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a b s t r a c t

Non-alcoholic fatty liver disease (NAFLD) is closely associated with type 2 diabetes mellitus (T2D), and
these two metabolic diseases demonstrate bidirectional influences. The identification of microbiome pro-
files that are specific to liver injury or impaired glucosemetabolismmay assist understanding of the role of
the gut microbiota in the relationship between NAFLD and T2D. Here, we studied a biopsy-proven Asian
NAFLD cohort (n = 329; 187 participants with NAFLD, 101 with NAFLD and T2D, and 41 with neither) and
identified Enterobacter, Romboutsia, and Clostridium sensu stricto as the principal taxa associated with the
severity of NAFLD and T2D, whereas Ruminococcus and Megamonas were specific to NAFLD. In particular,
the taxa that were associated with both severe liver pathology and T2D were also significantly associated
withmarkers of diabetes, such as fasting blood glucose and Hb1Ac. Enterotype analysis demonstrated that
participants with NAFLD had a significantly higher proportion of Bacteroides and a lower proportion of
Ruminococcus than a Korean healthy twin cohort (n = 756). However, T2D could not be clearly distin-
guished from NAFLD. Analysis of an independent T2D cohort (n = 185) permitted us to validate the
T2D-specific bacterial signature identified in the NAFLD cohort. Functional inference analysis revealed
that endotoxin biosynthesis pathways were significantly enriched in participants with NAFLD and T2D,
compared with those with NAFLD alone. These findings may assist with the development of effective ther-
apeutic approaches for metabolic diseases that are associated with specific bacterial signatures.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum
of hepatic manifestations, ranging from non-alcoholic fatty liver to
more serious conditions, including non-alcoholic steatohepatitis
(NASH), advanced fibrosis, and cirrhosis. Owing to this wide spec-
trum of disease, lack of specific pharmacotherapy, and requirement
for histological examination to make a definitive diagnosis, efforts
to identify tangible targets for the treatment of NAFLD have been
attempted using genetic, imaging, serological, and Omics
approaches [1]. However, it is necessary to further evaluate the
potential non-invasive biomarkers identified in this way. In addi-
tion, the existence of comorbidities further complicates the charac-
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terization of the disease. For example, NAFLD is closely associated
with type 2 diabetes mellitus (T2D): patients with T2D have a high
prevalence of NAFLD (55%), and NAFLD is also a risk factor for T2D
[2–4]. Furthermore, the presence of this comorbidity is often asso-
ciated with a poorer prognosis and a higher incidence of mortality
[5]. Emerging evidence indicates that these two metabolic diseases
are characterized by alterations to the gut microbiome [6–8]. Pre-
vious research regarding these conditions and their associations
with the gut microbiome has mostly focused on the identification
of non-invasive microbial biomarkers of NAFLD and attempts to
identify the roles of gut microbes in the pathophysiology of NAFLD.
However, the additional effect of T2D on the gut microbiome that
characterizes NAFLD has not been fully investigated.

In the present study, we aimed to identify disease-specific
microbial signatures and the additional effect of T2D on the gut
microbiome of patients with NAFLD. To this end, we categorized
the participants in a biopsy-proven Asian NAFLD cohort on the
basis of the presence of NAFLD ± T2D. 16S rRNA amplicon sequenc-
ing analysis demonstrated that the gut microbiome includes taxa
that 1) change in abundance with the progression of NAFLD along-
side T2D, 2) are characteristic of the presence of T2D only, and 3)
change with the progression of NAFLD but are not affected by
T2D. These findings were validated using an independent T2D
cohort. The study of these two independent cohorts has identified
specific associations between metabolic diseases and gut bacteria,
which suggest unique biomarkers for each condition.
2. Materials & methods

2.1. Study cohort

We analyzed three independent Korean cohorts, with the aim of
distinguishing the gut microbiomes of NAFLD and T2D. First, the
‘Boramae NAFLD cohort’ was recruited by the Seoul Metropolitan
Government Seoul National University Boramae Medical Center
in South Korea (NCT02206841) [9,10]. Fecal samples collected from
288 participants with biopsy-proven NAFLD and 41 without NAFLD
were studied. The clinical and biochemical characteristics of the
participants are listed in Tables 1 and 2. This study was performed
in accordance with the ethical guidelines of the 1975 Declaration
of Helsinki and was approved by the Institutional Review Board
of Seoul National University Boramae Medical Center (IRB No.
26–2017-48). Written informed consent was obtained from all of
the study participants. Second, a validation T2D cohort was
recruited from Chungnam National University Hospital (CNUH;
n = 185; 36 with T2D and 149 controls). The demographics of this
cohort are presented in Table 3. This study was approved by the
Institutional Review Board of CNUH (IRB No. 2015–09-942–006).
All the participants provided their written informed consent, and
all the procedures were performed in accordance with relevant
guidelines and regulations. Finally, data from the healthy Korean
twin cohort (n = 752) were obtained from the European Nucleotide
Archive under study accession number: ERP010289 and used for
enterotyping.
2.2. Inclusion/exclusion criteria

2.2.1. The Boramae NAFLD cohort
Participants with radiologic evidence of hepatic steatosis were

eligible for inclusion in the study. The subsequent inclusion/exclu-
sion criteria were as follows.

Inclusion criteria: adult (�18 years old), ultrasonographic find-
ings consistent with fatty infiltration of the liver, and unexplained
high serum alanine aminotransferase (ALT) activity within the pre-
ceding 6 months.
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Exclusion criteria: hepatitis B or C virus infection, autoimmune
hepatitis, primary biliary cholangitis or primary sclerosing cholan-
gitis, gastrointestinal cancer or hepatocellular carcinoma, drug-
induced steatosis or liver injury, Wilson disease or hemochromato-
sis, excessive alcohol consumption (men: >30 g/day, women:
>20 g/day), antibiotic use within the preceding month, diagnosis
of malignancy within the preceding 5 years, human immunodefi-
ciency virus infection, and chronic disorder associated with
lipodystrophy or immunosuppression.

