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Chronic nonhealing wounds in the elderly population are associated with a prolonged and excessive
inflammatory response, which is widely hypothesized to impede healing. Previous studies have linked alterations
in local L-arginine metabolism, principally mediated by the enzymes arginase (Arg) and inducible nitric oxide
synthase (iNOS), to pathological wound healing. Over subsequent years, interest in Arg/iNOS has focused on the
classical versus alternatively activated (M1/M2) macrophage paradigm. Although the role of iNOS during healing
has been studied, Arg contribution to healing remains unclear. Here, we report that Arg is dynamically regulated
during acute wound healing. Pharmacological inhibition of local Arg activity directly perturbed healing, as did
Tie2-cre-mediated deletion of Arg1, revealing the importance of Arg1 during healing. Inhibition or depletion of
Arg did not alter alternatively activated macrophage numbers but instead was associated with increased
inflammation, including increased influx of iNOSþ cells and defects in matrix deposition. Finally, we reveal
that in preclinical murine models reduced Arg expression directly correlates with delayed healing, and as such
may represent an important future therapeutic target.
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INTRODUCTION
Expanding global elderly and diabetic populations combined
with a continued lack of effective treatment modalities means
the incidence of chronic wounds is increasing. Chronic
wounds are associated with an excessive inflammatory
response, which is widely accepted to be a major causative
factor in the multifactorial healing pathology (Loots et al.,
1998; Diegelmann, 2003). Macrophages, the key mediators of
the inflammatory response to infection and repair, display
clear plasticity that permits development into a spectrum of
phenotypes depending on environmental and cytokine signals.
Seminal studies have classified the major macrophage
subtypes that lie at the polar ends of the spectrum, these
include (a) Th1-induced classically activated macrophages
(CAMs)—IFN-g and tumor necrosis factor-a induced with
enhanced antimicrobial capacity and proinflammatory
cytokine production (Mosser and Zhang, 2008) and (b) Th2-

induced alternatively activated macrophages (AAMs)—IL-4
and/or IL-13 induced with anti-inflammatory ‘‘tissue’’ repair
functions (Gordon and Martinez, 2010). Although the disease
relevance of macrophage polarization (or lack of) has been
demonstrated in numerous tissue pathologies and clearly
linked to disease progression (Hesse et al., 2001; Pesce
et al., 2009; Sindrilaru et al., 2011), the contribution of
these macrophage subtypes to chronic wound pathology
remains unclear.

CAMs and AAMs are phenotypically different with AAMs
identified through the expression of cell surface receptors
IL4Ra chain and mannose receptor and intracellular enzymes
Retnla (encoding Fizz1/RELMa), Chi3l3 (Ym1), and Arg1
(Gordon and Martinez, 2010). CAMs and AAMs are thought
to have different functions during the host response, mediated
partly by the upregulation of intracellular enzymes, inducible
nitric oxide synthase (iNOS) in CAMs, and arginase (Arg) in
AAMs. Although Arg1 is predominantly associated with
AAMs, its expression has also been observed in CAMs in
chronic parasitic and bacterial infection (El Kasmi et al., 2008;
Gordon and Martinez, 2010). Interestingly, iNOS and Arg can
compete for their common substrate, the amino acid
L-arginine, which is a key component of the urea cycle.
L-arginine metabolism by iNOS, through substrate competition
with Arg, produces L-citrulline and nitric oxide, a critical
mediator of immunological and physiological aspects of tissue
repair. It is noteworthy that iNOS-deficient mice display
altered epithelial and endothelial cell proliferation and
migration (Ziche et al., 1994; Yamasaki et al., 1998). Arg
exists as two isoforms with Arg1 previously linked to tissue
regeneration (Peranzoni et al., 2007). Both Arg1 and Arg2
metabolize L-arginine into L-ornithine and urea. L-ornithine is a
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precursor of proline and polyamines, which promote collagen
synthesis and cell proliferation, respectively, key aspects of
tissue regeneration (Jenkinson et al., 1996; Witte et al., 2002).
The expression and activity of Arg and iNOS must therefore be
tightly regulated to provide tissues with the appropriate
biological mediators. Indeed, a dysregulated balance
between the local iNOS and Arg activity has been suggested
to promote chronic disease (Unal et al., 2005; Maarsingh
et al., 2006; Naura et al., 2010; Redente et al., 2010) and
potentially impair wound healing in elderly subjects (Childress
et al., 2008; Debats et al., 2009).

