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Abstract

Background: Hybridization is very common in plants, and the incorporation of new alleles into existing lineages (i.e.
admixture) can blur species boundaries. However, admixture also has the potential to increase standing genetic
variation. With new sequencing methods, we can now study admixture and reproductive isolation at a much finer
scale than in the past. The genus Boechera is an extraordinary example of admixture, with over 400 hybrid derivates of
varying ploidy levels. Yet, few studies have assessed admixture in this genus on a genomic scale.

Results: In this study, we used Genotyping-by-Sequencing (GBS) to clarify the evolution of the Boechera puberula
clade, whose six members are scattered across the western United States. We further assessed patterns of admixture
and reproductive isolation within the group, including two additional species (B. stricta and B. retrofracta) that are
widespread across North America. Based on 14,815 common genetic variants, we found evidence for some cases of
hybridization. We find evidence of both recent and more ancient admixture, and that levels of admixture vary across
species.

Conclusions: We present evidence for a monophyletic origin of the B. puberula group, and a split of B. puberula into
two subspecies. Further, when inferring reproductive isolation on the basis of presence and absence of admixture, we
found that the accumulation of reproductive isolation between species does not seem to occur linearly with time
since divergence in this system. We discuss our results in the context of sexuality and asexuality in Boechera.
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Background
Hybridization is the interbreeding of individuals from
genetically differentiated populations that are distin-
guished by multiple heritable characters [1, 2]. Hybridiza-
tion can lead to offspring with reduced fitness, but it
can also transfer alleles between species through intro-
gression [3–6]. Such introgressed alleles represent a
potential source of novel genotype combinations that
might be adaptive in a new (or the old) environment.
On the other hand, with high rates of gene flow and
low levels of reproductive isolation (RI), introduced
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alleles could be transmitted in such a way that the
genomes of locally adapted species with small popu-
lation sizes (e.g. in alpine glacial refugia) could ulti-
mately become extinct by being swamped by a different
lineage [7, 8]. Thus, the incorporation of new alle-
les into existing lineages through hybridization (i.e.
admixture) has varying effects on speciation and local
adaptation, either slowing or accelerating the evolu-
tion of RI between populations through gene flow and
recombination.
The study of admixture in natural populations has a

long history [1, 2, 9–11], with a strong emphasis on dis-
cerning patterns in hybridization and its evolutionary role
using a diverse array of techniques. Initially, morpho-
logical and behavioral characters were used to describe
hybrid zones in animals [12–15] as well as plants e.g.
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[16, 17], based on the indicator of phenotypic inter-
mediacy between parental species. As new techniques
emerged, it became possible to combine morphological
features with biochemical data, such as allozyme markers
[18] as well as cytogenetic methods [19–21]. The pace of
discovery in this field of inquiry increased significantly
with the development of molecular markers [22–25] see
[26, 27] for excellent reviews on the subject.
With the recent emergence of high-throughput

sequencing methods, and more specifically the devel-
opment of Genotyping-by-Sequencing (GBS) methods,
the study of hybridization is once more experiencing a
strong resurgence e.g [28–30]. We are now able to assess
patterns of introgression on a genome-wide scale. The
number of loci assayed across individual genomes has
increased substantially, giving us the opportunity to study
admixture at a scale that greatly exceeds the genomic
resolution and statistical power obtained using previous
marker methods [31–37]. We are now able to obtain more
accurate estimates of admixture, detect more limited
introgression, and measure variation in introgression
among regions of the genome [30, 38, 39].
Certain groups of organisms are more prone to

hybridization than others, and the flowering plant genus
Boechera (Brassicaceae) is extraordinary in this regard.
Early studies of this group as Arabis in [40–42] suggested
that hybridization was common. More recent work has
shown that Boechera comprises one of the most extensive
and complex hybrid networks known, including 80+
sexual diploid taxa that have interacted to form over 400
distinct hybrid lineages containing two, three, or even
four distinct genomes [43]. Hybridization spans the entire
genus [44] and has occurred repeatedly and indepen-
dently among many diploid species, resulting in hybrid
taxa with high genetic diversity [45–47]. Sexual diploid
Boechera species were found to be self-compatible, with
low levels of heterozygosity and high levels of inbreeding
[42, 47–49]. Hybrids were mostly found to be apomictic
(reproducing via unfertilized seeds), highly heterozy-
gous and it has been suggested that both obligate and
facultative apomixis exist in this system [40, 50, 51].
Hybridization in Boechera appears to be strongly linked

to the occurrence of gametophytic apomixis (Taraxacum-
type diplosporous apomixis [52]), where meiosis I fails,
and meiosis II results in the formation of two (rather than
four) megaspores that are genetically very similar (often
identical) to the sporophyte that produced them. One of
these two cells degenerates, leaving the other to undergo
three mitotic divisions to form a megagametophyte
[42, 47–49, 52–56].
Over the last two decades, the genus Boechera has

