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Abstract
Biomolecular recognition underlying drug-target interactions is determined by both binding

affinity and specificity. Whilst, quantification of binding efficacy is possible, determining

specificity remains a challenge, as it requires affinity data for multiple targets with the same

ligand dataset. Thus, understanding the interaction space by mapping the target space to

model its complementary chemical space through computational techniques are desirable.

In this study, active site architecture of FabD drug target in two apicomplexan parasites viz.

Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed
by consensus docking calculations and identification of fifteen best hit compounds, most of

which are found to be derivatives of natural products. Subsequently, machine learning tech-

niques were applied on molecular descriptors of six FabD homologs and sixty ligands to

induce distinct multivariate partial-least square models. The biological space of FabD

mapped by the various chemical entities explain their interaction space in general. It also

highlights the selective variations in FabD of apicomplexan parasites with that of the host.

Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and

TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and

improve binding affinity in combination with other functional descriptors conducive for the

design and optimization of the leads.

Introduction
Drug Discovery is a complex process, requiring time and money. However, tremendous
advances in computational methods have led to versatile approaches like virtual screening,
pharmacophore profiling, etc., which hasten the preclinical drug discovery phase. Drug-target
recognition is a consequence of binding affinity and specificity, the former governing stability
of the complex, while the latter implies discriminating its counter-part from its closely related
molecule [1,2]. Conventionally, experimental and computational techniques could determine
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the binding affinity of a target protein but quantification of binding specificity remains a major
challenge. Since, establishing specificity requires relative differences in the binding affinities of
the same set of chemical entities with multiple targets, which is often scarce or incomplete;
there is a need for computational approaches to compensate for this shortcoming [2,3]. Knowl-
edge from the structural and physiochemical properties of homologous proteins, series of
ligands and their interaction advances the traditional drug optimization approaches for an
improved drug-target recognition. Thus, virtual screening approach complemented by mathe-
matical modeling using machine learning techniques provide a platform for rapid finding of
best hits for prioritizing them as potential leads during the preclinical drug discovery pipeline.
In this regard, Lapinsh et al., introduced and improvised proteochemometric analysis (PCM), a
machine learning technique involving partial least square modeling for predicting the biologi-
cal activities and analyzing the receptor-drug interaction space based on physiochemical
descriptors of multiple proteins and ligands [4,5]. PCM was successfully employed to study the
mode of interaction of G-protein coupled receptors, mutational space of HIV reverse transcrip-
tase and several proteases in the context of drug resistance [6,7,8]. Subsequently, it was imple-
mented to demonstrate its performance and enrichment in virtual screening approaches to
find novel small molecule ligands for adenosine receptors [9,10]

Plasmodium falciparum that causes malaria in humans and Toxoplasma gondii, an opportu-
nistic pathogen causing toxoplasmosis in immune-compromised patients associated with
AIDS and congenitally infected infants are the two dreadful parasites of the order apicomplexa.
A rapid emergence of resistance in these parasites, unavailability of vaccines against them
necessitates a continuous augmentation of the pipeline of molecules to combat these diseases.
Both the parasites harbor an endosymbiotic organelle, a vestigial plastid of cyanobacterial ori-
gin called apicoplast that possess non-eukaryotic processes and found to be crucial for para-
site’s survival. Apicoplast contains all the enzymes of the Type II fatty acid synthetic (FAS)
pathway, which are not only essential for the growth of Toxoplasma tachyzoites and Plasmo-
dium liver stages, but also differ significantly from those of Type I FAS pathway in humans,
thus, of interest for drug development against these parasites [11–14]. Some of the earlier stud-
ies reported triclosan and thiolactomycin that targeted enzymes of Type II FAS pathway of
both these parasites indicating a role of this pathway in their life cycle [15–18]. These studies
also identified malonyl CoA: ACP transacylase (FabD) as an important enzyme of Type II fatty
acid biosynthetic pathway, which still remains unexplored as drug target in apicomplexan par-
asites [19–22]. Earlier, we have described pharmacophore profiling to deorphanize FabD in P.
falciparum (PfFabD) [23], and in continuation of that work, we propose a comprehensive
approach to quantify the binding affinity and specificity of malonyl CoA: ACP transacylase
(FabD) enzyme of apicomplexan parasites through a relative focus on the chemical (drugs) and
biologic (target) recognition space with that of host FabDs to aid the development of new
therapeutics.