Recent studies have begun to focus on the role of macro-
phage activation/polarization during healing, with Miao et al.,
(2012), reporting altered macrophage activation in diabetic
mouse wounds. Data in this area remain somewhat
contentious with iNOS-deficient mice displaying delayed
healing or no effect on healing depending on the wound
model investigated (Yamasaki et al., 1998; Most et al., 2002).
Surprisingly, although Arg has been found to be functionally
important in multiple disease pathologies (Abeyakirthi et al.,
2010; Maarsingh et al., 2006; Pesce et al., 2009), little is
known about the role of Arg1 in normal skin repair. Here, we

report the effects of both functional Arg inhibition (via local
nor-NOHA treatment) and genetic ablation of Arg1 (cell-specific
deletion T2C;Arg1fl/fl) during skin repair. In both models, Arg
deficiency delays healing associated with an altered inflam-
matory response and abnormal matrix deposition.

RESULTS
Arg1 is dynamically regulated during acute healing

Previous studies have suggested that macrophage phenotype is
temporally regulated during wound healing, with CAMs
present at early stages and AAMs more dominant during later
stages (Albina et al., 1990; Daley et al., 2010). We confirmed
this temporal profile in our C57/Bl6 excisional wound model
using immunohistochemistry for Arg1 and iNOS, widely
accepted markers of CAM and AAM activation, respectively
(Gordon and Martinez, 2010). In the acute healing model,
iNOS levels peaked at 3 days post wounding, whereas
Arg1 remained high until 7 days (Figure 1). These time
points correlate with the transition from a proinflammatory
extracellular milieu to a phase of matrix deposition (Shaw
and Martin, 2009). To corroborate these findings further,
we analyzed Arg enzymatic activity, which provides a
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Figure 1. Arginase1 (Arg1) is dynamically regulated during healing. (a) Images representing the experimental group mean for inducible nitric oxide synthase-

positive (iNOSþ ) and Arg1þ cells in 1-, 5-, and 7-day excisional wound granulation tissue. (b) Quantification of iNOSþ and Arg1þ dermal inflammatory cells

reveals differing temporal profiles. Immunohistochemical quantification data are derived from the mean of five randomly selected high-powered fields per wound

and two wounds per mouse. (c) Arginase activity from isolated excisional wound tissue (measured through urea production) peaks at 5 days post wounding.

(d) Western blot analysis of total Arg1 protein in excisional wounds reveals increased expression at 3, 5, and 10 days post wounding. (b) Data presented indicate

meanþ SEM of n¼5–6 mice per group or (c, d) three replicates per group across two individual experiments. Bar¼100mm. (b) *Po0.05 comparing iNOS with

Arg1, (c) *Po0.05 compared with days 1, 3, and 10.
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functionally relevant measure (Witte et al., 2002). We report a
strong peak in wound tissue Arg activity 5 days post wounding
(Figure 1c), corresponding to the midpoint of the peak in
wound granulation tissue Arg1þ macrophages (Figure 1b).
Finally, we profiled global Arg1 protein levels in isolated
wound tissue over a healing time course. Total protein also
peaked at day 5 in line with total tissue Arg activity
(Figure 1d). It is to be noted that the subsequent increase in
Arg1 at 10 days post wounding likely reflects the previously
observed latter-stage induction in wound fibroblasts (Witte
et al., 2002).

Local inhibition of Arg activity significantly delays cutaneous
healing

To explore the functional role of Arg during healing, a
commonly used inhibitor of Arg activity, nor-NOHA (Tenu
et al., 1999; Takahashi et al., 2010), was locally applied to
incisional wounds. Nor-NOHA treatment significantly delayed
healing, demonstrated by an increased histological wound area
versus vehicle-treated wounds at both 3 and 7 days
post wounding accompanied by reduced re-epithelialization
(Figure 2a–c). Interestingly, delayed healing in nor-
NOHA-treated wounds was accompanied by increased
numbers of local macrophages (Figure 2e) maintained across
days 3 and 7 post wounding. To determine the contribution
of recruitment versus removal, we assessed local-wound
chemokine levels and apoptosis. Delayed healing in
nor-NOHA-treated wounds are associated with increased levels
of inflammatory chemokines at 3 days post wounding with
elevated apoptosis at 7 days post wounding (Supplementary
Figure S1 online). Thus, pharmacological inhibition of
Arg (Arg1 and Arg2) delays repair associated with altered
local macrophage numbers. To confirm a specific role
for Arg1, we next studied a cell-specific conditional Arg1
knockout model.

