2 −3.11 <0.001

MYOT Myotilin −3.04 <0.001

ACTA1 Actin Alpha 1, Skeletal Muscle −3.02 <0.001

NPY1R Neuropeptide Y Receptor Y1 −3.00 <0.001

SOST Sclerostin −2.92 <0.001

RERGL RERG Like −2.91 <0.001

PPL Periplakin −2.90 <0.001

ADIPOQ Adiponectin, C1Q And Collagen Domain Containing −2.84 <0.001

Abbreviations: DEG, differentially expressed gene; IA, intracranial aneurysm.

Figure 3 Principal Component Analysis (PCA) on the DEGs. (A) 2D-PCA plot of DEGs. (B) 3D-PCA graph of DEGs.
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Figure 4 Construction of weighted gene co-expression network on IA and normal conditions. (A) Detection of outliers with sample clustering. All samples are located in
the clusters and pass the cutoff thresholds. (B) Soft-threshold power analysis implemented to obtain the scale-free fit index of the network topology. (C) Identification of
gene modules. (D) Heatmap of the topological overlap matrix (TOM) of genes selected for WGCNA. (E) Correlation heat map of gene modules and phenotypes. (F) Scatter
plot of gene and module correlation within red module. (G) Scatter plot of gene and module correlation within blue module. (H) Scatter plot of gene and module
correlation within pink module.
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showed enrichment of immune response, inflammatory response, leukocyte activation, the chemokine signaling pathway,
and Toll-like receptor signaling pathway in the blue module (Figure 5A and B, detailed information is shown in Table S5,
GO-CC and GO-MF are provided in Figure S4C and D). Enrichment analysis in the pink module suggested that
inflammatory response, defense response, myeloid leukocyte cytokine production, cytokine production involved in
immune response, regulation of mast cell cytokine production, regulation of inflammatory response, positive regulation
of immune system process, leukocyte-mediated immunity, mast cell cytokine production, regulation of interleukin-10
production, and complement and coagulation cascades may be related to IA (Figure 5C and D, detailed information is
shown in Table S6, GO-CC and GO-MF are provided in Figure S4E and F).

Identification of the Hub Genes
All DEGs and DEGs in the blue and pink modules were input into the String database to construct PPI networks (Figure
S2). The results were downloaded and input into Cytoscape to identify the hub genes using the MCC algorithm in
CytoHubba, and the genes with the top 10 MCC values were considered hub genes and visualized together with their
connected nodes. Among the hub genes of DEGs and the blue module, CCR5 and CCL20 overlapped (Figure 6A and B),
and FPR3 and CCL4 overlapped in the DEGs and the pink module (Figure 6A and C). Therefore, CCR5, CCL20, CCL4,
and FPR3 were selected as key genes.

Different Immune Infiltrative Patterns Between IA and Normal Conditions
Gene set enrichment analysis of GO-BP and KEGG ontology and pathways indicated that pathways related to the
immune process were significantly enriched. Therefore, CIBERSORT was used to evaluate the patterns of immune
infiltration between IA and normal conditions. As mentioned in the Methods section, three normal samples and 24 IA
samples were included in the CIBERSORT analysis, and the relative proportions of 22 immune cells are shown in
Figure 7A and B. The proportion of macrophages was higher in normal samples, while M0 and M2 macrophages showed

Figure 5 Gene set enrichment analysis of GO-BP and KEGG ontologies and pathways among DEGs in blue and pink modules. (A and B) GO-BP and KEGG of DEGs in the
blue module. (C and D) GO-BP and KEGG of DEGs in the pink module.
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the opposite trend. The proportion of neutrophils was higher in normal samples and that of activated mast cells was
higher in IA samples (Figure 7C).