To understand the mechanism of drug-target recognition, the contributions of structural
geometries and physiochemical properties to binding affinity were computed. Further, mathe-
matical modeling was performed using partial least square (PLS) method, to ascertain the
interaction data consisting of electrostatic (ElecStat) and van der Waal’s (VDW) energy com-
ponents of their binding free energies to account for their respective interaction space during
complexation. These have assisted in understanding the subtle spatial and physiochemical
aspects of microscopic environment for high binding affinity and target selectivity of ligands
against apicomplexan FabD receptors in the context of other infective and host FabD
enzymes.
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Methodology

Computational infrastructure
Most of the computations were performed in Fujitsu CELSIUS R920 workstation (Fujitsu
Technology solutions, Japan). Intensive docking calculations for virtual screening were per-
formed in parallel using the high performance computing Tyrone server (64-core nodes with
2.2 GHz AMD Opteron 6274 processor and 128 GB RAM).

Construction of 3D models
Homology models of apicomplexan FabD enzymes were built for this study. FabD sequences
for P. falciparum and T. gondii were retrieved from Uniprot sequence database (www.uniprot.
org) using the accession numbers—Q8I6Z9 (403 residues) and V4ZJM0 (502 residues), respec-
tively. Template search in RCSB Protein Data Bank (www.rcsb.org) retrieved FabD of Escheri-
chia coli (PDB Id: 2G2Y) and Vibrio cholera (PDB Id: 3HJV) with more than 70% coverage and
30% identity against PfFabD and FabD of E. coli (PDB Id: 2G2Y) and Staphylococcus aureus
(PDB Id: 3IM9) that exhibited more than 55% coverage and 35% identity against TgFabD.
Multiple sequence alignment was performed with query and their respective template
sequences using CLUSTALW, set to default parameters. Modeller 9v11 was used to generate
homology models based on the sequence alignment and the respective template structures
[24]. Three output models were obtained for each PfFabD and TgFabD and the best model was
identified using DOPE score. The final models were energy minimized and then subjected to
model validation using PROCHECK program of SAVS server (http://services.mbi.ucla.edu/
SAVES/).

Molecular dynamic simulations
Refinement of homology models was performed using molecular dynamic simulations as
implemented in GROMACS 4.5.4 [25]. Systems were prepared using CHARMM27 force field
and TIP3P water model [26,27]. Initially, the molecular systems were energy minimized in vac-
uum for 1000 steps employing steepest descent algorithm. Subsequently, periodic boundary
conditions were defined by adjusting the boundaries of the cubic box by 10Å. Water and
sodium ions were added to the unit cell to maintain overall charge neutrality. Once again,
energy minimization was done for 5000 steps to stabilize the solvated systems. Position
restrained and unrestrained MD simulations were carried out to equilibrate the solvated system
at temperature 300K under 1 bar pressure using Berendesen coupling method [28]. During
simulations, LINCS algorithm was applied to constrain all bonds. Electrostatic calculations
were accounted by reaction-field with a cut-off distance for Coulomb and van der Waals inter-
actions maintained at 1.4 nm. The final production simulations for each FabD system in free
form were run for 30 ns. Subsequently, substrate based optimization of active site environment
of FabD was done by carrying out MD simulations in the presence of malonate substrate for
5ns. The topological parameters for malonate were obtained from SwissParam webserver
(http://www.swissparam.ch/) [29].

Virtual Screening
Ligand dataset preparation. The ligand dataset used in this study constituted 45,138 com-

pounds obtained from three special subsets of ZINC database (http://zinc.docking.org/browse/
subsets/special), namely (i) ZINC drug database (Zdd) comprising commercially drug bank
approved drugs and nutraceuticals, (ii) ZINC in man (Zim) containing experimental com-
pounds used for humans and (iii) ZINC natural derivatives (Znd) containing chemically
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modified natural products. Initially, the compounds were filtered based on nine different
parameters viz. molecular weight (32 to 350 g/mol), xlogP (-4 to 3.5), net charge (-5 to 5), num-
ber of rotatable bonds (1 to 7), polar surface area (0 to 200 Å2), number of hydrogen donors (1
to 10), number of hydrogen acceptors (1 to 20), polar desolvation (-400 to 1 kcal/mol) and apo-
lar desolvation (-100 to 4 kcal/mol). The filtered ligands were checked for redundancy to avoid
duplication in the final dataset. Malonyl-thioester-pantothenate was added to the ligand data-
set, as it forms the major pharmacophore moeity of FabD substrate and served as a reference
compound to select the best hits.