Next, those with at least two of the following risk factors
underwent liver biopsy: 1) T2D, 2) central obesity (waist
circumference � 90 cm for men or � 80 cm for women), 3) high
circulating concentration of triglyceride (�150 mg/dL), 4) low cir-
culating concentration of high-density lipoprotein (HDL)-
cholesterol (<40 mg/dL for men or < 50 mg/dL for women),
5) insulin resistance, 6) hypertension, and 7) clinical suspicion of
NASH or fibrosis.

Participants without NAFLD also underwent liver biopsy
because they were either potential liver donors or required inves-
tigation for a liver mass. Of the 41 control participants who did not
have NAFLD, 40 were liver donors for transplantation and one
required a biopsy because of suspicion of a liver mass. This partic-
ipant was diagnosed as having focal nodular hyperplasia (FNH) on
the basis of histological examination. Participants who had been
administered antibiotics within the preceding month were also
excluded from the downstream analysis.

2.2.2. T2D validation cohort
Inclusion criteria: adult (�18 years old) and a diagnosis of T2D

made according to the American Diabetes Association criteria [11].
Exclusion criteria: type 1 diabetes mellitus, excessive alcohol

consumption (men: >30 g/day, women: >20 g/day), antibiotic or
probiotic use within the preceding month, diagnosis of malignancy
within the preceding 5 years, acute illness such as infection,
atherosclerotic event, bariatric surgery, and gastrointestinal tract
infection (e.g., Clostridium difficile-associated diarrhea). In addition,
the fatty liver index (FLI) [12], a well-established surrogate marker,
was calculated using the following formula to exclude individuals
with potential NAFLD and permit the study to focus on the T2D-
specific characteristics of the cohort.

FLI ¼ 1
1þ exp �xð Þð Þ � 100;
x ¼ 0:953� loge ðserum triglyceride; mg=dLÞ þ 0:139

� ðBMI; kg=m2Þ þ 0:718� loge ðserum GGT; IU=LÞ þ 0:053

� ðwaist circumference; cmÞ � 15:745

As a result, data from 31 participants who had high FLIs (�60)
[13] were excluded from the analysis. Samples from participants
who did not have T2D were collected in collaboration with the
CNUH health screening center. Written informed consent was
obtained from all the participants.

2.3. Liver histology

Liver histology was analyzed by a single pathologist, according
to the NASH Clinical Research Network scoring system. NAFLD was
diagnosed in the presence of � 5% macrovesicular steatosis, and
NASH was diagnosed according to the criteria of Brunt et al.
[14,15] on the basis of the overall pattern of histological hepatic
injury, involving consideration of the extents of steatosis, lobular
inflammation, and ballooning [16]. The severity of fibrosis was
determined according to the method of Kleiner et al. [16]. Signifi-
cant fibrosis was defined as a score of �F2.



Table 1
Clinical characteristics of the NAFLD cohort, classified according to the histological spectra of NAFLD.

No NAFLD NAFL NAFL + T2D FDRa FDRb NASH NASH + T2D FDRa FDRb

N (male/female) 41 (11/30) 114 (64/50) 45 (26/19) 73 (34/39) 56 (12/44)
Age (years) 58.34 ± 10.53 50.26 ± 13.5 57.82 ± 13.23 * * 49.53 ± 16.09 62.77 ± 10.33 * *
BMI (kg/m2) 23.43 ± 2.45 27.96 ± 3.89 26.8 ± 3.1 * 28.62 ± 3.78 27.34 ± 3.43 * *
Waist circumference (cm) 82.63 ± 7.53 92.4 ± 8.72 89.28 ± 8.46 * 94.84 ± 10.36 93.48 ± 9.32 *
AST (IU/L) 29.66 ± 18.53 42.09 ± 40.21 33.64 ± 19.78 * 60.67 ± 40.5 63.61 ± 53.9 *
ALT (IU/L) 27.46 ± 24.74 53.74 ± 43.41 37.69 ± 27.08 * 91.18 ± 74.22 63.89 ± 52.36 * *
GGT (IU/L) 49.88 ± 57.89 47.51 ± 45.13 46.55 ± 49.94 66.73 ± 51.07 97.71 ± 178.2 *
HDL (mg/dL) 55.34 ± 12.71 47.56 ± 12.54 45.11 ± 10.72 * 47.38 ± 11.42 44.52 ± 11.26 *
LDL (mg/dL) 98.72 ± 26.93 108.8 ± 36 100.8 ± 29.59 118.6 ± 27.48 91.15 ± 30.68 * *
Albumin (g/dL) 4.076 ± 0.29 4.202 ± 0.27 4.164 ± 0.36 4.211 ± 0.32 4.043 ± 0.312
Platelet count (�103/L) 232.3 ± 63.39 252 ± 61.88 240.2 ± 57.8 237.5 ± 59.15 196.3 ± 76.6
Ferritin (ng/mL) 136.5 ± 260.1 174.1 ± 184.9 133.8 ± 158.9 * 206.6 ± 150.2 217.4 ± 26 *
HA (ng/mL) 61.96 ± 70.69 39.74 ± 34.31 66.9 ± 90.71 71.81 ± 98.28 117.8 ± 96.55 *
Insulin (mIU/mL) 9.529 ± 3.97 17.09 ± 13.69 13.07 ± 6.2 * 19.17 ± 11.77 16.78 ± 7.75 *
HbA1c (%) 5.588 ± 0.31 5.696 ± 0.48 7.051 ± 1.06 * 5.928 ± 0.47 7.47 ± 1.48 * *
C-peptide (ng/mL) 2.035 ± 0.75 3.863 ± 2.29 3.923 ± 4.3 * 4.789 ± 3.74 3.759 ± 1.78 *
HOMA-IR 2.432 ± 1.12 4.395 ± 3.49 4.392 ± 2.38 5.26 ± 3.63 6.817 ± 4.69
Adipo-IR 5.497 ± 3.79 10.6 ± 8.88 8.874 ± 4.807 12.23 ± 8.15 13.3 ± 8.81
FFA (mEq/L) 552.4 ± 235.7 635.2 ± 272.7 682.2 ± 212.5 635 ± 223.8 777.8 ± 276.7 * *
hsCRP (mg/dL) 0.1685 ± 0.31 0.2002 ± 0.4 0.1529 ± 0.16 0.2695 ± 0.29 0.3184 ± 0.44
Cholesterol (mg/dL) 176 ± 34.24 188.9 ± 35.97 179.8 ± 46.27 189.9 ± 32.89 161.7 ± 42.82 * *
TG (mg/dL) 93.2 ± 37.33 157 ± 79.87 166 ± 107.8 * 142.8 ± 50.69 149.1 ± 73.46 *
FBS (mg/dL) 103.2 ± 20.25 104.4 ± 18.67 134.1 ± 34.57 * 108.9 ± 25.7 159.1 ± 68.52 *
HTN, n (%) 36.59 31.58 48.89 39.73 67.86 *