been intensively studied in regards to patterns of genomic
architecture [57–60], local adaptation and speciation
[61–66], hybridization and polyploidy as well as the origin

and control of apomixis [45, 51, 53–55, 67–69], and
population genetic differentiation of natural populations
[49, 70]. The breadth of ongoing work, coupled with
known high levels of inbreeding in Boechera species and
its relatively close relationship to Arabidopsis, have made
the genus a valuable model system for studies of evolution
and ecology see also [71]. But to fully realize the potential
of this model system, we need to better understand the
patterns of admixture and reproductive isolation that
have contributed to its evolution.
Our goal is to build on this foundation by assessing

genome-wide patterns of hybridization and resulting
admixture while clarifying the evolutionary relationships
of one well-supported clade, the Boechera puberula
group. We focus on tests for historical and contempo-
rary hybridization (via the identification of hybrid or
admixed individuals) rather than ancient introgression.
As originally defined by [44], the puberula clade included
five sexual diploid species: B. lasiocarpa, B. puberula,
B. retrofracta, B. subpinnatifida, and B. serpenticola.
The single specimen referred to as B. retrofracta in this
earlier phylogenetic analysis [44] has subsequently been
reassigned to B. exilis, with the epithet retrofracta applied
to a different clade (Windham et al. unpubl.).
In this study, we attempt to 1) assess the evolu-

tionary placement of the Boechera puberula group, a
monophyletic clade within the large genus Boechera
(Brassicaceae), and 2) estimate admixture proportions
within these species to assess patterns of gene flow and
levels of RI on a genome-wide scale. When taxa overlap
and have opportunities for gene flow, the presence ver-
sus absence of hybrids can be seen as evidence for the
strength of RI. Jointly, these analyses will form the basis
for future work on speciation in the group.

Methods
Data collection and DNA extraction
We extracted DNA from leaf tissue of 107 individuals
from 47 localities in spring and early summer of 2013 (see
Fig. 1 and Table 1 for a list of taxa and sampling localities).
Leaf tissue collections made by the senior author (identi-
fied by the prefix “MS”) were immediately stored in silica
gel and voucher specimens are accessioned in the Inter-
mountain Herbarium (UTC). The 23 samples without the
prefix “MS” came from air-dried herbarium specimens
deposited at the herbaria indicated in Additional file 1:
Table S1. DNAwas extracted from leaf tissue following the
CTAB protocol described in [55].

Microsatellite markers for determination of ploidy and
nominal taxa
We generated microsatellite data to determine ploidy and
assign plants to nominal species. Microsatellite markers
were genotyped at 15 loci using the multiplex polymerase
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Fig. 1 Sampling locations and distribution ranges of select Boechera taxa in western United States. a Sampling locations of diploid and triploid
Boechera populations including blowup of UT (see locality numbers and nominal taxa in Table 1). Note that we added a small amount of noise to
GPS coordinates, in order to make all of the the locality numbers visible. Exact geographic coordinates are provided in Table 1. b Documented
distributions of Boechera species across the western United States. Maps include only sexual diploids identified by their epithets. Note that these
county-level distributions are based solely on specimens whose identification has been confirmed by microsatellite studies [56]. Both B. retrofracta
and B. stricta have wider distributions across North America

chain reaction (PCR) protocol described in [55]. We
then determined the size of amplicons on an Applied
Biosystems 3730xl DNA Analyzer, and alleles were scored
using GeneMarker version 2.6.2 (Softgenetics, State
College, PA, USA). We further inferred the ploidy level
of each sample by determining the maximum number
of microsatellite alleles at each locus, which has been
shown to be an accurate proxy for chromosome counts
in Boechera [43, 55]. We then identified nominal taxa
based on a dataset containing roughly 4400 individuals,
representing all currently known sexual diploid Boechera
species [43, 55, 72].

Genotyping-by-Sequencing library
We generated Genotyping-by-Sequencing (GBS) data
to resolve the evolutionary placement within Boechera
and infer admixture proportions. Reduced-complexity,

double-digest restriction fragment-based DNA libraries
were prepared for the same DNA samples, following [30].
The restriction-fragment library preparationmethod gen-
erally yields high numbers of loci through the use of
high-throughput sequencing platforms, as compared to
traditional molecular markers. For studies of admixture,
we can thus expect to achieve a higher resolution across
individuals’ genomes. The GBS libraries were sequenced
in one lane at the University of Texas Genomic Sequenc-
ing and Analysis Facility (Austin, TX, USA) on the Illu-
mina HiSeq 2500 platform. We used custom python and
perl scripts [73] to parse the sequences for individual bar-
codes and split them by individual. Each individual was
aligned to the B. stricta genome assembly [74] using bwa
aln & samse version 0.7.5 [75]. We allowed for a maxi-
mum edit distance of 5, with a read trimming parameter
of 10, the seed set to 20 and a maximum edit distance in
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Table 1 Locality information for Fig. 1, sample numbers for Figs. 2, 3, and 4 and Additional file 1: Figure S3 as well as ploidy and
nominal taxa which were both determined from microsatellite data