Preparation of protein receptors. Six FabD receptors were used in molecular docking cal-
culations with the above filtered ligand dataset. The two apicomplexan FabD models viz. P. fal-
ciparum (PfFabd) and T. gondii (TgFabD) and four X-ray crystallography structures, which
served as templates for homology modeling (i.e. FabD of V. cholerae (VcFabD), S. aureus
(SaFabD), E. coli (EcFabD), and H. sapiens (HsFabD)) were employed. For this, single and
complete FabDs were corrected for missing side chains, checked for unnatural amino acids,
non-standard atom types and atom occupancy factor using SwissPDB viewer [30].

Docking Programs. AUTODOCK 4.2: Initially, docking calculations were done for
PfFabD, TgFabD and HsFabD using Autodock 4.2 by implementing a powerful Lamarckian
Genetic algorithm for conformational search [31]. FabD receptors were pre-processed by add-
ing Kollman charges, solvation parameters to the atoms and merging the non-polar hydrogens.
A 3D grid box was defined based on the four invariant residues in the active site of the respec-
tive FabD protein to map the entire binding pocket and generate a grid parameter file by the
Autogrid module. Each Autodock cycle or generation consisted of a regimen of fitness evalua-
tion, crossover, mutation, and selection. The GA runs were set to 50 with a step size of 0.2 Å
for translations and 5° for torsions, 27,000 generations, 2,50,000 evaluations and clustering
analysis with 2.0 Å cut-off. For each run, the estimated free energies of binding, conformations
of docked complexes, etc were obtained. The best pose of the ligands that constituted the larg-
est cluster possessing lowest binding energy was selected.

DOCK6: A second level of stringent screening for hit molecules was performed via consen-
sus docking calculations using DOCK 6.6 program (http://dock.compbio.ucsf.edu/DOCK_6/
index.htm). The receptors were processed using Dock Prep module of Chimera using AMBER
parm99 partial charges and then output in Mol2 format [32]. Active site was identified and pre-
pared by selecting spheres at a distance from 1-10Å from the malonate (substrate molecule).
All the input files required to define the negative image of the binding site were prepared to
superpose the ligands using the programs present in the DOCK distribution (DMS, SPHGEN,
SHOWBOX, and GRID). Ligands were protonated and assigned AM1-BCC charges using the
ANTECHAMBER module of AMBER program suite [33–35]. Firstly, rigid docking was done
using a geometric matching algorithm followed by refinement through an incremental con-
struction method called anchor-and-grow accounting ligand flexibility using the best orienta-
tions from rigid docking. For this, grid-based score was considered, which is based on the
intermolecular non-bonded terms viz., van der Waals (VDW) for steric and electrostatic for
charge based interactions of the AMBER force field ff99 [36]. The ligand and receptor residues
within 8 Å distance from the ligand were rendered flexible to adjust during minimization and
MD simulation. Amber MM-GB⁄SA scoring function was then applied on the docked com-
plexes via a thermodynamic cycle to compute the binding free energies, which is calculated as
EComplex − (EReceptor + ELigand), and approximated by the Amber force field.

Docking calculations for all the six FabD receptors were considered for generating PLS
models.

Scoring functions and filters applied. Scoring schemes are crucial to evaluate and re-rank
the predicted ligand poses to select the best possible hits during the structure based virtual
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screening process. The best conformations from AUTODOCK calculations retrieved based on
low binding energies were rescored and ranked using X-SCORE to obtain more accurate bind-
ing free energies [37]. It implements a consensus scoring function that combines three empiri-
cal scoring functions namely HPScore, HMScore, and HSScore to reduce the errors of single
score. Following rescoring, binding free energy of malonyl-thioester-pantothenate was used as
a threshold to select only those ligands that showed better binding free energies than the FabD
susbtrate, but the inverse is true for HsFabD. The next filter applied was based on the pharma-
cokinetic properties of the ligands to account for their ADME/Tox features, their druggability
and toxicity, which was done using FAFDrugs2 webserver (http://fafdrugs2.mti.univ-paris-
diderot.fr/) [38].