FDRa: no NAFLD vs. NASH or NAFL. FDRb: no NAFLD vs. NASH + T2D or NAFL + T2D. *, Wilcoxon rank sum test (FDR < 0.1).
BMI: body mass index, AST: aspartate aminotransferase, ALT: alanine aminotransferase, GGT: gamma-glutamyl transferase, HDL: high-density lipoprotein, LDL: low-density
lipoprotein, HA: hyaluronic acid, HbA1c: hemoglobin A1c (glycated haemoglobin), HOMA-IR: Homeostatic Model Assessment of Insulin Resistance, Adipo-IR: Adipose tissue
Insulin Resistance index, FFA: free fatty acid, hsCRP: high-sensitivity C-reactive protein, TG: triglyceride, FBS: fasting blood sugar, HTN: hypertension.
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2.4. DNA extraction, 16S rRNA sequencing, and data processing

For the NAFLD and validation T2D cohorts, fecal DNA extraction
and microbial profiling were performed as described previously
[8]. Briefly, DNA was extracted from 200 mg aliquots of fecal sam-
ples using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Ger-
many). Amplicons targeting the V4 region of 16S rRNA were
Table 2
Clinical characteristics of the NAFLD cohort, classified according to the severity of hepatic

Fibrosis = 0 Fibrosis

No T2D T2D FDR No T2D

N (male/female) 60 (27/33) 10 (9/1) 124 (66
Age (years) 56.3 ± 10.76 61.4 ± 10.91 47.95 ±
BMI (kg/m2) 25.11 ± 3.72 26.75 ± 2.94 29.19 ±
Waist circumference (cm) 86.43 ± 10.98 89.36 ± 8.33 93.42 ±
AST (IU/L) 30.2 ± 18.69 23.8 ± 4.34 45.94 ±
ALT (IU/L) 33.98 ± 35.15 30.1 ± 10.99 68.13 ±
GGT (IU/L) 39.03 ± 44.35 53.56 ± 75.91 59.45 ±
HDL (mg/dL) 50.9 ± 13.19 42.8 ± 8.3 48.24 ±
LDL (mg/dL) 103.5 ± 33.3 103.1 ± 33.2 112.5 ±
Albumin (g/dL) 4.117 ± 0.28 4.26 ± 0.2 4.241 ±
Platelet count (�103/L) 241.1 ± 51.27 192.5 ± 47.27 253.9 ±
Ferritin (ng/mL) 122.8 ± 82.53 119.5 ± 68.44 178.9 ±
HA (ng/mL) 44.27 ± 52.06 54.16 ± 42.53 47.15 ±
Insulin (mIU/mL) 12.54 ± 8.781 12.04 ± 4.95 17.5 ± 1
HbA1c (%) 5.708 ± 0.46 6.94 ± 0.67 * 5.715 ±
C-peptide (ng/mL) 2.663 ± 1.29 3.044 ± 1.3 4.203 ±
HOMA-IR 3.178 ± 2.46 4.524 ± 2 4.551 ±
Adipo-IR 7.19 ± 5.37 8.578 ± 5.23 10.99 ±
FFA (mEq/L) 569.1 ± 248.3 690.8 ± 258.9 642.6 ±
hsCRP (mg/dL) 0.143 ± 0.23 0.081 ± 0.07 0.2234
Cholesterol (mg/dL) 181.1 ± 38.34 178 ± 29.88 190.5 ±
TG (mg/dL) 123.9 ± 65.82 169 ± 65.17 150 ± 7
FBS (mg/dL) 102.3 ± 19.38 156.7 ± 45.03 * 104.8 ±
HTN, n (%) 33.33 50 33.87

*, Wilcoxon rank sum test (FDR < 0.1).
BMI: body mass index, AST: aspartate aminotransferase, ALT: alanine aminotransferase,
lipoprotein, HA: hyaluronic acid, HbA1c: hemoglobin A1c (glycated haemoglobin), HOMA
Insulin Resistance index, FFA: free fatty acid, hsCRP: high-sensitivity C-reactive protein,
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sequenced using the MiSeq platform (2 � 300 reads; Illumina,
San Diego, CA, USA) and processed using the DADA2 pipeline
(v.1.16.0) [17]. The filtering and trimming parameters were as fol-
lows: truncQ = 2, trimLeft = c(10,10), and trunclen = c(230,140). Fil-
tered reads were denoised, merged, and further processed to
remove chimeras. Taxonomic classification of the amplicon
sequence variants (ASVs) was performed using the Ribosomal
fibrosis.

