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Overview
The Poly ADP-Ribose Polymerases (PARPs), also called Diphtheria toxin-like ADP-Ribosyl-
transferases (ARTDs), catalyze the transfer of ADP-Ribose from nicotinamide adenine dinu-
cleotide (NAD+) to targeted proteins. The activity of these enzymes is generally correlated to
cellular stress responses, including oxidative stress, DNA repair, and pathogen infection. Sev-
eral lines of evidence, including an association with the interferon response, accelerated evolu-
tion, and the regulation of viral and antiviral defense transcripts, converge to implicate a
widespread involvement of ARTDs/PARPs and ADP-Ribosylation in the mammalian antiviral
response. Here, we provide a brief overview of this emerging subfield of virus–host
interactions.

Question 1: What Is an ARTD/PARP?
Poly ADP-Ribose Polymerases (PARPs) are a family of enzymes that transfer one or more
ADP-Ribose groups to target proteins, using NAD+ as a substrate. Humans encode 17 PARPs,
though the majority of these enzymes are unable to catalyze Poly ADP-Ribosylation (PARyla-
tion). Rather, most PARPs transfer a single ADP-Ribose group to target proteins (Mono
ADP-Ribosylation or MARylation) [1,2]. The lack of true Poly ADP-Ribose Polymerase activ-
ity, as identified through sequence features and biochemical activity, has prompted a nomen-
clature shift from “PARPs” to the more accurate Diphtheria toxin-like
ADP-Ribosyltransferases (ARTDs) (Table 1) [3]. As the name indicates, ARTDs are evolution-
arily conserved in organisms from bacteria to humans. In particular, ARTDs and ADP-Ribosy-
lation have strong connections to host–pathogen interactions. While this review will focus on
the known and potential contribution of ARTDs to viral infection, it is important to note that
several species of bacteria are known to encode ADP-ribosyltransferases that contribute to
pathogenesis.

Similar to other posttranslational modifications, ADP-Ribosylation can exert a wide range
of effects on modified proteins, ranging from modification of enzymatic activity to facilitating
the ubiquitination and subsequent degradation of targeted proteins [2]. PARylation can also
facilitate protein–protein interactions because the heterogeneous and often branched modifica-
tion provides numerous binding sites for proteins containing WWE, PAR-binding motif
(PBM), PAR-binding zinc finger (PBZ), or Macro domains. MARylation, by contrast, is only
bound by Macro domain-containing proteins [1,2,4]. ADP-Ribosylation is a reversible modifi-
cation, and removal of ADP-Ribose is performed by ADP-Ribosylhydrolases (ARH) and the
multiple isoforms of the Poly ADP-Ribose Glycohydrolase (PARG) gene. ARH3 and PARG
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cleave PAR chains to the last ADP-Ribose (MAR), and this last ADP-Ribose group can be
removed by certain enzymes that contain a Macro domain (MacroD1 and MacroD2 in
humans) or ARH1 [4].

Question 2: What Are the Cellular Functions of ARTDs/PARPs?
ARTD activity is correlated with cellular stress. The first described and best studied ARTD is
ARTD1 (PARP1), which participates in DNA repair. ARTD1 and the related ARTD2 (PARP2)
bind to damaged DNA, leading to the PARylation of the ARTDs themselves as well as histones
and other nearby proteins. The highly charged PAR polymer then serves as a scaffold to recruit
DNA repair enzymes to the site of the lesion. During times of extreme DNA damage, extensive
PARylation can deplete NAD+ levels in the cell. In the absence of this important metabolite,
ATP production and cellular metabolism is inhibited, which can result in cell death via necrosis
[2]. Cellular metabolism is also altered by ARTD8 (PARP14), which promotes the Warburg
effect in cancerous cells through regulation of JNK1 [6]. While it is unclear if this regulation is
mediated through the enzymatic activity of ARTD8, it seems likely that ARTDs can manipulate
cellular metabolism through both the targeting of specific substrates and the consumption of
key metabolites [6,7].

Pioneering work by Chang and colleagues has expanded the view of the ARTD/PARP fam-
ily beyond their well-established nuclear function in DNA repair to cytoplasmic functions. Sys-
tematic characterization studies of the ARTD family have implicated multiple cytoplasmic
ARTDs in the regulation of stress responses [1,5]. Varied stressors, including oxidative stress
and nutrient deprivation, can lead to translational inhibition and formation of cytoplasmic
stress granules around sites of stalled translation. Stress granules contain multiple ARTDs
(ARTDs 5, 7, 8, 12, and 13) as well as numerous other proteins. Several proteins in stress

Table 1. ARTD/PARP nomenclature.