PLSmodeling of FabD interaction space
Four distinct partial least square (PLS) models were generated following the methodology of
Lapinsh et al [4]. These models are (i) All-FabDs model that considered all the six FabD recep-
tors, (ii) Pathogen-FabDs model constituting PfFabD, TgFabD, VcFabD and ScFabD, (iii) Api-
complexan-FabDs model comprising PfFabD and TgFabD and the fourth model (iv) Host-
FabDs model that contained HsFabD and EcFabD receptors. Furthermore, three chemometric
models were developed with PfFabD, TgFabD and HsFabD.

Preparation of X-block descriptor dataset for PLS. Calculation of descriptors for FabD
receptors: Twenty two non-conserved amino acid residues of the active site of PFabD were
mapped using the CASTp calculations (http://sts-fw.bioengr.uic.edu/castp/calculation.php).
The corresponding residues lining the binding pocket of the other FabDs were located based
on multiple sequence alignment following vanWesten et al [10]. Physiochemical descriptors
were computed for these amino acids using the five z-scale descriptors (z1-z5) derived by Sand-
berg et al [39], of which, z1 represents hydrophobicity/hydrophilicity, z2 characterize steric
bulk properties and polarizability, z3 signifies polarity and z4 and z5 describes electronic effects
of the amino acids. A list of active site residues of all FabDs based on their position correspond-
ing to PfFabD is provided in Table 1.

Description of organic compounds: Signature molecular descriptors of ligands were calcu-
lated for PLS modeling. e-DRAGON 1.0 is a webserver (http://www.vcclab.org/lab/edragon/)
used for calculating ligand descriptors of different dimensionalities that comprised constitu-
tional descriptors (0D), functional group counts, charge descriptors and molecular properties
(1D), topological descriptors (2D) and geometrical descriptors(3D). A total of 68 molecular
descriptors were computed for the ligands. For PLS modeling, sixty compounds were consid-
ered, whereas for chemometric modeling, the best-hit compounds from virtual screening pro-
cedure were also included. The list of descriptors considered for the study is presented in S1
File spreadsheet.

Preparation of Y-block dataset for PLS modelling. For PLS modeling, the affinity data in
terms of non-bonded interactions (van der Waals and electrostatic energies) and binding free
energies (dG) of six FabD receptors and the sixty ligands were included as Y-response vari-
ables. Since, interaction energies were considered under Y-block variables, where more negativ-
ity indicates higher binding affinity, the absolute values were taken to facilitate linear
correlation with the X-block variables.

Data slicing. For model creation and prediction, the entire dataset was divided into train-
ing and test sets comprising 75% and 25% of the observations, respectively. This is achieved by
applying k-means clustering method (where k = 3) on the first four principal components com-
puted using MATLAB (version 7.5, The MathWorks Inc., Natick, MA,) followed by random
sub-sampling of the observations to constitute the test set. For generating proteochemometric
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models, the ligand dataset was divided into 45 and 15 observations comprising working and
test sets, respectively, whereas for chemometric models, the fifteen hits shortlisted for PfFabD
and TgFabD were included along with the above dataset and divided accordingly.

Computing ligand-protein cross terms. Cross-terms were computed for protein and
ligand descriptors to account for non-linearity with the binding interactions. Thus, another
block of variables comprising cross-terms was constructed containing ligand-ligand (Cl;
68�68), protein-protein (Cp; 110�110) and ligand-protein (Clp; 68�110) cross-terms with
24,204 descriptors.

Scaling and variable selection. Before PLS modeling, the dataset was mean centered and
scaled to unit variance. As the dataset encompassed different types of descriptors i.e ligand,
protein and their cross-terms, hard-block scaling was applied to improve the model. For this,
we used scaled weights of N/sqrt, where N is the number of variables in each block. To obtain
an optimal model, VIPs (variable importance in projection), which characterize the contribu-
tion of X-variables to explain Y responses were subjected to selection by assessing the models
iteratively and the insignificant VIPs with values< 1 were excluded.