Locality Samples Locality Longitude Latitude Ploidy Nominal taxon

1 1-3,8 Grizzly Peak, UT -111.97 41.41 2 B. stricta

2 4 La Plata, CO -108.02 37.44 2 B. stricta

3 5 Weber, UT -111.59 41.41 2 B. stricta

4 6 Nye, NV -117.35 38.95 2 B. stricta

5 7 Custer, ID -114.65 43.86 2 B. stricta

6 9 Teton, WY -110.52 43.85 2 B. stricta

7 10 Madison, MO -111.96 45.56 2 B. stricta

8 11,13,14,25 Steep Canyon, UT -111.6 41.97 2 B. retrofracta x stricta

9 12,24,26 Deadfall Lake, CA -122.52 41.33 2 B. retrofracta x subpinnatifida

10 15,18,19 Little Volcano, CA -120.89 39.86 2 B. retrofracta

11 16,21,47,75 Hat Creek, CA -121.41 40.7 2 B. retrofracta

12 17 Park, WY -110.57 44.41 2 B. retrofracta retrofracta (sexual)

13 20 Mineral, MO -115.7 47.45 2 B. retrofracta retrofracta (sexual)

14 22 Deschutes, OR -121.56 43.67 2 B. retrofracta retrofracta (sexual)

15 23 Humboldt, CA -123.65 40.48 2 B. retrofracta retrofracta (sexual)

16 27,31,33,34 Bear Lake Summit, UT -111.47 41.93 2 B. exilis x retrofracta

17 28,29,30,32 Wells, NV -114.57 41.08 2 B. exilis x retrofracta

18 35 Elko, NV -115.08 40.68 2 B. exilis

19 36 Summit, UT -111.4078 40.7753 2 B. exilis

20 37 Nye, NV -117.54 38.97 2 B. exilis

21 38 Millard, UT -112.27 38.95 2 B. exilis

22 39 Baker, OR -117.11 44.7 2 B. puberula puberula

23 40,41,48,49 Water Canyon, NV -116.71 40.64 2 B. puberula

24 42 Box Elder, UT -113.94 41.77 2 B. puberula puberula

25 43,45,46 Lye Creek, NV -117.54 41.69 2 B. puberula

26 44 Humboldt, NV -117.55 41.67 2 B. puberula puberula

27 50 Box Elder, UT -113.69 41.53 2 B. puberula arida

28 51 Mono, CA -119.13 38.36 2 B. puberula arida

29 52 Lander, NV -117.37 39.24 2 B. puberula arida

30 53-58 Bully Choop Mtn, CA -122.94 40.65 2 B. serpenticola

31 59-62 Rogue River, OR -123.53 42.55 2 B. subpinnatifida

32 63 Rich, UT -111.46 41.92 2 B. lasiocarpa (holotype)

33 64,65 Cache, UT -111.66 41.91 2 B. lasiocarpa

34 66-71 Logan Canyon Sinks, UT -111.48 41.93 2 B. lasiocarpa

35 72-74 Steam Mill Peak, UT -111.61 41.95 2 B. lasiocarpa

36 76 Box Elder, UT -111.98 41.39 2 B. lasiocarpa

37 77 James Peak, UT -111.78 41.38 2 B. lasiocarpa

38 78 Salt Lake, UT -111.72 40.63 2 B. lasiocarpa

39 79 Tooele, UT -112.62 40.48 2 B. lasiocarpa

40 - Angel Lake, NV -115.07 41.02 3 B. exilis x puberula x retrofracta

41 - Frenchman Lake, CA -120.18 39.87 3 B. retrofracta x sparsiflora (2:1)

42 - Indian Creek, NV -117.55 41.65 3 B. exilis x retrofracta x sparsiflora
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Table 1 Locality information for Fig. 1, sample numbers for Figs. 2, 3, and 4 and Additional file 1: Figure S3 as well as ploidy and
nominal taxa which were both determined from microsatellite data (Continued)

Locality Samples Locality Longitude Latitude Ploidy Nominal taxon

43 - James Peak, UT -111.78 41.38 3 B. retrofracta x lasiocarpa (2:1)

44 - Peavine Peak, NV -119.93 39.59 3 B. puberula arida x subpinnatifida (2:1)

45 - Shoshone Mtns, NV -116.86 40.42 3 B. exilis x puberula x retrofracta

46 - Steam Mill Peak, UT -111.61 41.95 3 B. lasiocarpa x retrofracta x stricta

47 - Willard Peak, UT -111.97 41.39 3 B. lasiocarpa x lemmonii x stricta

Complete locality and sample information can be found in Additional file 1: Table S1

the seed of 2. We further used samtools version 0.1.19
[76] to create bam files from the resulting alignments.
Polyploids were excluded, because subsequent analyses
only permit the use of diploid individuals. In total, we
considered 79 diploid individuals for further analyses (see
Table 1).
We identified single nucleotide variants (SNVs) using

