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Simulated weightlessness procedure, head-
down bed rest impairs adult neurogenesis
in the hippocampus of rhesus macaque
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Abstract

The microgravity environment in space can impact astronauts’ cognitive and behavioral activities. However, due to
the limitations of research conditions, studies of biological changes in the primate brain, such as neurogenesis, have
been comparatively few. We take advantage of — 6° head-down bed rest (HDBR), one of the most implemented space
analogue on the ground, to investigate the effects of weightlessness on neurogenesis of non-human primate brain.
Rhesus Macague monkeys were subjected to HDBR for 42 days to simulate weightlessness. BrdU (5-bromodeoxyuridin)
and IdU (iododeoxyuridine) were intraperitoneally injected separately before or after HDBR to label the survival and
proliferation of newborn neurons. Immunohistochemistry was performed to study the effect of simulated weightlessness
on neurogenesis. BrdU staining showed that survival of newborn neurons was reduced, while there were fewer BrdU-
positive neurons in the HDBR group compared with the control. Furthermore, IdU-positive neurons also decreased in the
HDBR group suggesting a reduced proliferation capacity for these newborn neurons. Our results demonstrate the definite

adult neurogenesis.

neurogenesis in the adult rhesus macaque hippocampus, and simulated weightlessness HDBR procedure impairs the
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There have been many long-duration spaceflights over the
past decades, and more spaceflights with even longer dura-
tions will be required in the future. Humans, instead of
robots, have an essential role in long-duration spaceflight
missions due to superior perception, intelligent decision-
making and capacity for independent action. It is clear that
the microgravity environment in space can impact astro-
nauts’ cognitive and behavioral activities [1, 2], which fur-
ther affects the astronauts’ decision-making [3]. This could
be noteworthy risk for long-duration spaceflight missions.
Therefore, it is of great importance to reveal the underlying
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mechanism of how microgravity leads to abnormal cogni-
tive and behavioral activities. Physiology studies reveal that
changes in volumes of cerebrospinal fluid, cerebral blood
flow and intracranial pressure are caused by the redistribu-
tion of an astronaut’s body fluid toward the head in a
weightless environment [4, 5], and this may lead to struc-
ture remodeling. Neuroimaging studies have demonstrated
alterations in the volumes of gray matter and white matter
in specific brain regions including the frontal lobes and the
hippocampus [6]. Early studies have also shown micrograv-
ity affects neurotransmitter concentrations [7] and the
number of synapses [8].

Most studies on brain tissues under microgravity have
been based on rat and mouse animal models [9], which
might not simulate human activities well. Previous studies
in human have reported the effect of spaceflight on psycho-
logical problems, cephalic fluid shifts, and cognitive alter-
ations, however biological changes in the brain are not as
well investigated [10]. There are few reports on whether
brain abnormalities caused by space flight are related to
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neurogenesis. In the last decade, there is increasing evi-
dence demonstrating the important role of adult hippocam-
pal neurogenesis in the pathogenesis and therapeutics of
mental diseases. Head-down bed rest (HDBR) is the widely
used procedure to study the effects of simulated weightless-
ness on primates on the ground. HDBR eliminates
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gravitational input form the head to the leg and inducing
cephalic fluid shift from the lower parts of the body toward
the head by applying bed rest with 6° head down position
([11], Fig. 1a and Additional file 1: Figure S1). However, the
subjects are still under normal gravity during the HDBR
procedure. With the advantage of HDBR animal model, we
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Fig. 1 HDBR impairs neurogenesis. a Schematic diagram of monkey in HDBR group. b Experimental procedure of immunohistochemistry.
¢ Representative images of BrdU and IdU staining in HDBR (above) and control (below). d-e Quantitative results of immunofluorescence
imaging of BrdU (d) and IdU (e) in the DG of HDBR and control monkeys. Data are shown as the mean + SEM. *P < 0.05. Scale bar, 200um
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can test if simulated weightlessness could affect neurogen-
esis and speculate the effect of microgravity on the primate
brain.

In this study, 5 monkeys were subjected to HDBR for 42
days to study the effects on the brain. Simultaneously, mon-
keys in the control group were single housed in the cages
in the next room. While muscle atrophy and bone loss were
also studied, those results are outside the scope of this
paper. We collected tissue from the monkeys to examine
whether HDBR for 42 days had an influence on adult hip-
pocampal neurogenesis. Both BrdU (5-bromodeoxyuridin)
and IdU (iododeoxyuridine) were intraperitoneally injected
to label the newborn neurons. BrdU was injected before
HDBR, while IdU was injected at the end of HDBR (Fig.
1b). Two primary antibodies, rat anti-BrdU (react with
BrdU only) and mouse anti-BrdU(react with BrdU and
IdU), were used for the separation of BrdU and IdU.
BrdU-positive and IdU-positive cells in dentate gyrus (DG)
were counted to represent the capacity of neurogenesis.
We found significant reduction of cell survival by BrdU la-
beling (HDBR, N=5, control, N=3) and decreased cell
proliferation by IdU labeling (HDBR, N =5, control, N = 4)
in HDBR group compared with the control (Fig. 1c-e and
Additional file 1: Table S1). These results demonstrated that
42 days HDBR impairs adult hippocampal neurogenesis.

Hippocampal neurogenesis has been observed in dif-
ferent adult animals. Studies have indicated that the
newly generated cells might have a function in cognition
and brain repair [12]. Adult hippocampal neurogenesis
is also found in humans and contributes to memory
function and enhanced synaptic plasticity across the life
span. Adult hippocampal neurogenesis adds particular
functionality to the mammalian hippocampus and pre-
sumably is involved in cognitive functions that we con-
sider to be essential for humans [13]. Recent research
found that recruitment of young neurons to the primate
hippocampus decreases rapidly during the first years of
life, and neurogenesis in the DG is extremely rare in
adult [14], however, our results strongly prove that adult
neurogenesis was still continued in adult monkeys.

During HDBR procedure, the monkeys were restrained
on the bed. Several studies showed that volunteers de-
veloped psychic stress, and the plasm hormone involved
in the response of the organism to stress, such as corti-
sol was significantly altered in human HDBR research
[11]. Restraint stress has also been related to decreased
cell proliferation and survival of the newborn hippocam-
pal granule cells in mice. [15]. The decreased neurogen-
esis was caused by HDBR procedure, which might
contain the effects from cephalic fluid shift and stress.

In conclusion, our results indicated the unambiguous
neurogenesis in the adult rhesus macaque hippocampus,
and simulated weightlessness HDBR procedure impairs
the adult neurogenesis.
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Additional file 1: Table S1. Materials and Methods. Raw data of
immunohistochemistry analysis. Figure S1. The Photo of monkey in
HDBR group (DOCX 445 kb)
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BrdU: 5-bromodeoxyuridine; DG: Dentate gyrus; HDBR: Head-down bed rest;
|dU: lododeoxyuridine; PBS: Phosphate buffered saline;
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