= 1 Fibrosis � 2

T2D FDR No T2D T2D FDR

/58) 46 (19/27) 44 (16/28) 45 (10/35)
14.54 55.77 ± 15.01 * 54.86 ± 15.08 64.88 ± 7.45 *
3.5 27.37 ± 3.24 27.85 ± 3.4 26.9 ± 3.45
8.73 90.95 ± 8.74 92.25 ± 10.3 92.88 ± 9.76
26.96 48.52 ± 55.59 66.68 ± 68.05 57.92 ± 33.84
53.73 53.07 ± 51.38 77.75 ± 78.1 56.27 ± 41.18
53.01 46.54 ± 39.9 59.5 ± 45.55 108.8 ± 197
12.89 45.02 ± 11.37 48.05 ± 10.4 44.98 ± 11.24
33.23 102.3 ± 28.21 114.2 ± 25.33 87.24 ± 30.48 *
0.29 4.152 ± 0.36 4.105 ± 0.28 4.004 ± 0.32
64.69 249.1 ± 60.54 219.2 ± 59.43 187.1 ± 73.78
185.6 210.5 ± 295.9 250.6 ± 278.8 163.1 ± 137.2 *
59.43 70.15 ± 88.92 86.45 ± 98.88 129.9 ± 102.6 *
3.69 14.27 ± 7.27 18.55 ± 11.27 16.69 ± 7.54
0.44 7.085 ± 1.09 * 5.914 ± 0.52 7.562 ± 1.58 *
3.29 4.224 ± 4.36 4.339 ± 2.46 3.606 ± 1.53
3.59 4.858 ± 3.45 5.22 ± 3.49 6.903 ± 4.59
9.07 10.16 ± 6.63 12.1 ± 8.22 13.12 ± 8.62
259 706.8 ± 235.8 627 ± 233.6 774 ± 269.3 *
± 0.35 0.1983 ± 0.21 0.3005 ± 0.46 0.3284 ± 0.47
34.38 180.7 ± 46.24 184.7 ± 30.89 156.7 ± 44 *
4 166.1 ± 106.1 138.7 ± 54.31 144.2 ± 76.53
18.43 130.1 ± 34.34 * 112.4 ± 29.65 164.2 ± 71.93 *

54.35 * 40.9 66.67 *

GGT: gamma-glutamyl transferase, HDL: high-density lipoprotein, LDL: low-density
-IR: Homeostatic Model Assessment of Insulin Resistance, Adipo-IR: Adipose tissue
TG: triglyceride, FBS: fasting blood sugar, HTN: hypertension.



Table 3
Clinical characteristics of the validation T2D cohort.

No T2D T2D FDR

N (male/female) 149 (55/94) 36 (15/21)
Age (years) 65.52 ± 11.54 72.61 ± 9.02 *
BMI (kg/m2) 23.26 ± 2.61 23.98 ± 3.4 *
Waist (cm) 80.97 ± 9.69 85.19 ± 10.07 *
AST (IU/L) 24.26 ± 5.6 28.11 ± 12.4
ALT (IU/L) 19.47 ± 8.01 23.25 ± 12.21
GGT (IU/L) 23.88 ± 15.69 31.5 ± 33.42
HDL (mg/dL) 53.3 ± 11.08 45.92 ± 12.3 *
LDL (mg/dL) 125.6 ± 32.41 98.69 ± 27.74 *
Cholesterol (mg/dL) 206 ± 38.56 174.6 ± 37.9 *
TG (mg/dL) 132.8 ± 61.43 152.9 ± 67.43 *
FBS (mg/dL) 91.1 ± 5.54 131.2 ± 24.02 *
Fatty Liver Index 22.18 ± 14.28 32.92 ± 17.84 *

*, Wilcoxon rank sum test (FDR < 0.1).
BMI: body mass index, AST: aspartate aminotransferase, ALT: alanine aminotrans-
ferase, GGT: gamma-glutamyl transferase, HDL: high-density lipoprotein, LDL: low-
density lipoprotein, TG: triglyceride, FBS: fasting blood sugar.
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Database Project (RDP) classifier (RDP trainset 16/release 11.5). For
the Korean twin cohort [18], single-ended fastq sequences were
processed using the same DADA2 pipeline, except that the follow-
ing filtering and trimming parameters were used: truncQ = 11,
trimLeft = c(20), and truncLen = c(200). Data from four partici-
pants were excluded because of low sequencing depth (<10,000
reads). Prior to the downstream analysis (excluding multivariate
taxonomic association analysis), bacterial abundances were trans-
formed using the centered log-ratio (CLR) transformation of Aitch-
ison to control the composition of the sequencing data (CoDaSeq R
package function codaSeq.clr [19]). Zero counts in the AVS table
were replaced by a Geometric Bayesian multiplicative approach
using the zCompositions package function cmultRepl [20].

2.5. Identification of overrepresented bacterial metabolic pathways in
the NAFLD cohort

The metabolic pathways that were overrepresented in the
microbial community in the NAFLD cohort were identified using
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States 2 (PICRUSt2, v.2.3.0_b) and the default parame-
ters [21]. Up- and downregulated metabolic genes and pathways
were identified by referring to the MetaCyc database (https://
metacyc.org/). Associations of NAFLD progression with T2D were
analyzed using the Multivariate Association with the Linear Mod-
els 2 (MaAsLin2) package in R (v.1.2.0), after adjustment for age
and sex [22]. Regression coefficients were used for heatmap
analysis.

2.6. Explanatory power of cohort variables

The effect sizes of cohort covariates on variation in the micro-
bial community were evaluated as described previously [23].
Briefly, distance-based RDA (db-RDA) was performed at the ASV
and genus levels using Euclidean distance, as implemented in
vegan [24]. Covariates (false discovery rate [FDR] < 0.1) identified
during this step were entered into forward stepwise model selec-
tion to measure their cumulative effect sizes. Prior to this analysis,
the collinearity of the variables was checked using phiK and Spear-
man’s rank correlation.