Validation of Key Genes and ROC Analysis
Key genes were validated using the GSE122897 dataset, and the results indicated significant differences in expression levels
of all key genes between the normal and IA samples (Figure 8A–D). Finally, ROC analysis was conducted to explore

Figure 6 Hub genes identification by the CytoHubba algorithm. (A) The top 10 hub genes ranked by the MCC algorithm and their neighbors among all the DEGs. (B) The
top 10 hub genes ranked by the MCC algorithm and their neighbors in the blue module. (C) The top 10 hub genes ranked by the MCC algorithm and their neighbors in the
pink module. Red-orange-yellow represents key genes, and the darker the color, the stronger the association with other genes.
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potential biomarkers. The ROC curves for the key genes are shown in Figure 8E–H. The top 10 hub genes of all DEGs were
also analyzed by ROC analysis, and the areas under the curves (AUCs) for all of these genes were > 0.7 with p < 0.05.
CCL21, NPY1R, and ADORA3 had the highest AUCs (AUCs = 0.907, 0.898, and 0.866, respectively) (Figure S3).

Discussion
In this study, 266 DEGs were identified, including 162 that were upregulated and 104 that were downregulated in the IA
samples. Consistent with previous studies, enrichment analysis of DEGs on GO-BP and KEGG suggested that inflam-
mation and immune-related pathways may be most closely related to IA. To identify the basic modules closely related to
IA, we performed WGCNA on IA and normal samples together and obtained two modules related to IA. In addition,
functional enrichment analysis of intersecting genes between modules and DEGs also suggested that inflammation and
immune processes may play important roles in the development and progression of IA. The hub genes in DEGs and the
two modules were identified separately. Among the hub genes, CCR5, CCL4, CCL20, and FPR3 overlapped between the
DEGs and the modules, and were selected as key genes. As the key genes were closely related to inflammation and

Figure 7 Immune infiltrative patterns in IA and normal conditions. (A and B) Histogram of 22 types of immune cells in each IA and normal tissue. (C) Violin chart showing
the differences in infiltrating immune cells between the two groups.
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immune processes, we performed immune infiltration analysis in IA and normal samples, and found that the proportions
of M2 macrophages and activated mast cells were significantly higher in IA samples. Finally, all of these key genes were
validated by another GEO dataset, and ROC analysis indicated that the top ten DEGs have potential diagnostic utility and
are potential biomarkers.

A number of studies in human and animal models have confirmed immune cell infiltration dominated by macrophages
in IA tissues, which is consistent with the obvious infiltration of macrophages in IA samples observed in the present
study.

Chemokines are proinflammatory cytokines, which are the main mediators of macrophage chemotaxis and play
a pivotal role in inflammation by activating cell chemotaxis.43 Chemokines can chemoattract inflammatory cells,
including macrophages, neutrophils, lymphocytes, fibroblasts, and other inflammatory cells to infiltrate sites of inflam-
mation and exert an inflammatory effect.44 In addition, several chemokines may play different roles in the formation of
aneurysms. Abdominal aortic aneurysm (AAA) and IA have similar risk factors, including age, smoking, hypertension,
and familial tendencies, and are similar in many of their pathogenic mechanisms and pathological features, including
inflammation, oxidative stress, endothelial dysfunction, vascular smooth muscle cell apoptosis, leukocyte infiltration,
and MMP-mediated degradation of the ECM leading to weakening of the arterial wall.9,17 CCL2, an effective chemokine
for monocytes and macrophages, shows significantly elevated expression in IA, and plays an important role in the
formation and development of IA.45–47 Iida et al reported that MKEY, a peptide CXCL4-CCL5 heterodimer inhibitor,
suppressed the formation and progression of AAA in mice.48 CCR5, a chemokine G protein-coupled receptor (GPCR)
responsible for some of the functions of the chemokines CCL3, CCL4, and CCL5, has mainly been detected in
macrophages, T lymphocytes, and dendritic cells.49,50 MacTaggart et al reported that deficiency of CCR5 had no
significant effect on the formation or development of AAA,51 while Ishida et al reported that knockout of CCR5
increased the formation of aneurysms in mice, suggesting a preventive effect of CCR5 on aneurysms.52 Another study
showed that inhibiting the CCL5/CCR5 axis could reduce macrophage infiltration while suppressing AAA formation and
progression, suggesting that CCR5 may have a positive effect on aneurysms.48 The specific role of CCR5 in aneurysms

