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INTRODUCTION

The heart rate regulation system was conceptualized as a complex network, with non-linear
feedforward and feedback inputs. This system exhibits chaotic and non-linear dynamics,
due to interactions between physiological oscillators, functional state changes, and noise
(Voss et al., 2008).

Recurrence is a common feature of dynamical systems. The recurrence plot (RP) displays
specific large- and small-scale patterns, which are produced by typical dynamical behavior
(Eckmann et al., 1995), e.g., diagonals (similar local time evolution of different parts of the
trajectory), or vertical and horizontal black lines (the state does not change for some time).
Recurrence plot is suitable for analysis of short, noisy and non-stationary sequences of RR intervals
and RP is sensitive to small changes in the system’s dynamics (Javorka et al., 2008).

Recurrence quantification analysis (RQA) is a useful toolkit for studying the dynamics of
complex systems, such as laminar, divergent, or non-linear transition behaviors (Marwan et al.,
2002). Short line segments parallel to the main diagonal are essential features of an RP, indicating
that the evolution of states is similar at different times, and that the process could be deterministic.
If these diagonal line structures occur beside single isolated points, the process could be chaotic.
The length of such diagonal line structures relies on the predictability and the dynamics of the
system (periodic, chaotic, or stochastic) (Webber, 2007; Marwan et al., 2009). The stability of one
state’s state causes vertical lines in the RP. Theoretically, diagonal and vertical linear structures are
inherent to the deterministic process, but not for the random process. RQA was proposed for the
analysis of non-linear dynamical systems, by means of quantifying the diagonal and vertical lines
of RP (Marwan et al., 2002). High values of RQA measures trapping time (TT); laminarity (LAM),
mean length of a diagonal line (LMEAN), and maximum length of a diagonal line (LMAX) imply
low complexity in the system’s dynamics; and LMAX is negatively correlated with a Large Lyapunov
Exponent (LLE), which is a key indicator of chaos (Eckmann et al., 1995). RQA is sufficiently
sensitive for assessment of changes in sympathetic and parasympathetic activity, induced by active
orthostatism and pharmacological interventions (Mestivier et al., 1998; Javorka et al., 2008). RQA
indicators have been used for the detection of real-life stress and emotion recognition from
multimodal data (Torres-Valencia et al., 2017).

Mental arithmetic (MA) (e.g., successive subtraction of a simple number from a large number)
is known as one of the substantial tasks that reliably impacts on heart rate variability. MA induces
workload, which could lead to cognitive overload, increasing blood pressure, and a reduction in
vagal activity (Hunt et al., 2017; Chin et al., 2018). The mental arousal that follows MA produces
a significant decrease in symbolic dynamics parameters, and changes in time reversibility of RR
intervals (Visnovcova et al., 2014). Repeated mental workload during a high-paced video game
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has been associated with a significant reduction in RQA
indicators of heart rate variability (HRV) dynamics
(Castaldo et al., 2017).

We carried out an RQA of ECG records obtained during rest,
and during MA stress. The comparison of RQA parameters for
both states potentially enable identification of RQA parameters
that are sensitive to MA stress. With this approach, we aimed
to provide a dataset for a better understanding of non-linear
behavior of heart rate during MA stress and for an assessment
of changes in recurrence parameters of heart rate associated with
mental workload.

MATERIALS AND METHODS

Fifty healthy non-smoking female students (21.1 ± 1.9 years)
participated in this study. We asked all participants to refrain
from vigorous physical activity, alcohol, and caffeine for 12 h
prior to the experiment.

The study was approved by the local ethics committee, and
informed consent was obtained from each participant.

Participants performed MA for 10min, by continuously
subtracting 7 from a 3-digit number. An ECG signal was recorded
with a standard lead-II setup (Poly-Spectrum-8/E, Neurosoft Inc,
2000Hz sampling frequency, 0.05–0.75Hz bandpass filter, drift
filter 0.5, 50Hz notch filter) for 10min twice—before mental
stress and during MA, in the supine position. R-peak detection
and RR preprocessing (artifact correction and detrending) within
ECG were conducted using Kubios HRV premium software
(Tarvainen et al., 2014).