2.7. Statistical analysis

Statistical analysis of the microbiome was performed in R
(v.4.0.5) [25]using the vegan [24], phyloseq [26], pairwiseAdonis
[2728], CoDaSeq, DirichletMultinomial [29], fifer [30], MaAsLin2
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[22], and ppcor [31] packages. Enterotyping (or community typing)
was performed using the Dirichlet Multinomial Mixtures (DMM)
approach and a genus-abundance RMP matrix in R, as described
by Holmes et al. [32]. The diversity and composition of the bacterial
communities were evaluated using a- (Observed richness, Shan-
non, and Pielou’s indices) and b- (principal components analysis
(PCA), based on Euclidean distance) diversity at the ASV and genus
levels and vegan [24]. The composition of the bacterial communi-
ties were compared between the groups using permutational mul-
tivariate analysis of variance (PERMANOVA) pairwise comparisons
(pairwise Adonis test) [27]. Multivariate analysis of the associa-
tions between metabolic diseases and the abundances of bacterial
taxa was performed using the MaAsLin2 package in R [22]. Com-
parisons between two groups were made using Wilcoxon’s rank
sum test, and the Kruskal–Wallis test, followed by a post-hoc
Dunn’s test, was used for analysis of more than two groups. Cate-
gorical data were analyzed using the chi-square test. Associations
of taxa with host parameters were identified by a partial
correlation, to adjust for confounders, using the R package ppcor
[31]. Statistical testing of more than two features included correc-
tion for multiple testing using the Benjamini–Hochberg method,
and the results are reported with FDRs. All the statistical tests used
were two-sided. The results were visualized using R or GraphPad
Prism 9 (GraphPad Software, San Diego, CA, USA).
3. Results

3.1. Description of the cohort

We used a biopsy-proven NAFLD cohort (n = 329) to distinguish
the microbial signature of T2D from that of the progression of
NAFLD. The participants were categorized into subgroups using
their histological characteristics (the NASH-CRN histological scor-
ing system), the severity of fibrosis, and the presence or absence
of T2D. First, we compared the anthropometric and biochemical
characteristics of control participants (no NAFLD or no fibrosis),
those with liver disease alone (NAFL, NASH, or fibrosis), and those
with liver disease and T2D (Tables 1 and 2). The participants with
both liver disease and T2D had significantly higher serum hyaluro-
nic acid (HA) concentration, HbA1c, free fatty acid (FFA) concentra-
tions, fasting blood sugar (FBS), and blood pressure than the liver
disease only group (Wilcoxon rank sum test, FDR < 0.1). By con-
trast, the participants with liver disease and T2D had significantly
lower ALT activity, low-density lipoprotein (LDL)-cholesterol con-
centration, and total cholesterol concentration than those with
NAFLD only (Wilcoxon rank sum test, FDR < 0.1).
3.2. Variations in the gut microbial community in the NAFLD cohort

In the NAFLD cohort, the variation in the gut microbial commu-
nity could mostly be explained by age at both the genus and ASV
levels (db-RDA, adjusted R2 [0.51:0.8%], FDR < 0.1; Fig. 1A and
Table S1). T2D in combination with fibrosis and NAFLD (NAFL or
NASH) was associated with the second highest explanatory power
for this community variation (db-RDA, adjusted R2 [0.35:0.56%],
FDR < 0.1). Other significant covariates included circulating param-
eters that are linked to the liver conditions and T2D; for example,
C-peptide, platelet count, FFA, and triiodothyronine (db-RDA,
adjusted R2 [0.14:0.26%], FDR < 0.1). PCA based on the Aitchison
transformation confirmed that the variations were related to the
metabolic diseases; however, although T2D could be distinguished
from NAFLD, it could not be distinguished from fibrosis in this way
(pairwise Adonis test, FDR < 0.1; Fig. 1B and C, Fig. S1B, and
Table S2). For example, a PERMANOVA test did not differentiate
fibrosis from fibrosis combined with T2D (Table S2A). Biodiversity

https://metacyc.org/
https://metacyc.org/


Fig. 1. Variations in the microbial community in the NAFLD-T2D cohort. (A) Explanatory power of the characteristics of the cohort for the variations in the microbial
community at the genus level. Blue and dark gray bars indicate the individual and cumulative effect sizes. Light gray bars indicate variables that were significant on an
individual basis but were not included in the forward stepwise RDA model. Principal component analysis (PCA) was performed, based on Aitchison transformation, for (B)
fibrosis and (C) NAFLD. n = 329; FDR < 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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analysis of the NAFLD cohort using NASH-CRN category and the
severity of fibrosis demonstrated a significant decrease in the rich-
ness of the community with an increase in the severity of NAFLD in
the presence of T2D at the ASV level (Fig. S2A). The same analysis
conducted at the genus level also revealed reductions in bacterial
diversity and evenness (Fig. S2B). Together, these results suggest
an independent effect of T2D on the gut microbiome signature
for NAFLD.

3.3. Bacterial signature of T2D in the NAFLD cohort

Multivariate taxonomic association analysis for NAFLD and T2D
status identified three distinct bacterial signatures after adjust-
ment for age (FDR < 0.1; Fig. 2 and Tables S3–4): 1) a signature
characteristic of T2D during the progression of NAFLD or fibrosis
(Fig. 2A and B), 2) a signature characteristic of the presence of
T2D in patients with fibrosis (Fig. 2C), and 3) a signature for NAFLD
alone (Fig. 2D). The relative abundances of Enterobacter, Rombout-
sia, and Clostridium sensu stricto were significantly associated with
the progression of NAFLD (NASH and fibrosis) in combination with
T2D (pattern 1; Fig. 2A and B). Further investigation of the associ-
ations of the gut microbial composition with T2D showed that the
abundances of Enterobacter, Clostridium sensu stricto, and
Lachnospiraceae were significantly affected only by T2D in combi-
nation with liver disease (pattern 2; Fig. 2C). Following pattern 3,
Megamonas and Ruminococcus were associated with NAFLD alone,
with no T2D. These results imply that different gut microbes are
independently associated with NAFLD and T2D.