Tie2-cre-mediated conditional ablation of Arg1 (T2C;Arg1fl/fl)
reveals a cell-specific role for Arg during healing

Arg1 is thought to be expressed in multiple cell types involved
in the healing process, including keratinocytes, inflammatory
cells, and fibroblasts (Albina et al., 1990; Witte et al., 2002;
Kampfer et al., 2003). However, we hypothesized that
macrophages would be the key Arg1-expressing cell type in
the wound repair system. To test this idea, we used an Arg1
conditional allele crossed to Tie2-Cre, which is active in all
hematopoietic and endothelial cells. As macrophages are the
main Arg1-expressing cell type, Tie2-Cre deletion provides a
convenient way to ablate macrophage Arg1, noting that some
endothelial cells may also express the gene (El Kasmi et al.,
2008; Pesce et al., 2009). Here, we report that Tie2-cre-
mediated deletion of Arg1 (T2C;Arg1fl/fl) resulted in a
pronounced healing delay compared with T2C;Arg1þ /þ

littermate controls, depicted macroscopically at 3, 7, and 14
days post wounding (Figure 3a). Subsequent histological
analysis revealed a substantial increase in wound area and
reduction in re-epithelialization in T2C;Arg1fl/fl wounds. This
wound phenotype reveals an important role for macrophage/
endothelial-derived Arg1 during skin repair (Figure 3b–d).

T2C;Arg1fl/fl mice exhibit alterations in wound inflammatory cell
recruitment

An excessive inflammatory response is a common theme in
pathological healing (Martin and Leibovich, 2005; Emmerson
et al., 2010). In light of the link of macrophage Arg1 to
inhibition of inflammation, we assessed the inflammatory
cell profile in delayed healing T2C;Arg1fl/fl wounds.
Tie2-cre-mediated Arg1 ablation led to an increased and
extended influx of not only macrophages (Figure 4b and d)
but also neutrophils (Figure 4a and c). We next assessed
markers of macrophage polarization (Daley et al., 2010).
Interestingly, wound granulation tissue iNOSþ cells
(CAM marker) were increased in T2C;Arg1fl/fl at both 3
and 7 days post wounding, suggesting a maintained pro-
inflammatory environment (Figure 4e and g). These
data were confirmed through increased nitrotyrosine staining
(used as a marker of cell damage and inflammation through
NO) in T2C;Arg1fl/fl at both 3 and 7 days post wounding
(data not shown). In contrast, no difference was observed in
the number of wound cells expressing the AAM marker,
Ym1, at either 3 or 7 days post wounding (Figure 4f and h).
Thus, the macrophage component of the wound-healing
phenotype in T2C;Arg1fl/fl mice involves excessive numbers
of iNOSþ cells rather than a defect in the ability of
macrophages to become polarized in the skin micro-
environment. Intriguingly, previous studies have shown that
isolated Arg-deficient macrophages have increased NO pro-
duction in response to lipopolysaccharide stimulation (El
Kasmi et al., 2008; Pesce et al., 2009). Crucially, our data
suggest that despite Arg1 being associated with AAMs, Arg1-
deficient macrophages remain able to adopt an AAM
phenotype.

Excessive protease activity and reduced matrix deposition
contribute to delayed healing in T2C;Arg1fl/fl wounds

Arg-mediated L-arginine metabolism produces L-ornithine,
which is an important component of collagen synthesis
(Morris, 2009). We thus hypothesized that T2C;Arg1fl/fl mice
would display alterations in wound matrix deposition,
synthesis, and/or remodeling. Indeed, delayed healing in
T2C;Arg1fl/fl mice was associated with reduced wound
granulation tissue collagen deposition, assessed by collagen 1
immunofluorescence (Figure 5a) and substantially reduced
total wound collagen 1 and 3 levels measured by western blot
(Figure 5b). Conversely, at the level of gene expression, the
major skin collagen species are increased in T2C;Arg1fl/fl

wounds. This fits with our previous studies, where delayed
healing is phenotypically linked to increased collagen gene
expression, presumably as a compensatory mechanism
(Hardman et al., 2005; Hardman and Ashcroft, 2008).
Gelatinases (MMP2 and MMP9) have an important role in
wound granulation tissue remodeling. However, excessive
gelatinase activity has been linked to the reduced matrix
deposition observed in chronic wounds (Lobmann et al.,
2002). Analysis of T2C;Arg1fl/fl wounds at 7 days post
wounding reveals a significant and selective increase in
MMP2 at both the gene expression (Figure 5d) and protein
(Figure 5e and f) levels.
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Reduced Arg1 is a conserved feature of delayed-healing
mouse wounds