Partial least-squares projections to latent structures (PLS). In this study, PLS was
employed to correlate a matrix of predictor variables, X block (here descriptor data of receptors
(Xl block), ligands (Xp block) and cross-terms (Cl, Cp and Clp)) to three response variables

Table 1. List of non-conserved active site residues represented based on the positions of amino acid sequence of P.falciparum (PfFabD) and
grouped as per the PCMmodels.

All FabDs

Amino acid Positions Pathogenic FabDs Host FabDs

Apicomplexan FabDs VcFabD SaFabD HsFabD EcFabD

PfFabD TgFabD

157 SER 157 THR 228 THR 64 THR 67 THR 81 THR 59

192 TYR 192 LEU 266 HIS 96 HIS 96 PHE 116 HIS 91

194 LEU 194 LEU 268 LEU 98 LEU 98 VAL 118 LEU 93

228 LEU 228 SER 302 ALA 132 THR 132 ALA 152 GLU 126

229 TYR 229 ASN 303 GLY 133 GLY 133 VAL 153 GLY 127

231 MET 231 GLY 305 GLY 135 GLY 135 SER 155 GLY 129

232 THR 232 GLY 306 ALA 136 SER 136 GLY 156 ALA 130

233 THR 233 MET 307 MET 137 MET 137 MET 157 MET 131

235 ALA 235 ALA 309 ALA 139 ALA 139 SER 159 ALA 133

262 VAL 262 ALA 345 VAL 164 ALA 165 SER 192 VAL 159

263 SER 263 ASN 346 ASN 165 ASN 166 ASN 193 ASN 160

265 MET 265 LEU 348 ASN 167 ASN 168 LEU 195 ASN 162

271 GLY 271 VAL 354 VAL 173 VAL 174 VAL 201 VAL 168

296 LYS 296 VAL 390 LEU 197 MET 198 ARG 225 LEU 192

297 LYS 297 ARG 391 PRO 198 PRO 199 MET 226 PRO 193

299 GLU 299 LYS 393 PRO 200 ALA 201 PRO 228 PRO 195

300 ILE 300 VAL 394 VAL 201 VAL 202 VAL 229 VAL 196

301 ALA 301 SER 395 SER 202 SER 203 SER 230 SER 197

302 GLY 302 GLY 396 VAL 203 GLY 204 GLY 231 VAL 198

303 ALA 303 ALA 397 PRO 204 PRO 205 ALA 232 PRO 199

304 PHE 304 PHE 398 SER 205 PHE 206 PHE 233 SER 200

359 ILE 359 VAL 453 VAL 260 VAL 261 VAL 288 VAL 255

doi:10.1371/journal.pone.0141674.t001
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constituting Y block. Thus, PLS derives a regression equation which can be expressed as fol-
lows:

Y ¼ �Y þ Sðcoeffl � xlÞ þ S ðcoeffp � xpÞ þ S ðcoeffCl � xl � xlÞ
þ S ðcoeffCp � xp � xpÞ þ S ðcoeffCl; p � xl � xpÞ

The goodness-of-fit of the PLS models was assessed by computing the fraction of explained
variation of dependent variables Y (R2Y) and predictive Y-variation (Q2) through cross-valida-
tion, as described previously [40,41,42]. R2Y may range between 0 and 1 (where a value closer
to unity means better fit) and the value increases upon addition of each extracted PLS compo-
nent. To rule out the possibility of accumulating chance correlations in the model, Q2 values
were calculated through seven-fold cross validation and the model was applied on the test set.
Concomitantly, a minimum difference between R2Y and Q2 was maintained and models with
R2Y> 0.7 and Q2 > 0.4 were assumed to be acceptable [43]. Additionally, models were vali-
dated by response permutation, wherein, the randomly re-ordered Y-data, R2Y and Q2 values
were re-calculated 100 times and plotted as a function of the correlation coefficient between
the original Y and permuted Y. The intercept of the regression line indicates whether the R2Y
and Q2 of original unperturbed model could have been obtained by pure chance [44]. In exten-
sion to this, CV-ANOVA was also done to compare two models fitted to the same data by the
size of their fitted residuals. F-test is used to test the significance of the null hypothesis of equal
residuals of the two models assuming that they are normally distributed. p-value lower than
0.05 asserts the model as significant [45].