Next, we investigated how the characteristics of the host inter-
act with the abundances of the bacterial taxa that were signifi-
cantly associated with metabolic disease (Fig. 3). Analysis of the
host–microbe interactions identified specific associations of
parameters relating to diabetes, such as FBS and HbA1c, with the
abundances of Romboutsia, Clostridium sensu stricto, and Escheri-
chia/Shigella (Spearman’s correlation, adjusted for age, FDR < 0.1).
In addition, we found a strong positive association between serum
LDL-cholesterol concentration and Faecalibacterium. This suggests
that the differences in the abundances of these bacterial taxa are
more closely related to T2D than NAFLD.

3.4. Associations of microbial functional potentials with T2D and
NAFLD

To better understand the links between metabolic diseases and
microbial function, we characterized the microbial metabolic path-
ways that were associated with each disease using PICRUSt2
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(Fig. 4). Of the 394 metabolic pathways inferred, 36 were signifi-
cantly upregulated in the NASH or significant fibrosis (�F2) group
(multivariate regression analysis, FDR < 0.2). Of these, the largest
number of significant pathways (6 out of 31 for participants with
NAFLD and 11 out of 25 for participants with fibrosis) are involved
in the degradation of aromatic compounds, which implies that
they increase nutrient or energy supply for the growth of specific
bacteria with increasing disease severity (Fig. 4A–B) [33]. More-
over, participants with both NAFLD and T2D demonstrated the
upregulation of pathways involved in cofactor, carrier, and vitamin
biosynthesis (10 out of 31 pathways), which implies greater
biosynthesis of small molecules that are involved in enzymatic
reactions. We found that ECASYN-PWY (the enterobacterial com-
mon antigen biosynthesis pathway) and KDO-NAGLIPASYN-PWY
(the superpathway for (Kdo)2-lipid A biosynthesis) were positively
associated with the severity of NAFLD and T2D, after adjustment
for age (Fig. 4C–D). These results suggest that individuals with both
NAFLD and T2D may have greater flux through deleterious micro-
bial metabolic pathways than those with NAFLD alone.

3.5. Effect of antidiabetic medications in the NAFLD cohort

Given that antidiabetic medications may affect the relationship
between T2D and the gut microbiome [34], we next assessed the
effect of taking antidiabetic medications on host health status
(Table S5). Participants who had been treated with antidiabetic
medications had significantly lower LDL-cholesterol, ferritin, and
cholesterol concentrations, but a higher FBS concentration than
those who had not (Tables S6–7). However, a taxonomic associa-
tion analysis of participants that were taking antidiabetic medica-
tions generated the same associations of bacterial taxa with T2D,
which implies that such medications did not have effects on the
gut microbiome in the present study (Fig. S3, Tables S8–9).

3.6. Enterotypes in the Korean population cohorts

To determine whether an enterotype was present in the
selected Korean cohort and whether a specific enterotype is linked
to the metabolic disorder, we used Dirichlet Multinomial Mixtures
(DMM)-modeling based clustering, which was previously used to
identify an inflammatory enterotype in Western population
cohorts [35–37]. The DMM community typing of a combination
of the NAFLD cohort (n = 335) and the healthy Korean twin cohort
(n = 751) identified three optimum clusters on the basis of the min-
imum Bayesian information criterion (Fig. 5A, S4A). The three com-
munity types were labeled on the basis of their bacterial



Fig. 2. Comparisons of the abundances of microbial taxa in the NAFLD cohort, categorized according to either the histology of liver biopsies from participants with NAFLD and
T2D or the severity of hepatic fibrosis in participants with T2D. The genera that were significantly associated with NAFLD are depicted as mean connected plots. Significant
associations were found for (A) NAFL or NASH with T2D, (B) fibrosis with T2D only, (C) the progression of fibrosis with T2D, and (D) the progression of NAFLD or fibrosis but
no T2D. Features with the background color indicate the overlapping features between the groups. Associations were identified using the multivariate association analysis,
after adjustment for age, and the corrected significance levels were calculated using the Benjamini-Hochberg method (FDR < 0.2). n = 329.
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composition, community richness, and host BMI (Fig. S4B–D). In
the merged cohort dataset, the Bacteroides (B) and Ruminococcus
(R) enterotypes included Bacteroides at similar abundances, but
the B enterotype featured a greater abundance of Escherichia/
Shigella, lower richness, and higher BMI than the R enterotype
Fig. 3. Relationships between the abundances of disease-associated taxa and host param
relative abundances of 10 disease-associated taxa and 20 host parameters were calculate
of Spearman’s rho (n = 329, * FDR < 0.1). Abbreviations: FBS, fasting blood sugar; HbA1
reactive protein; Adipose.IR, adipose tissue insulin resistance; C.peptide, connecting pep
glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferas
circumference; LDL, low-density lipoprotein.
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(Kruskal–Wallis test, FDR < 0.1). Comparison of the enterotypes
between the healthy Korean twin and NAFLD cohorts showed that
the latter cohort had a significantly higher proportion of the B
enterotype and a lower proportion of the R enterotype
(chi-square test, FDR < 0.1; Fig. 5A). The greater proportion of the
eters. Correlation coefficients (adjusted for age) for the relationships between the
d using Spearman’s correlation method. The color of the plot denotes the magnitude
c, glycosylated hemoglobin; HDL, high-density lipoprotein; CRP, high-sensitivity C-
tide; HOMA.IR, homeostasis model assessment of insulin resistance; GGT, gamma-
e; TG, triglycerides; FFA, free fatty acid; BMI, body mass index; Waist, waist