Data presented thus far reveal that either pharmacological
inhibition or genetic ablation of Arg in vivo leads to a
significant delay in skin healing. To confirm the functional
relevance to pathological healing, we turned to preclinical
delayed-healing mouse models that have been extensively
validated by our group and others (Hardman et al., 2008;
Holcomb et al., 2009). We report significantly altered

granulation tissue levels of iNOSþ and Arg1þ (Figure 6) cells
in both aged and ovariectomized delayed-healing models. In
both models, the levels of Arg1 was reduced, whereas that of
iNOS was increased, presumably reflecting a delayed switch
in macrophage polarization.

DISCUSSION
The contribution of macrophage polarization to cutaneous
wound healing remains unclear. The situation is further
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complicated by the fact that markers of each macrophage
phenotype, iNOS and Arg, compete for a common substrate,
L-arginine, with products from each being important for
healing (Childress et al., 2008). Previous studies have shown
that L-arginine administration is able to promote acute healing
in both rodents and humans (Seifter et al., 1978; Barbul et al.,
1990; Williams et al., 2002), an effect attributed to increased
nitric oxide production through iNOS metabolism of
L-arginine (Shi et al., 2000). Subsequent studies on the
importance of iNOS are conflicting, depending largely on the
wound model used (Yamasaki et al., 1998; Most et al., 2002).
Data presented in this study reveal an important role of the
Arg arm in the L-arginine metabolism pathway during
cutaneous healing. We report similar findings across
pharmacological inhibition and cell-specific genetic ablation
studies, confirming relevance in preclinical delayed-healing
mouse models.

A previous study reported accelerated acute wound healing
following Arg inhibition with the compound (2)-(S)-amino-6-

boronohexanoic acid (ABH) (Kavalukas et al., 2011). The
differing effects of Arg inhibition seen by Kavalukas et al., and
in this current study, are most likely due to the use of different
inhibitors. This study used the compound nor-NOHA, which
has been shown to be a potent inhibitor of Arg1 and Arg2
in a number of in vitro/in vivo models (Tenu et al., 1999;
Takahashi et al., 2010). Kavalukas et al., used the compound
ABH, which is a more selective inhibitor of Arg2 compared
with Arg1 in vivo (Baggio et al., 1999). A previous study has
shown that both Arg1 and Arg2 are expressed in multiple
cutaneous cell types (e.g., keratinocytes and inflammatory
cells) (Kampfer et al., 2003). We confirmed the importance of
Arg1 using T2C;Arg1fl/fl mice, which displayed an even more
pronounced delayed-healing phenotype compared with that
observed through nor-NOHA treatment. The clear correlation
between these two independent models reinforces the
importance of Arg1 during healing.

Arg1 is expressed across a range of cell types involved in
wound healing including keratinocytes (Kampfer et al., 2003),
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fibroblasts (Witte et al., 2002), endothelial cells (Abd-El-Aleem
et al., 2000), and inflammatory cells (Miao et al., 2012). Here,
we have used the Tie2-cre mouse to selectively ablate Arg1 in
all hematopoietic and endothelial cell lineages (El Kasmi
et al., 2008). The fact that delayed healing in Tie2cre;Argfl/fl

mice is associated with alterations to a range of cell
functions primarily attributed to additional cell types, e.g.,
re-epithelialization and matrix deposition, implies an
important role for paracrine signaling. It is noteworthy that
iNOSþ cells are increased in Tie2cre;Argfl/fl wounds in line
with the proposed role of Arg1-expressing Th2-activated
macrophages as suppressor cells that help to dampen
Th1-driven inflammation (Pesce et al., 2009). Indeed, this
mechanism is most likely important in chronic wounds, which
are widely accepted to be in a Th1 proinflammatory state
(Sindrilaru et al., 2011).