State space reconstruction of RR data was performed, based on
the standard delay embedding method. To determine the correct
embedding dimension, Cao’s method (Cao, 1997) was used.
Calculation of E(1) yielded saturation values at rest ranging from
7 to 11 (mean and standard error 9.58 ± 0.14). In accordance
with previous studies, we used m = 10 for the phase space
reconstruction (Dabiré et al., 1998; González et al., 2014). The
time delays (τ ) for the RPs were calculated as the first minimum
of the average mutual information function. We constructed a
square matrix of Euclidean distances between phase space points
(i.e., between states of the system at a given time). The tolerance
level was selected separately for each recording.

In order to construct RP, we compute the recurrence matrix
for reconstructed states xi and xj

Ri,j(ε) = θ
{

ε − xi − xj
}

,

with θ {·} being the Heaviside function, and ε is an
arbitrary threshold.

For the analysis of the RR time series, we used the RQA
parameters: recurrence rate (REC), determinism (DET), LMAX,
LMEAN, LAM, maximal vertical length (Vmax), TT, and
Shannon entropy (ShanEn) (Martínez et al., 2017).

The REC is the density of the RP on the phase space trajectory,
or the ratio of ones and zeros in the RP matrix, as follows:

REC =
1

N2

N
∑

i,j=1

Ri,j

DET is an indicator of the regularity and determinism of the
system dynamics. DET is computed as a percentage of recurrence
points on the diagonal lines, as follows:

DET =

∑N
l=lmin

lP(l)
∑N

i,j Ri,j
,

where P(l) is the distribution of diagonal l line lengths.
Marwan et al. (2009) defined the LAM of an RP as a fraction

of recurrence points that form vertical lines, as follows:

LAM =

∑N
v=vmin

vP(v)
∑N

v=1 vP(v)
,

where P(v) is the distribution of the length of vertical
lines. LAM quantifies the occurrence of laminar states in
the system.

The TT represents the length of time that the dynamics remain
trapped in a certain state. TT is the average length of vertical lines
in the RP, as follows:

TT =

∑N
v=vmin

vP(v)
∑N

v=vmin
P(v)

.

The ShanEn of the line length distribution is defined as follows:

ShanEn =

l
∑

l=lmin

nl ln nl,

where nl is the ratio of lines l to the number of all lines.
The LMAX is inversely related to the most positive Lyapunov

exponent, i.e., high LMAX indicates that the system is less
chaotic. The Vmax is the maximum of all durations of the
laminar states.

To determine threshold distance ε, we calculated REC for
11 different values of ε (from 0.5 to 10% of maximum phase
diameter). Similarly, we calculated DET and LAM for nine values
of a minimum line (from 2 to 10) in order to define minimum
line lengths for diagonal (DET) and vertical (LAM) structures.
We used the embedded MATLAB function “rankfeatures” (with
“CriterionValue” set to “roc”) to obtain a value for each scale that
would optimize discrimination between rest and mental stress
(Almeida et al., 2018).

The results of rankfeatures calculation indicate that 4%
of maximal space diameter provided the best discrimination
between rest and stress (Figure S1A, Table S1). Similarly, results
for DET and LAM suggest that aminimum line length of 2 should
be considered for calculation of DET, LAM, TT, and ShanEn
(Figures S1B,C, Table S2).

In addition, spectral powers (LF and HF), the standard
deviation of all RR intervals (SDNN), short-term scaling
exponent (α1) and long-term scaling exponent (α2) of DFA were
calculated for each sequence of RR intervals.

To classify RR sequences, we explored linear discriminant
analysis (LDA) commonly used for detection of stress (Melillo
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FIGURE 1 | Examples of the RP and RR for rest (A) and mental stress (B). Upper parts of (A,B) depict variation of R-R intervals, the lower graphs demonstrate

corresponding recurrence plot.

et al., 2011; Kaur et al., 2014). We used a log-transformation
to meet assumptions of homogeneity of variance and normally-
distributed residuals. The homogeneity of variances was tested
by means of Cochran C statistic. In order to evaluate the
overall performance of the classifiers, results of the rest-stress
comparisons were quantified by the criteria of sensitivity,
specificity, precision, and accuracy.