ARTD Name PARP Name Other Names Catalytic Activity

ARTD1 PARP1 PARylation

ARTD2 PARP2 PARylation

ARTD3 PARP3 MARylation

ARTD4 PARP4 vaultPARP PARylation*

ARTD5 PARP5a Tankyrase-1 PARylation

ARTD6 PARP5b Tankyrase-2 PARylation

ARTD7 PARP15 BAL3 MARylation

ARTD8 PARP14 BAL2 MARylation

ARTD9 PARP9 BAL1 Inactive

ARTD10 PARP10 MARylation

ARTD11 PARP11 MARylation*

ARTD12 PARP12 ZC3HDC1 MARylation

ARTD13 PARP13 ZAP, ZC3HAV1 Inactive

ARTD14 PARP7 TIPARP MARylation

ARTD15 PARP16 MARylation

ARTD16 PARP8 MARylation*

ARTD17 PARP6 MARylation*

The human-encoded ARTDs are listed with their various aliases [3]. Catalytic activity is listed, with asterisks (*) denoting predicted catalytic activity that

has not been demonstrated in vitro [1,5].

doi:10.1371/journal.ppat.1005453.t001
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granules are ADP-Ribosylated, including the ARTDs themselves, G3BP1, and the Argonaute
proteins as part of the RNA-induced silencing complex (RISC) [8]. Although the functional
relevance of ADP-Ribosylation in stress granules remains incompletely defined, PARylation of
the Argonaute proteins in both stress granules and the free cytoplasm is associated with inacti-
vation of RISC/RNA interference (RNAi) [8,9]. Additionally, ARTD15 (PARP16) has been
found to regulate the unfolded protein response through the ADP-Ribosylation of PERK and
IREα, which correlates with inhibition of translation [10]. In sum, ARTDs have been impli-
cated in the regulation of multiple cellular stress responses (for a more comprehensive explora-
tion of the cellular activities of ARTDs, see the June 2015 special issue of Molecular Cell). From
a virological standpoint, the involvement of ARTDs in these processes is provocative, since
each of these responses can be altered during virus infection (Fig 1).

Question 3: Are ARTDs/PARPs Part of the Mammalian Antiviral
Response?
Antiviral activity in the ARTD family was first discovered in the laboratory of Steven Goff, who
found that ARTD13, also called ZAP or PARP13, can specifically bind to retroviral RNA, lead-
ing to its degradation [11]. This finding was then expanded to include other virus families [16].
ARTD13 can also inhibit endogenous retrotransposition by long interspersed nuclear element
(LINE) and Alu elements [14,17]. Furthermore, ARTD13 can directly target cellular transcripts
for degradation [12]. ARTD13 targeting of TRAILR4 mRNA promotes TRAIL-mediated apo-
ptosis, which has previously been identified as an antiviral defense mechanism [18]. Therefore,
by directly targeting viral and possibly host transcripts for degradation, ARTD13 constitutes
part of the antiviral defense.

ARTD13 may also contribute to antiviral defenses by indirectly promoting expression of
select transcripts. Cells undergoing oxidative stress or the antiviral response trigger ARTD13--
dependent attenuation of RISC-mediated transcript silencing [8,9]. While a direct role of RISC
and RNA interference in mammalian antiviral defense remains controversial [19], it is widely
accepted that the microRNA (miRNA) component of the RNAi machinery can regulate some
pro-death, antiviral, and pro-inflammatory transcripts. Therefore, inhibition of RISC via
ARTD activity can conceivably contribute to the innate antiviral defense through the derepres-
sion of cytotoxic transcripts [19]. However, as ARTD13 is catalytically-inactive, PARylation-
associated inactivation of RISC necessarily requires additional, enzymatically active ARTDs
[5,8]. While these additional ARTDs have been identified for oxidative stress-associated inacti-
vation of RISC [8], the relevant ARTDs that attenuate RISC during the antiviral response
remain to be determined.

Early clues regarding the identity of antiviral-relevant ARTDs come from comparative
genomic studies. This approach can reveal patterns of sequence change that are associated
with rapid evolution—a hallmark of pathogen defense proteins. Research from the Malik lab
has revealed patterns of ARTD evolution consistent with pathogen response in multiple
ARTDs (ARTDs 4, 7, 8, 9, 13) [20,21]. Importantly, some sites of rapid evolution occur in the
catalytic PARP domain rather than the RNA-binding domains of ARTDs [20,21]. These
studies predict a connection between the antiviral response and the ADP-Ribosyltransferase
activity of multiple ARTDs. Consistent with this prediction, several ARTDs (ARTDs 10, 12,
13, and 14) are induced by interferon and can inhibit virus replication, albeit through
unknown mechanisms [14, 15]. ARTD13 can also contribute to the production of interferon,
facilitating antiviral signaling in response to hallmarks of RNA virus replication [13]. These
studies combine to implicate the ARTD family as an underappreciated component of antivi-
ral defense.
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Fig 1. ARTDs/PARPs regulate cellular processes that virusesmanipulate. ARTDs are involved in the regulation of multiple cellular stress responses.
Virus infection is inherently stressful for the cell and often induces cellular stress responses in the course of replication. Stress-related pathways that are
known to overlap between virus infection and ARTD activity are highlighted above. We have emphasized ARTD15’s role in PERK activation [10] and
ARTD13’s ability to regulate RNA transcripts through direct (facilitating degradation of RNA [11,12]) and indirect (contributing to RISC inactivation [9])
mechanisms, while contributing to interferon production in response to molecular signatures of viral RNA [9,13]. We also indicate that multiple members of
the ARTD family are interferon-stimulated genes (ISGs) [14,15], localize to stress granules [8], and contribute to DNA repair and overall metabolic changes in
the cell [2,6,7].