Arg1-mediated metabolism of L-arginine is an important
source of local ornithine, a proline precursor important for

collagen synthesis. However, the main cellular source of
wound collagen is fibroblasts (Singer and Clark, 1999). Thus,
the observed defect in collagen deposition following Tie2-cre-
mediated deletion of Arg1 is presumably a secondary effect of
the delayed-healing environment. Indeed, the reduced
collagen content of Tie2cre;Argfl/fl wounds is most likely a
result of elevated wound gelatinase expression. Moreover, the
increased local collagen gene expression may reflect a
compensatory mechanism. It is noteworthy that we have
previously reported (Hardman et al., 2005; Hardman and
Ashcroft, 2008) a global compensatory upregulation of
collagen gene expression in tandem with increased local
gelatinase activity conserved across delayed-healing wounds
in both humans and mice. Intriguingly, Arg1 is reportedly
localized to gelatinase granules in human neutrophils
(Jacobsen et al., 2007). The provisional matrix laid down
following healing is essential to provide a scaffold for the
migration of key cell types and for wound-vessel
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neogenesis (Shaw and Martin, 2009), and matrix changes may
thus be an important causative factor to the observed healing
delay.

Altered macrophage polarization is emerging as a common
theme across murine delayed-healing acute wound models:
aged and ovariectomized mice (this study) and diabetic
mice (Miao et al., 2012). This fits with the hypothesis that
delayed-healing wounds are unable to switch to a reparatory
AAM environment required for normal healing. The finding
that normal acute healing requires a temporal shift in
macrophage polarization is supported by previous studies
(Deonarine et al., 2007) and our own data (Figure 1).
A failure to switch from a Th1 to a Th2 environment would

have severe consequences for the healing of chronic wounds.
Here, we note confusion in the literature as to whether
chronic wounds per se have altered Arg expression;
an initial study showed increased Arg expression in diabetic
ulcers versus normal skin (Jude et al., 1999; Abd-El-Aleem
et al., 2000) supported by two subsequent reports of
increased Arg expression in diabetic murine models
(Kampfer et al., 2003; Miao et al., 2012). Importantly, these
studies measured global wound Arg expression failing to
account for potential variation in cellular source. Our data
currently reveal that age-associated delay in acute healing is
accompanied by a local reduction in wound granulation tissue
Arg1þ cells.
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Data presented in this study clearly demonstrate an important
and previously unappreciated role of Arg1 during cutaneous
healing. These findings are particularly interesting in the
context of previous studies demonstrating the beneficial effects
of L-arginine supplementation on acute wound healing. An
important next step will be to confirm potential beneficial
effects of Arg1 and/or L-arginine in human chronic wounds.
Indeed, we suggest that a combined L-arginine supplementa-
tion/local Arg induction therapeutic approach may have
considerable clinical benefit.

MATERIALS AND METHODS
Animals and wounding

All animal studies were performed in accordance with Home Office

regulations. Ten-week-old female C57BL/6, transgenic Tie2cre;

Argfl/fl (El Kasmi et al., 2008), Tie2cre;Argþ /þ (wild-type controls),

ovariectomized (bilateral ovariectomy performed 3 weeks before

wounding), and aged mice (18-month old) were anesthetized and

wounded following our established protocol (Ashcroft et al., 2003).

N(omega)-hydroxy-nor-L-arginine (nor-NOHA—20mg per 50ml)

(VWR International, Lutterworth, UK) or vehicle (phosphate-buffered

saline) were locally injected in C57BL/6 mice at days 1 and 0 with

respect to wounding and every subsequent day until collection. Two

equidistant 1-cm full-thickness incisional or 6-mm excisional wounds

were made and left to heal by secondary intention. Wounds were

excised at either 1, 3, 5, 7, or 10 days post wounding and bisected,

with half processed for histological analysis (wound midpoint). The

remaining half of each wound was flash frozen and stored at � 80 1C

for biochemical analysis.

Histology and immunohistochemistry

Histological sections were prepared from wound tissue fixed in

10% buffered formalin saline and embedded in paraffin.

Six-micrometer-thick sections were stained with hematoxylin and

eosin or subjected to immunohistochemical analysis with the follow-

ing antibodies: Arg-I goat polyclonal, NOS2 rabbit polyclonal and

MMP2 goat polyclonal (Santa Cruz, Heidelberg, Germany), anti-

neutrophil rat polyclonal (Fisher Scientific, Loughborough, UK), anti-

Mac-3 rat polyclonal (BD Biosciences, Oxford, UK), Ym1 goat

polyclonal (R&D Systems, Minneapolis, MN), and Collagen 1 rabbit

polyclonal (Millipore, Billerica, MA). Bound primary antibody was

detected using the VECTASTAIN ABC kit (Vector Laboratories,

Peterborough, UK) combined with NovaRed substrate. Images were

captured (Nikon eclipse E600/SPOT camera (Image solutions, Pre-

ston, UK)) and granulation tissue wound area and re-epithelialization

quantified using Image Pro Plus software (MediaCybernetics,

Rockville, MD) as previously described (Ashcroft and Mills, 2002).