Fig. 4. Inferred microbial metabolic pathways in participants with NAFLD, categorized according to either the histology of a liver biopsy from participants with NAFLD and
T2D or the severity of fibrosis in participants with T2D. The activity of metabolic pathways in the microbial community was predicted using PICRUSt2 and annotated using the
MetaCyc database. (A) Thirty-one metabolic pathways were significantly upregulated in participants with NASH ± T2D vs. those without NAFLD, as shown in a heatmap. (B)
Twenty-five metabolic pathways were upregulated in participants with a fibrosis score � 2 ± T2D. The color of the plots denotes the magnitudes of the coefficients. The
associations of T2D with two metabolic pathways related to lipopolysaccharide synthesis are also shown according to (C) the liver histology of participants with NAFLD and
(D) the severity of hepatic fibrosis. The data were analyzed using the multivariate association analysis method, after adjustment for age, and FDR was calculated using the
Benjamini-Hochberg method. n = 329; +, FDR < 0.05; �, FDR < 0.10; *FDR < 0.20.
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B enterotype was associated with the presence of NAFLD, but there
was no significant contribution of T2D (Fig. 5B–C). Furthermore,
there was a trend for the B enterotype to become more abundant
with an increase in the severity of fibrosis (chi-square test,
p = 0.065; Fig. S4E), but T2D was not significantly associated with
the B enterotype (chi-square test, p = 0.24).

3.7. Bacterial taxa associated with T2D in a validation T2D cohort

To validate our findings regarding the bacterial signature of
T2D, we analyzed a separate cohort of patients with T2D that were
recruited at CNUH (n = 185). Because T2D is frequently accompa-
nied by NAFLD, we excluded patients with a high FLI (�60) from
the present analysis because such individuals are likely to have
NAFLD (NAFL or NASH) [38]. We confirmed that there were no sig-
nificant differences in the serum ALT, aspartate aminotransferase,
or c-glutamyl transferase activities between participants who did
or did not have T2D (Table 3). The variations in the gut microbial
Fig. 5. Enterotypes of the Korean population cohorts. (A) Proportions of each enterot
Proportions of each enterotype in the NAFLD-T2D cohort, categorized according to the p
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communities of this validation cohort could be explained by
height, the presence of T2D, alcohol consumption, and age (db-
RDA, adjusted R2 0.6 [0.71%], FDR < 0.1; Fig. 6A and Table S10).
The fact that variation could be explained by height implied a
sex effect in the cohort; therefore, we included this as a potential
confounder in the downstream analysis. The composition of the
microbial community significantly differed between the controls
and participants with T2D (Adonis R2 = 0.01, p = 0.01; Fig. 6B);
however, the biodiversity of the microbiota did not significantly
differentiate the groups (Fig. S5A). Enterotype analysis confirmed
the absence of an association between a specific enterotype and
T2D (Fig. S5B). After adjustment for age, sex, and FLI, we found that
Escherichia/Shigella (+) and Clostridium sensu stricto (�) were signif-
icantly associated with T2D (multivariate regression analysis,
FDR < 0.1; Fig. 6C and Table S11). By means of inferred functional
analysis, we found that two pathways related to LPS biosynthesis
were also more abundant in the participants with T2D (Fig. 6D
and 6E), as shown in the NAFLD cohort in the present study.
ype in the healthy Korean twin (n = 752) and NAFLD-T2D (n = 329) cohorts. (B)
resence of NAFLD alone (n = 228) and (C) NAFLD plus T2D (n = 329). FDR < 0.1.



Fig. 6. Validation of the identified NAFLD-T2D-associated bacterial signatures using an independent T2D cohort. (A) The explanatory power of the cohort variables for the
variations in the microbial communities at the genus level. Blue and dark gray bars indicate individual and cumulative effect sizes, respectively. Light gray bars indicate
variables that were significant on an individual basis but were not included in the forward stepwise RDA model. (B) Principal components analysis (PCA), based on Aitchison
transformation, for T2D. (C) Differences in the abundance of bacterial taxa in participants with and without T2D in the validation cohort. (D) Forty-seven inferred metabolic
pathways that were significantly upregulated in participants with T2D. (E) Comparisons of the pathways related to LPS biosynthesis. n = 185; FDR < 0.1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

NAFLD is a well-established risk factor for T2D, and vice versa
[3,4]. We recently identified gut microbiome signatures and
metabolites that are associated with the histological severity of
NAFLD, but some of these microbial signatures were lost after
adjustment for T2D [8]. Therefore, we hypothesized that the two
metabolic disorders may be independently linked with the gut
microbiome. Indeed, multivariate taxonomic association analysis
identified several taxa that followed the distinct patterns linked
with 1) disease progression (Enterobacter, Romboutsia, and Clostrid-
ium sensu stricto), 2) the presence/absence of T2D alongside NAFLD
(Enterobacter, Clostridium sensu stricto, and Lachnospiraceae), and
3) NAFLD only (Megamonas and Ruminococcus). Enterobacter, which
belongs to the Enterobacteriaceae family, has previously been
reported to be linked to NAFLD [8,39–41]. However, we previously
showed that this association disappears when the data are
adjusted for the presence of T2D [8]. Using the present, larger
NAFLD cohort, and the categorization of the participants according
to the presence or absence of T2D, we have confirmed the associ-
ation of particular bacterial taxa with T2D, rather than NAFLD. In
a previous study, Romboutsia was found to be overrepresented in
lean NAFLD patients and to be closely associated with hepatic
triglyceride levels [42]. Clostridiumwas previously shown to be less
abundant in individuals with either NAFLD [43] or T2D [44]; how-
ever, we found significantly fewer Clostridium in patients with
fibrosis and T2D, but not if T2D was absent. The link between
NAFLD and T2D and the abundance of Lachnospiraceae has been
previously studied, but inconsistent results have been obtained.
Significant associations of this taxon with these diseases have been
identified, but both greater and lesser abundance have been
reported [43,45–47]. Megamonas and Ruminococcus have been pre-
viously shown to be associated with severe NAFLD (NASH or signif-
icant fibrosis) [7,8,48,49], and we found that it was only
significantly less abundant in patients with fibrosis but no T2D.