GATK version 3.5 [77] with ploidy set to diploid. Using
the Unified Genotyper in GATK, we set heterozygosity for
prior likelihood calculation per locus to 0.001, and ignored
sequences with mapping quality < 20. We further set the
minimum phred-scaled confidence threshold for variants
to be called to 50. The resulting variants were further fil-
tered to contain only variants with at least 128 sequences,
at least 4 sequences with the alternative allele, and we only
kept the genetic variants at nucleotide sites where we had
data for at least 80% of the sampled individuals and only
one alternative allele. Additionally, only variants withmin-
imum phred-scaled mapping quality of 30 and a minor
allele frequency < 0.05 were retained, in order to keep
only common variants.

Evolutionary history and genetic structure of the B.
puberula group
To assess the evolutionary history of the B. puberula
group, we performed clustering of individuals based on
genotype estimates for the common SNVs. We used the
posterior mean genotype as a point estimate for geno-
types based on the posterior genotype probabilities for
eight putative source taxa, as obtained by entropy [30]
(see below). A mean genotype is the mean of the pos-
terior distribution and as such is a non-integer point
estimate of the number of alleles at a given locus, rang-
ing from zero to two (with 0: homozygous for reference
allele; 1: heterozygous, and 2: homozygous for the alter-
native allele). Because we are using SNVs, we are not
dealing with continuous or contiguous stretches of DNA
sequences. On the contrary, we use only variable sites
that were concatenated into a string of variants for each
individual. Since assuming a standard model of sequence
evolution might not be accurate under these circum-
stances, we used distance methods instead. Consequently,
branch lengths of the resulting trees can not be directly

related to substitution rates, as they represent the dis-
tance matrix across individuals and SNVs, and we could
not infer the timing of diversification between these taxa
see also [78]. We created a neighbour-joining (NJ) tree
based on a matrix of pairwise distances of the number of
sites that differ between each pair of concatenated SNV
sequences. The NJ tree was constructed by using the ape
package (version 3.4) [79] in R and the distancematrix was
constructed with the dist.dna function.
The common SNVs were analysed for population

genetic structure and admixture using entropy, which
is described in [30]. This model is very similar to the cor-
related allele frequency admixture model in structure
[80], but here, sequence coverage, sequencing error, and
alignment error are explicitly included in the model.
Such a procedure has been demonstrated to decrease
bias when compared to called genotypes [39]. The output
of entropy includes admixture proportions, genotype
probabilities for all individuals at all loci and credible
intervals for all estimated parameters. We performed the
analysis with entropy for numbers of k of 2 to 16
putative clusters, with 6 chains for each k. In order to min-
imize the computional time required for entropy runs,
we estimated initial mean genotypes for each individ-
ual and locus from the genotype likelihoods by using the
expectation-maximization algorithm described in [38].
These mean genotype estimates were used to calculate
starting values of admixture proportions with the dis-
criminant analysis of principal components (dapc) [81]
function in the R package adegenet [82, 83] for each
respective number of clusters.
The software entropy (like structure) uses mul-

tilocus genotype data to estimate admixture proportions
given a number k of source populations. Due to the
inherent stochastic nature of the MCMC sampling algo-
rithm, results will likely not be exactly the same between
repeated runs. Furthermore, if the number of sampling
iterations is not sufficiently large to reach convergence,
repeated runs are likely to differ significantly. Thus, it is
advisable to choose appropriate numbers of iterations and
to perform cross-validation between multiple runs of the
same k [84, 85]. We assessed convergence and mixing of
chains using the Gelman-Rubin diagnostic [86] in coda
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[87] and created the corresponding barplots of admix-
ture proportions for all k clusters (source populations) in
R [88]. The optimal number of clusters was determined
by comparing the deviance information criteria (DIC) for
respective chains across all k clusters.
A second analysis was run in entropy to quantify

the extent to which hybrids were heterozygous for ances-
try from different lineages (i.e., from different inferred
source populations). This was done using the Q model,
which explicitly models the proportion of each individ-
ual’s genome where both gene copies come from the same
versus different source populations (this is an extension of
the standard model used to infer admixture proportions)
[30]. For this analysis, we only considered k = 2. Thus,
our focus here was on hybrids between the B. puberula
clade and either B. stricta or B. retrofracta (these were the
groups distinguished by k = 2). We ran five chains each
with a 5000 iteration burnin, 20,000 post-burnin steps and
a thinning interval of 15. These runs were also seeded with
starting values estimated from dapc.
We extracted the estimated posterior genotype proba-

bilities for eight clusters along with 95% credible intervals.
These genotype probabilities were used to construct a
covariance matrix of mean genotypes across all common
SNVs (14,815) for all 79 diploid individuals. We used prin-
cipal component analysis (PCA) to summarize the geno-
type data based on the centered but not scaled genotype
estimates using the prcomp function in R. Additionally,
the estimated mean genotypes, obtained from entropy,
were used to perform the assessment of evolutionary
placement as mentioned above.
As a further way to assess the evolutionary history and