Total cell numbers (expressed as number of cells per mm2) were

determined using five randomly assigned granulation tissue images

per wound with Image Pro Plus software.

Arg activity assay

Arg activity was assessed by measuring the amount of urea produc-

tion via the metabolism of L-arginine by Arg as previously described

(Corraliza et al., 1994). In brief, wounded tissue was homogenized in

0.5 ml 0.1% Triton X-100 (Sigma-Aldrich, Cambridge, UK). After

30 minutes, 0.5 ml of assay buffer (10 mmol l� 1 MnCl in 50 mmol l� 1

Tris, pH 7.5) was added and the enzyme was activated by heating for

10 minutes at 55 1C. For the metabolism of L-arginine by Arg,

triplicate cultures of 25ml cell lysate in buffer were incubated with

25ml of 0.5 M L-arginine (Sigma-Aldrich) for 60 minutes at 37 1C and

the reaction was stopped by adding 400ml of acid mixture. Twenty-

five microliters of 9% a-isonitrosopropiophenone (Sigma-Aldrich) was

added and incubated for 45 minutes at 100 1C in the dark.

Absorbance was measured at 570 nm using a MRXII (Dynex

Technologies, West Sussex, UK). To normalize the samples, the

protein concentration in cell lysates was measured using a BCA

Protein Assay Kit (Thermo Fisher Scientific, Runcorn, UK).
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Figure 6. Reduced Arginase1 (Arg1) is a conserved feature of delayed healing in mouse and human wounds. Images representing the experimental group mean

for (a) inducible nitric oxide synthase-positive (iNOSþ ) and (b) Arg1-positive (Arg1þ ) immunohistochemical analysis from control (young) and delayed

healing aged and ovariectomized (Ovx) day-3 wounds. Aged and Ovx mice wounds are associated with increased numbers of (c) iNOSþ dermal cells and

(d) reduced Arg1þ cells compared with control mice. Immunohistochemical quantification data are derived from the mean of five randomly selected

high-powered fields per wound and two wounds per mouse. Data presented indicate the meanþ SEM, n¼ 6 mice per group. Bar¼50mm. *Po0.05.
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Protein extraction and immunoblotting
Total protein was extracted from unwounded and wounded tissue by

boiling and homogenizing in SDS sample buffer, containing 5%

b-mercaptoethanol, for 5 minutes. Protein samples (1 mg) were

separated by SDS–PAGE and blotted onto a nitrocellulose membrane,

which was blocked in 5% nonfat milk and 0.1% Tween for 16 hours

at 4 1C, before incubation with primary antibody for 1 hours at room

temperature. The bound primary antibodies were detected with

peroxidase-labeled secondary antibodies (GE Healthcare, Hatfield,

UK), followed by the ECL Plus detection system (GE Healthcare).

Primary antibodies against Arg I and Collagen 3A1 (Santa Cruz),

Collagen I (Millipore), and b-actin (Sigma-Aldrich) were used in

conjunction with anti-goat, anti-rabbit, or anti-mouse secondary

antibodies (GE Healthcare).

Quantitative real-time PCR

Total RNA was isolated from frozen tissue by homogenizing in Trizol

reagent (Invitrogen, Paisley, UK). cDNA was transcribed from 1mg of

RNA (Promega RT kit, Madison, WI and AMV-reverse transcriptase;

Roche, Welwyn Garden City, UK) and quantitative PCR performed

using the MESA-green kit (Eurogentec, Southampton, UK) and an

Opticon quantitative PCR thermal cycler (Bio-Rad, Hemel Hemp-

stead, UK). For each primer set, an optimal dilution was determined

and melting curves were used to determine amplification specificity.

Each sample was serially diluted over three orders of magnitude, and

expression ratios were normalized to the mean of two separate

reference primers (Gapdh and Ywahz) with all samples analyzed

concurrently. Full primer sequences are listed in Supplementary

Table S1 online.

Statistical analysis

Statistical differences were determined using either Student’s t-tests

(Figure 5) (Mann–Whitney U tests for nonparametric data), one-way

analysis of variance (Figures 1c and 6) or two-way (Figures 1b, 2, 3,

and 4) analysis of variance (with appropriate post-hoc testing) (SimFit,

William Bardsley, University of Manchester, Manchester, UK). A P-

value of o0.05 was considered significant.
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