Analysis of host–microbe interactions showed that Romboutsia
and Clostridium sensu stricto were linked with markers of diabetes
specifically (FBS and HbA1c). Although we found that these two
taxa were associated with NAFLD progression and T2D, this sug-
gests that they are more closely associated with T2D than NAFLD.
Interestingly, we also found a strong positive association between
serum LDL-cholesterol concentration, which is a risk factor for both
cardiovascular disease and T2D [50], and Faecalibacterium,which is
a well-known gut commensal. There was a significantly lower LDL-
cholesterol concentration and a lower abundance of Faecalibac-
terium in participants with both NAFLD and T2D. This is consistent
with the results of a study of individuals with severe fibrosis, in
whom the hepatic inflammation reduced the production of very-
low-density lipoprotein (VLDL), resulting in a reduction in LDL-
cholesterol concentration [51–53]. The results of another previous
study suggested that a medication (e.g., statin)-induced reduction
in LDL-cholesterol concentration or genetic variants might increase
the risk of T2D, but the mechanism involved has not been identi-
fied [54]. Thus, the unexpected positive correlation between the
abundance of Faecalibacterium and LDL-cholesterol concentration
might be attributable to the lower LDL-cholesterol concentration
that characterized participants with severe NAFLD and T2D, in
comparison with participants with less severe disease.

Inferred functional analysis revealed that metabolic pathways
involved in the degradation of aromatic compounds were signifi-
cantly more abundant in the NASH + T2D and significant fibro-
sis + T2D groups. Aromatic compounds (i.e., phenyl-alanine,
tyrosine, and tryptophan) are converted to acetyl-CoA, succinyl-
CoA, and pyruvate via peripheral and central pathways. These con-
verted aromatic compounds can then be utilized as nutrient or
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energy sources to support microbial growth [33]. Enzymes
involved in the degradation of aromatic compounds were mainly
encoded by members of Enterobacteriaceae, which suggests that
these bacteria may benefit from the gut environment present in
patients with NAFLD and T2D. [55]. Furthermore, specific path-
ways involved in the biosynthesis of LPS, such as ECASYN-PWY
(the enterobacterial common antigen biosynthesis pathway) and
KDO-NAGLIPASYN-PWY (the superpathway for (Kdo)2-lipid A
biosynthesis) were more abundant in the participants with meta-
bolic disease. Given that LPS influx has been proposed to mecha-
nistically link gut dysbiosis with NAFLD in humans and animal
models [56,57], the upregulation of these pathways might impli-
cate the microbiome as a risk factor in the pathogenesis of NAFLD
and T2D.

The impact of medications on the gut microbiome has been
thoroughly studied [58,59]. In particular, metformin treatment
has been reported to affect the abundance of specific gut bacteria,
such as Akkermansia muciniphila, Escherichia, and Intestinibacter
[60]. However, in the present study, we found that the same set
of bacteria were associated with NAFLD and T2D, regardless of
the use of antidiabetic medications. Therefore, further studies are
warranted to verify whether these types of bacteria are less
affected by antidiabetic medications or whether they might not
have been effective in the host. In addition to medication,
diet also has a substantial impact on the gut microbiome, which
in turn can affect the host immune system and metabolic parame-
ters [61]. In particular, the lack of specific pharmacotherapy for
NAFLD means that changes in lifestyle, including to the diet,
remain the best strategy for the prevention and treatment of the
disease [62]. Further research on the effects of diet on NAFLD is
necessary to improve the management of the disease.

In recent studies, participants have been classified according to
their gut microbial composition, and in this way an inflammatory
enterotype has been identified that is associated with multiple dis-
eases (depression, primary sclerosing cholangitis, and inflamma-
tory bowel disease) [63–65]. To determine whether such an
inflammatory enterotype was present in the selected Korean
cohort, we enterotyped both the study cohort and the validation
cohort, and found that the B enterotype was more abundant in
the NAFLD cohort than in the healthy Korean twin cohort. How-
ever, the resolution of the enterotyping approach was not high
enough to distinguish T2D from NAFLD or either disease from indi-
viduals who did not have T2D in the validation cohort. Further sub-
typing of the inflammatory enterotype might help clarify the
relationships with each disease and permit the identification of
patients who would respond most effectively to particular
therapeutics.

Some limitations of the present study include 1) the study
design: this cross-sectional study only captures a snapshot of the
microbial relationships with the host. 2) The differing definitions
of NAFLD that were used for the NAFLD (i.e., biopsy) and T2D
(i.e., FLI) cohorts. In a previous study of a large Finnish cohort
(n = 6,269), a NAFLD-specific microbial signature was successfully
identified by categorizing the participants using this FLI cut-off
value [13]. However, the use of this index to define NAFLD may
not be as accurate as a diagnosis made using a biopsy. 3) The
absence of patients with only a single disease in the NAFLD cohort.
Given that T2D always accompanied NAFLD in the present cohort,
we were unable to analyze the independent effect of each disease.
Despite these limitations, we were able to distinguish the micro-
bial signature of T2D from that of the progression of NAFLD using
an additional validation cohort. Further studies with longitudinal
cohorts with shotgun metagenomic analysis are warranted to con-
firm the functional perspective of the gut microbiome with the
disease.
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5. Conclusions

In conclusion, we have been able to distinguish T2D-specific
and NAFLD-specific bacterial signatures. Recent studies of NAFLD
have shown that there are distinct alterations to the gut microbiota
of individuals with NAFLD, but most of these studies did not con-
sider the presence of T2D as a confounding factor. In the present
study, we have identified bacterial taxa that more strongly associ-
ated with T2D than NAFLD in a NAFLD-T2D cohort by 1) categoriz-
ing the cohort, 2) showing correlations with host parameters that
are specific for diabetes and liver disease, and 3) validating the
results in an independent T2D cohort. These results should help
facilitate further research aimed at improving the diagnosis, pre-
vention, and treatment of these metabolic diseases. In the future,
longitudinal studies should be performed to evaluate whether
the presence or exacerbation of these bacterial signatures may pre-
dict the development or progression of these metabolic diseases.
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