verify admixture events within the B. puberula group, we
used treemix version 1.13 [89]. With this method, we
can formally test for the presence of splits and mixtures in
the history of our sampled populations. A bifurcating tree
is first fit based on the population allele frequency corre-
lation matrix. Migration edges are then added to improve
the fit of the model; this creates a population graph or net-
work. Across the 79 individuals with 14,815 variants, we
inferred a population graph of said samples with 0 - 11
migration events, rooted with B. stricta, and we calculated
the variance in population relatedness explained by the
treemix model to quantify model fit (Additional file 1:
Figure S1). For this analysis, individuals were grouped
into populations/species based on the taxon assignments
from the microsatellite data set (this is the current stan-
dard for taxonomy in this group of organisms). We did
however drop a single individual from this analysis, sam-
ple 47, which had strongly conflicting assignments based
on the microsatellite data (B. retrofracta) and its admix-
ture proportions inferred from the GBS data (nearly pure
B. puberula, see Results). Other individuals with more
minor conflicts (e.g., evidence of admixture only from the

GBS data) were retained in the nominal group defined
by the microsatellites, and thus by current taxonomy for
this group.

Results
Microsatellite markers for determination of ploidy and
nominal taxa
Based on the maximum number of microsatellite alleles at
each locus, we inferred that 79 of the sampled individu-
als from 39 localities were diploid, and 28 individuals from
eight localities were triploid (see Fig. 1 and Table 1). Using
the analytical tools and comparative data provided by [43],
we determined that 64 of the diploid samples represented
known sexual taxa. Our sampling included all species
assigned to theB. puberula group by [44] as well as the two
most widely distributed Boechera species, B. retrofracta
and B. stricta (Fig. 1). The other 15 diploid individuals
were inferred to be hybrids, produced by crosses between
B. retrofracta and three other taxa (B. exilis, B. stricta, and
B. subpinnatifida). All 28 triploid individuals showed evi-
dence of hybrid origins involving two or, more often, three
genomes (9 and 19 samples respectively; see Table 1 and
Additional file 1: Table S1).

Genotyping-by-Sequencing library
Our data comprised 57.8×106 reads from 79 individu-
als, with a median of 677,138 reads per individual. We
detected a total of 141,846 variants, and after quality
filtering, we obtained 14,815 common high-quality vari-
ants (mean coverage per SNV per individual = 16.41,
sd = 11.97). A randomly chosen set of 10% of the sam-
ples were replicated in the GBS library, which were fur-
ther checked for consistency, and no deviations could be
detected. Although we found some variation in the mean
percentage of reads aligned among the sampled taxa,
the distribution of mapping rates (across individuals) was
largely overlapping among species (see Additional file 1:
Figure S2). Moreover, when excluding known hybrids
(based on the microsatellite data), we found no evidence
that mapping rates were associated with variation in
admixture proportions (see Additional file 1: Figure S3).
Similarly, we found no evidence that variation in levels
of admixture within taxa was associated with variation in
mapping rates (e.g., within B. retrofracta, mapping rates
for samples 15, 16 and 18 did not differ significantly from
those for 17 and 19−23; P = 0.373 from a permutation
test). These results suggest that reference sequence bias
is unlikely to have been a substantial issue for inferences
from this data set.

Evolutionary history and genetic structure of the B.
puberula group
Trees inferred from the GBS data were generally well-
resolved by different methods of visualization. A heat
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Fig. 2 Heatmap of distance matrix between all 79 diploid individuals sampled. Numbers correspond to ids in Table 1 and Additional file 1: Table S1.
Red cells indicates most similar comparisons, white is most different, and yellow and orange are intermediate. Broad taxon assignments are
indicated. Note that “strictaX” refers to B. stricta x B. retrofracta (11,13,14) and B. stricta x B. subpinnatifida (12). Samples 47 and 75 (labeled puberula
and lasiocarpa, (respectively, in figure) were initially assigned as B. retrofracta

map of genetic distances shows the general high similarity
of samples within taxa, and between admixed samples
and their parental taxa (Fig. 2). The neighbor-joining
tree obtained from the estimated posterior genotype
probabilities for eight source taxa shows clear differ-
entiation of all putative sexual taxa, and was generally
consistent with the heat map (Fig. 3). As suggested by the
microsatellite data [43], Boechera puberula, as currently
circumscribed, comprises two distinct monophyletic
lineages, with the typical taxon (“B. puberula puberula”)
occupying the northern part of the range and “B. puberula
arida” replacing it to the south (Fig. 1). The clade formed
by these two taxa is, in turn, sister to a lineage comprising
B. serpenticola and B. subpinnatifida (Fig. 3). The latter
form distinct, monophyletic groups. A monophyletic
assemblage consisting of all 17 samples of B. lasiocarpa is
sister to the puberula/serpenticola/subpinnatifida lineage,
and this larger clade is, in turn, sister to B. exilis. Although
hybrids are not well accommodated by the bifurcating
tree model, their inclusion in the phylogenetic analyses
reveals an interesting pattern, where the individuals
identified as hybrids are placed between the respective
parental species. The next sexual diploid lineage proximal