Because all variables were not normally distributed, we tested
the null hypothesis that RQA measures were the same for rest
and stress by means of the Wilcoxon matched pair test. Testing
was performed using a significance level p= 0.05. Values of RQA
measures are expressed as the mean ± standard error of the
mean (SE).

RECURRENCE PLOT, RQA, AND HRV
MEASURES DURING REST AND MA
STRESS

As an initial step to analyze the recurrence of heart rate, we
drew an RP (Figure 1). The RP showed a consistent pattern
of more clustering of points during mental stress, with respect
to the rest (Figure 1). This suggests that recurrence of heart
rate underwent a notable evolution during the transition from
rest to mental stress. Thus, the RPs can sensitively reflect the
signals from different physiological states. The RPs duringmental
stress are characterized by longer vertical lines (TT) and a higher
percentage of points forming diagonal lines (DET). The results
of the research indicate that a deterministic structure was present

TABLE 1 | RQA indexes analysis during rest and mental stress.

REST MENTAL STRESS p

REC 0.03 ± 0.003 0.05 ± 0.007 <0.05

DET 0.41 ± 0.02 0.51 ± 0.03 <0.001

LAM 0.46 ± 0.03 0.62 ± 0.03 <0.001

LMAX 83.56 ± 15.92 212.78 ± 37.44 <0.001

LMEAN 6.16 ± 0.70 4.72 ± 0.56 >0.05

Vmax 20.50 ± 4.00 30.52 ± 4.42 <0.01

TT 2.67 ± 0.10 3.26 ± 0.18 <0.001

ShanEn 1.22 ± 0.14 1.25 ± 0.11 >0.05

Data are reported as the mean ± standard error.

in the heart rate dynamics (DET was statistically >0), but that
heart rate variations were not completely deterministic (DET
was statistically <1). The statistical analysis of RQA measures
reveals significant changes in REC, DET, LAM, LMAX, Vmax,
and TT during mental stress (Table 1). MA induced a significant
increase of DET to rather a high level. A high level of DET
associated with a high predictability of the heart rate regulation
system (Marwan et al., 2009). Mental stress elicits a significant
increase in the maximum length of the diagonal line LMAX
(and decrease in LLE), which indicates that the sensitivity of
the heart rate regulation system is diminished to the initial
conditions (Eckmann et al., 1995). We compared rest and stress
levels of LAM and TT, and found the long permanence of the
system in a particular state during mental stress. Heart rate RQA
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was recently used for discrimination between young and elderly
subjects (Singh et al., 2019).

The HF component of HRV was significantly reduced in
the mental stress (576.11 ±107.18 ms2) compared with the rest
(1143.92 ± 198.27 ms2) (P < 0.01) and the LF/HF ratio was
significantly higher in the mental stress session (1.84 ± 0.16)
compared with the rest (1.31 ± 0.14) (P < 0.01). There was
no difference in the LF component of HRV between the mental
stress (686.82 ± 118.62 ms2) and the rest (920.77 ± 135.3 ms2)
(P > 0.05). MA induced significant decrease in SDNN (from
43.69 ± 3.07ms to 34.42 ± 2.56ms, P < 0.01). Short-term scale
of DFA α1 was significantly higher during mental stress than in
rest period (1.17 ± 0.03 vs. 1.0 ± 0.03, p < 0.01). Mental stress
influenced long-term fractal properties of heart rate fluctuation:
α2 showed similar increase from 0.35 ± 0.02 during rest to 0.43
± 0.01 in mental stress session (P < 0.05).

The highest estimates of the total classification accuracy,
sensitivity, and specificity was achieved by α1 and by recurrent
plot measures (Table S3).

The data presented in our database may be sufficient for
detection of a cognitive workload in performing MA.
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