doi:10.1371/journal.ppat.1005453.g001
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Question 4: Can ARTD/PARP Activity Be Proviral?
Virus infection can manipulate cellular metabolism, induce endoplasmic reticulum (ER) stress,
and, with some DNA viruses, invoke or inhibit DNA repair machinery to facilitate genomic
replication. Given the central nature of PARylation to the regulation of these processes, it
would seem likely that some viruses, at least indirectly, utilize these enzymes to facilitate their
replication. A herpes simplex virus 1 (HSV-1) gene product (ICP0) degrades a PARG isoform,
suggesting that increased PARylation can be beneficial for viral infection [7]. Also, global inhi-
bition of ARTD activity has been shown to attenuate the replication of a wide variety of viral
families, including poxviruses [22], polyomaviruses [23,24], herpesviruses [7], adenoviruses
[25], and arteriviruses [26]. Other studies report that ARTD activity affects genomic mainte-
nance or lytic reactivation during the latent cycle of two closely related herpesviruses [27,28] as
well as the integration of Hepatitis B and potentially retroviral genomes into host DNA
[29,30]. When combined with the antiviral effects of ARTDs mentioned in the previous sec-
tion, it is clear that a complete understanding of virus–ARTD interactions requires definition
beyond a simplistic proviral or antiviral label.

Question 5: What Is the Future for ARTD/PARP Biology and
Viruses?
A growing body of evidence supports a substantial role for ARTDs during virus infection and
antiviral defense. ARTDs regulate aspects of cellular biology that viruses routinely manipulate
during infection. Multiple ARTDs are interferon-inducible, bear evolutionary signatures con-
sistent with a role in antiviral defense, and have been found to inhibit viral infection. However,
despite the mounting evidence for the relevance of ADP-Ribosylation during virus infection,
few relevant MARylated or PARylated targets have been described. Recent proteomics
approaches have identified PARylated proteins during nonviral stress conditions [31], and sim-
ilar approaches should prove informative for understanding virus–host interactions. ARTDs,
particularly ARTD13, also regulate RNA transcripts through direct and indirect mechanisms
[9,11]. Defining these transcripts will also contribute to our understanding of ARTDs in virus–
host interactions.

The lack of inhibitors to specific ARTDs handicaps our understanding of individual ARTDs
in relation to virus infection. While specific inhibitors have been engineered for ARTD1, which
is a target of cancer chemotherapy, studies attempting to target other ARTD family members
often utilize the general ARTD inhibitor 3-amidobenzadole (3AB). As a structural mimic of
nicotinamide, a byproduct of the ADP-Ribosyltransferase reaction, 3AB likely inhibits numer-
ous ARTDs as well as other ADP-Ribosyltranferases [2]. Future studies utilizing more specific
inhibition strategies (e.g., small interfering RNA (siRNA), genetic, or chemical inhibitor
approaches) are warranted [32].

While this review has focused on the catalytic activity of ARTDs in regards to viral infection,
it should be emphasized that these enzymes are also relevant to viral infection outside of their
ADP-Ribosylation activity. ARTD13, which is catalytically inactive, has well-defined antiviral
activities [11,16], and other ARTDs likely affect viral replication independently of direct cataly-
sis. Conversely, ADP-Ribosylation is catalyzed by other families of enzymes, including a subset
of the sirtuin family [33]. Though sirtuins are outside the scope of this review, we note that
these sirtuins possess activities related to infection and pathogen defense [34].

Many questions remain regarding the interplay between viruses and ARTDs. While DNA
damage is clearly a trigger for nuclear ARTD activity [2], it remains unclear what cues cytosolic
ARTDs during virus infection. Furthermore, it is unknown which ARTD-regulated protein
and transcript targets are most relevant to the antiviral response. Whether catalyzed by
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ARTDs, sirtuins, or other ribosyltransferases, it is likely that ADP-Ribosylation will have a
breadth of effects similar to other posttranslational modifications. Therefore, defining the rele-
vant contexts and consequences of MARylation or PARylation of individual targets is impera-
tive to understanding the biology of ARTDs. The interplay between ARTDs and viruses is an
underappreciated aspect of virology, and it has the potential to reveal new insight to cellular
biology and virology while identifying new therapeutic targets.
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