to the lineage outlined above is a monophyletic grouping
of all ten samples of B. retrofracta (Fig. 3). Said sam-
ples are separated on the tree by a grade consisting of
ten accessions, all of which represent hybrids between
B. retrofracta and members of the larger clade. Similarly,
the branch between B. retrofracta and the proximal sexual
diploid B. stricta is occupied by a grade of four samples,
all of which are identified as retrofracta x stricta hybrids.
Genetic variation of the common SNVs was best

explained by an admixture model with eight source pop-
ulations (DIC = 1.348×105 compared to 1.357×105 with
k = 7), in accordance with the findings of [44] (Fig. 4).
Gelman-Rubin diagnostics across all estimated admixture
proportions and eight source populations indicated con-
vergence of chains (median scale reduction factor= 1.057,
mean= 1.082). The absolute difference between the lower
and upper credible intervals of estimated admixture pro-
portions across all individuals and source populations,
as obtained from entropy, had a median of 5.65×10−6

(mean = 0.0102). Given the narrow width of these cred-
ible intervals (and thus low-level of uncertainty in the
admixture proportions) we focus on the point estimates of
the admixture proportions, which are given by the mean
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Fig. 3 Admixture proportions for eight taxa and neighbor-joining tree of B. puberula group members as well as B. stricta and B. retrofracta based on
common variants (n= 14,815)

Fig. 4 Admixture proportions based on 14,815 common variants. Each bar represents Bayesian point estimates of admixture proportions for each
respective individual, and thus the proportion of inheritance of each genome to the respective species. Results of 6-10 presumed source species are
shown here, with k = 8 being the best model based on DIC values. Groups 1 & 2 denote groups with differential admixture patterns. Results for k of 2
through 16 are shown in Additional file 1: Figure S4
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of the posterior distribution. Additional file 1: Figure S4
shows the admixture proportions for all putative source
populations considered in this study, with k ranging from
2 to 16.
As expected from prior evidence of extensive hybridiza-

tion in the genus Boechera, we found multiple individu-
als with mixed ancestry in the represented samples (see
Fig. 3). In particular, most of the admixed individuals
showed similar levels of admixture regardless of the num-
ber of source taxa assumed (Fig. 4). In the lower ranges of
k in Additional file 1: Figure S4, we found that clusters dif-
ferentiated individuals into the nominal taxa of B. stricta,
B. retrofracta and B. exilis, with considerable admixture
between those taxa. The puberula group was differenti-
ated into three groups at k = 6, comprising B. lasiocarpa,
B. puberula in the broad sense, and B. subpinnatifida/B.
serpenticola. Comparing the admixture proportions at
k = 8 (Fig. 3) with the nominal taxa based on microsatel-
lite data (Table 1), we find congruence between the
two datasets. Of the 79 samples included in both anal-
yses, 62 (79%) showed admixture proportions deviating
from expectations based on microsatellites by no more
than 5%. In another 12 samples (15%), admixture pro-
portions deviated from microsatellite-based expectations
by 6−30%. Five samples (6%) yielded admixture propor-
tions that were strongly at-odds with microsatellite-based
identifications.
Estimates of inter-lineage ancestry from the ‘Q’ model

in entropy showed that individuals with mixed ances-
try were heterozygous for ancestry at many loci (Q12 >

0.2, that is heterozygosity for ancestry at greater than
20% of loci, for most samples; Additional file 1: Figure
S5). Most (three of four) hybrids between B. stricta and
B. retrfracta were advanced back-crosses to B. retrofracta
(they had maximal ancestry heterozygosity given their
admixture proportion, which means at least one of their
parents was not admixed). Several individuals classified as
B. retrofracta also appeared to be back-crosses, but with
less overall ancestry from B. stricta (see the yellow dots
on the line in Additional file 1: Figure S5). Ancestry esti-
mates for the B. retrofracta× subpinnatifida hybrids were
consistent with one being a back-cross to B. retrofracta
and one being a possible F1 or other early generation
hybrid (e.g., F2, F3, etc.). Finally, B. retrofracta × B. exilis
hybrids spanned a range of inter-lineage ancestry suggest-
ing a variety of late generation hybrids along with a likely
back-cross to B. exilis and perhaps a F1 or other early gen-
eration hybrid (open square near the top of the triangle in
Additional file 1: Figure S5).
When considering the model-free approach to describ-

ing genetic variation across samples, the majority (95.2%)
of genetic variation was explained by the first three princi-
pal components (PCs), with the first two PCs accounting
for 83.2% of the variation (see Fig. 6). Interestingly, the