Figure 8 ROC analysis and validation of key genes. (A–D) Validation of CCR5, CCL4, CCL20 and FPR3. (E–H) ROC analysis of CCR5, CCL4, CCL20 and FPR3. *P<0.05;
**P<0.01; ***P<0.001.
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has not yet been definitively elucidated. As the upstream molecule of CCR5, CCL4 is highly expressed in AAA, but
further studies are required to determine whether it exerts a role through CRR5 and whether the CCL4/CCR5 axis plays
a role in inhibiting or promoting aneurysms.53 CCL20 is expressed in various human tissues and immune cells, mainly
observed in the lymph nodes, lungs, and liver, and is produced by cells related to inflammation and autoimmune
reactions, such as macrophages, neutrophils, and natural killer (NK) cells, Th17 cells, and B cells.54,55 CCL20 and its
specific receptor, CCR6, have been shown to play important roles in autoimmune diseases (rheumatoid arthritis,
psoriasis, etc) and tumor diseases (hepatocellular carcinoma, pancreatic cancer, etc).56–58 Co-culture with M2 macro-
phages was shown to enhance the invasiveness of pancreatic cancer cells, while CCR6 deficiency significantly reduced
the invasiveness of the cells, and addition of CCL20 enhanced the epithelial–mesenchymal transition (EMT) of these
cells.58 CCL20 expression is also increased in AAA, but further studies are required to determine its role in disease
progression.59

Formyl peptide receptor (FPR) belongs to the GPCR family, and three FPRs have been identified, to date, in humans:
FPR1–FPR3.60 FPRs are mainly expressed in several types of innate immune cells, including neutrophils and monocytes/
macrophages.61 The activation of FPR1 and FPR2 by chemotactic agonists was shown to trigger a series of signaling
events, leading to myeloid cell migration, mediator release, increased phagocytosis, and gene transcription, all of which
mediate inflammation and immunity.62,63 Although the overall function of FPR3 remains unclear, recent studies have
shown that activation of FPR3 can cause the chemotactic migration of neutrophils and improve the survival rate of
murine sepsis models, suggesting that FPR3 may play an important role in the inflammatory response.64 However, there
have been few studies on the relationship between FPR3 and aneurysms. Further studies are therefore required to
determine whether FPR3 is involved in the formation and progression of aneurysms.

Mast cells are the main participants in the inflammatory response and, together with other inflammatory cells, form
a specific tissue response to infection and injury. By releasing various mediators, including tryptase, chymotrypsin,
cathepsin, and interleukins, activated mast cells can affect vascular inflammation and remodeling.65–67 Zhang et al
reported that mast cell tryptase deficiency could attenuate mouse AAA formation.68 Mesenchymal stem cells can
suppress the progression of intracranial aneurysms by inhibiting the activation of mast cells.69,70 Furukawa et al
suggested that mast cells play a key role in promoting aneurysm rupture but not formation.71 Although mast cells play
an important role in the progression of aneurysms, further studies are required to determine the specific underlying
molecular mechanisms and whether chemokines are involved in the regulation of mast cells.

This study had several limitations. First, due to the nature of the secondary analysis, it was difficult to assess the
reliability of the original samples. Although we included the data of three data sets that were normalized to remove batch
effects, the origins of the samples and the processing that had been done previously could not be fully standardized,
which would affect subsequent data analysis. For easier filtering of key genes, we only performed follow-up analysis
between DEGs in different modules. Although we attempted to avoid this limitation by defining a smaller threshold, to
include more candidate genes, we may have lost some information contained in genes that were not significantly
differentially expressed. After estimating infiltrating immune cells of aneurysm by CIBERSORT, only three normal
and 24 IA samples were included in the follow-up analysis, and this small sample size may have influenced the results of
the analysis. Finally, all analyses were based on bioinformatics algorithms, and further experimental and clinical studies
are necessary to verify the results. In summary, further studies are needed to confirm the molecular mechanism of IA and
its relationship with immune infiltration.

Conclusion
In this study, we introduced an effective method to evaluate the co-expression network of IA and normal conditions.
Several DEGs and two modules significantly related to the disease were identified. GO and KEGG functional enrichment
analyses showed enrichment of pathways related to inflammatory and immune processes. Hub genes related to
chemotaxis may play pivotal roles in the formation and progression of IA. Further analyses suggested that macrophages
and mast cells may be the driving factors of IA, which should be examined in further studies.
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