first principal component (with 69.7% explained variation)
separated the two lineages B. retrofracta and B. stricta
from the remaining lineages considered here (B. puberula
puberula, B. puberula arida, B. exilis, B. serpenticola,
B. subpinnatifida, and B. lasiocarpa), with admixed
individuals positioned between the two groups. Princi-
pal component 2 (13.5% explained variation) separated
B. stricta from B. retrofracta, with admixed individuals
having intermediate scores on this PC. Additionally, PC
2 separated the puberula group lineages from each other,
with B. exilis located between the other members of the
puberula group. On principal component 3, we can see a
similar pattern, where the spread between the members of
the puberula group was wider, yet B. exilis was positioned
between those. Furthermore, on PC 3, B. stricta and
B. retrofracta were placed on opposite ends of the spec-
trum. None of the admixed individuals showed extreme
PC scores on any of the 3 PCs, but they all showed inter-
mediate values. On PC 2, and more strongly on PC 3, we
found B. lasiocarpa individuals to be somewhat distinct
from the remainder of the puberula group taxa.
In the population graph treemix analyses, the rooted

population graph without admixture (i.e. migration edges)
explained 90% of the variance in population related-
ness (Additional file 1: Figure S6). When increasing the
number of migration (or admixture) events, the variance
explained increased rapidly. Here, we focus on the popu-
lation graph with three admixture events (Fig. 5), which
explained 99.8% of the variance in population allele fre-
quency correlations (see Additional file 1: Figure S1 for
graph structures for additional migration events). This
population graph shows evidence of admixture between
members of the B. puberula group and both B. stricta and
B. retrofracta, consistent with the admixture proportion
estimates from entropy.

Discussion
In this study, we described the evolutionary relationships
and patterns of admixture among eight of the 80+ sexual
diploid members of the genus Boechera. In order to
achieve high resolution on a genome-wide scale, we used
a GBS approach that allowed us to examine genetic varia-
tion across 14,815 common high-quality SNVs in the taxa
studied. Our results support the monophyly of a cluster
of six taxa, closely approximating the B. puberula species
group first identified by [44]. In the neighbour-joining
tree (Fig. 3), B. puberula (which forms two discrete
clusters referred to as puberula puberula and puberula
arida) is sister to a clade with two somewhat more diver-
gent taxa, B. subpinnatifida and B. serpenticola. Sister to
these core puberula taxa are the more distantly related
members of the group, B. lasiocarpa and B. exilis (Fig. 3).
Our results are congruent with the parsimony analysis of
DNA sequences from seven nuclear loci [44], but show
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Fig. 5 Graph structure inferred by treemix with four migration or admixture events for 79 diploid Boechera specimens, rooted with B. stricta.
Arrows are colored by migration weight and branch lengths are proportional to genetic drift

much improved resolution of species relationships within
the group.
Two nomenclatural adjustments are necessary to allow

direct comparison between our NJ tree and the previ-
ously published cladogram of the B. puberula group. With
reference to Fig. 4 of [44], a single accession, identified
as “B. subpinnatifida”, has been shown, based on recent
microsatellite analyses, to represent B. puberula puberula,
and the two specimens called “B. puberula” are now classi-
fied as B. puberula arida [43]. With these annotations, the
two evolutionary trees of the B. puberula species group
are seen to be consistent at the species level. The more
extensive sampling achieved in this study (incorporating
more loci, more individuals, and all six taxa) significantly
improves our understanding of relationships within the
group. In the tree from Alexander et al. [44], the only res-
olution within the B. puberula group involved the strong
association between the two B. serpenticola accessions,
the equally strong association of the two B. puberula
(now puberula arida) samples, and a sister relationship
between the latter and what is now referred to as puberula
puberula. These two clades formed a polytomy with
B. lasiocarpa and B. exilis. Our tree, on the other hand, is
fully resolved (Fig. 3), with an arida/puberula clade sister
to a serpenticola/subpinnatifida clade, B. lasiocarpa sis-
ter to this core group, and B. exilis sister to the rest. The
discovery that B. puberula consists of two lineages (arida
and puberula) which seem to be able to hybridize, yet
maintain a clear distinction regarding their genetic varia-
tion, is a novel finding. This distinction was apparent in

the PCA, the admixture analyses as well as the evolution-
ary placement within the puberula group (see Figs. 2, 3, 6,
and Additional file 1: Figure S4). Based on the microsatel-
lite dataset presented by [43], both lineages of B. puberula
occur in Oregon, Utah, Idaho, and Nevada, whereas only
B. puberula puberula has been found in Idaho (Fig. 1). We
have not observed any mixed populations but, based on
their known distributions and habitat requirements, they
are likely to be sympatric somewhere near where 42° N
latitude crosses Nevada and Oregon.
When assessing admixture among the presented taxa

and clustering into groups, the placement of most indi-
viduals corresponded well with the nominal taxa obtained
from microsatellites. We did, however, discover appar-
ent admixture among members of the puberula group
and the more distantly-related taxa included in this study.
We were able to find signatures of admixture extending
beyond the B. puberula group, both with the estimated
admixture proportions and when considering the pop-
ulation graph structure inferred by treemix (Figs. 3
and 5). We further found that individuals of B. stricta,
B. retrofracta and B. exilis experienced admixture from
all members of the puberula group. More generally, we
observed that all lineages considered in this study were
involved in admixture events. Whereas in some cases
evidence of admixture could reflect complex patterns of
ancestral structure without admixture e.g. samples 39 and
60; [85], this is less likely in cases where admixture is
between more distantly related species or when admixed
and non-admixed individuals co-occur.
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Fig. 6 Statistical summary of genetic variation based on principal component analysis of 14,815 common variants, with a PC1 against PC2, and
b PC2 against PC3, with colors assigned to individuals with posterior estimated admixture proportions above 95%, where the legend in b is used for
both figures. Hybrids with less than 95% admixture proportions are drawn as crosses, and hybrids with more than 50% admixture proportions from
a particular species are drawn as colored circles in the respective color with a cross

Based on our results, it appears that gene flow/
admixture is reduced between more closely-related taxa.
This would seem plausible for the taxa that do not occur
in sympatry, such as B. lasiocarpa and B. serpenticola see
also [90], but seems rather surprising given the wide geo-
graphic distribution of B. p. puberula, B. p. arida, and
B. subpinnatifida, and overlapping flowering times among
taxa belonging to the puberula group [43, 91], combined
with otherwise clear signs of admixture in more distantly
related taxa (group 1 in Fig. 4). Widespread hybridization
has repeatedly been reported in the genus Boechera e.g.
[42, 53, 55]. However, it appears as if some lineages were
more prone to viable hybridization and introgression than
others. When considering admixture in sympatry as an
integrative measure of RI, we have to acknowledge some
limitations. When sampling across large geographical
areas, it is possible tomiss hybridization events if there are
only few individuals with mixed ancestry present. Addi-
tionally, it might be possible to encounter early-generation
hybrids (predominantly F1s) that do not contribute to
either gene pool. Additionally, back-crosses could fail to
reproduce, which would maintain complete RI. This study
might represent a rather conservative estimate of RI in the
B. puberula group, since it is likely that we failed to sample
additional hybrids, given the wide geographic distribution
of the involved taxa.
In triploids that were included in this study, we detected

admixture of members of the B. puberula group with
other taxa, and we assume that those represent apomictic
individuals, resulting from hybridization events, because
it has been shown that other triploid Boechera hybrids
predominantly reproduce asexually [53, 72, 92]. This
assumption, however, should be tested to ascertain
whether it applies to the B. puberula group in particular.
Additionally, it is not clear whether apomictic individuals

introgress into sexual lineages through facultative sexu-
ality [93, 94], or whether these apomicts remain mostly
isolated from sexual lineages [95]. Across angiosperm
groups, the frequency of polyploids among genera ranges
from 29 and 46% [96]. Across our samples of the genus
Boechera, 26% of individuals were found to be polyploid,
indicating a slightly lower frequency of polyploids. How-
ever, given the wide geographic sampling, this estimate
might not be representative for the entire genus. We
have yet to develop reasonable estimates of divergence
times within the family Brassicaceae, let alone the genus
Boechera, due to a poor fossil record [78]. Despite the
lack of temporal resolution, our results suggest variable
rates of the accumulation of incompatibilities in the genus
Boechera.
Future projects include formal tests for the accumu-

lation of reproductive barriers between the presented
lineages, the examination of individual lineages in this
group on a population genetic level, crossing experi-
ments to gain an understanding of pre- and postzygotic
isolating barriers and their relative contribution to over-
all RI, determination of reproductive modes (sexual vs.
asexual), and determination of mating system of sexu-
ally reproducing individuals [97]. Currently, analyses of
B. lasiocarpa populations are underway, which will fur-
ther shed light on the maintenance of genetic variation
in this lineage, as well as patterns of admixture with
other taxa in this complex genus. Members of the B.
puberula group represent feasible models for the study of
speciation in sympatry, allopatry, and parapatry, adapta-
tion to specific soils (e.g. calciferous and serpentenoid),
the roles of reproductive modes and mating system in
the maintenance of genetic diversity, as well as chro-
mosomal rearrangements after polyploidization events
and whole-genome duplications [98, 99]. Studying these
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components will bring us closer to understanding the pro-
cesses that drive speciation as well as the maintenance of
genetic diversity in structured populations with differen-
tial reproductive modes.

Conclusions
We present evidence that the B. puberula species com-
plex is monophyletic, and that B. puberula comprises two
lineages. Based on 14,815 common variants, we found evi-
dence for widespread admixture across taxa. Admixture
appears to be genetically and geographically widespread
and has been occurring for several generations. Further,
we found that the accumulation of reproductive isolation
between species does not seem to occur linearly with time
since divergence in this system.
Additional file
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