All the PLS modeling and analysis was performed using SIMCA 13 software (Umetrics; Sin-
gapore). The list of protein and ligand descriptors calculated for all the six FabD models are
provided as an excel sheet of supplementary information (S1 File).

Results and Discussion
While twenty three FabD structures of various bacterial and plant origin have been deposited
in PDB, none of them were from any of the apicomplexans. Although, FabD has been proven
to be a promising antibacterial target, it still remains unexplored as a drug target for P. falcipa-
rum and T. gondii. Since, receptor-drug recognition is important for binding specificity and
efficacy, micro-level inspection of their interaction space is highly desirable and their determi-
nation through experimental methods is time intensive and cumbersome. To aid in such an
effort, we have performed virtual screening using the in silicomodels of FabD enzyme of the
apicomplexan parasites, generated PLS models using machine-learning techniques to explain
the receptor-drug interaction space A flow chart of these studies is presented as Fig 1.

Exploring FabD of apicomplexan parasites (P. falciparum and T. gondii)
Due to the absence of experimentally determined 3D structures of PfFabD and TgFabD, we
homology modelled FabDs for this study. Acquiring a significant receptor conformation with
accuracy approaching experimentally determined molecular coordinates is critical for the vir-
tual screening process [46]. We have overcome this limitation by constructing substrate bound
homology models by supplying distance restraints on the relative orientation of malonate that
is already existing in the binding site of EcFabD (PDB ID: 2G2Y) and assigned the coordinates
to the target FabD receptors. The backbone coordinates were assigned to PfFabD and TgFabD
by transferring the global fold and steric arrangements of the secondary structural elements
from template FabDs. The final models selected had relatively low DOPE scores for PfFabD
(-38065.1) and TgFabD (-37593.69). During model evaluation, the overall stereochemical qual-
ity of the homology models were validated using Ramachandran plots, which are provided as
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Fig 1. Schematic representation of the workflow carried out for the studies. The methodological process involved homology modeling, virtual screening
and PLSmodeling to deorphanize FabD drug target of apicomplexan parasites.

doi:10.1371/journal.pone.0141674.g001
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S1 and S2 Figs. For PfFabD, 94.5%, 4.4%, 0.4% and 0.7% residues were found in the most
favoured regions, additionally allowed regions, generously allowed regions and disallowed
regions, respectively; whereas for TgFabD, the statistics of Ramachandran plot were 90.4%, 5%,
2.5% and 2.1%, respectively. Furthermore, all bond lengths, bond angles and planar groups of
main-chain were found to be within limits. Hence, the obtained models are geometrically
acceptable.

Homology model mimics the conformations and deformations of the template structures
rather than that of the target and hence, optimization of the topology and refinement of inter-
nal perturbations in the system was done. Initially, explicit solvent based MD simulations were
performed with the homology models in their free forms for stabilizing the molecular confor-
mations. The average RMSDs computed were 0.34±0.04 Å for PfFabD and 0.36±0.04 Å for
TgFabD, and is presented as a plot in S3 Fig. Further, MD simulations in the presence of malo-
nate for 5ns were carried out to optimize to comply with global and local stereochemistry of
the structures. S4 Fig shows the plot of RMSDs computed as a function of time based on the
Cα backbone deviation of both PfFabD and TgFabD and their binding site residues comprising
6Å region around malonate. The average RMSDs noted for PfFabD and TgFabD were 0.18
±0.02 and 0.29±0.05 for the entire protein and 0.13±0.02 and 0.12±0.01 for the binding site,
respectively. This confirms that the structures of FabD-malonate complexes are stabilized and
therefore an optimum conformation can be considered to explore the protein-ligand interac-
tion space.

Analysis of active site topology of apicomplexans FabDs
A closer inspection of the two FabDs of apicomplexan parasites revealed a highly conserved
architecture consisting of two subdomains; the larger sub-domain exhibited an α/β hydrolase
fold and the smaller sub-domain comprizes a four stranded antiparallel β-sheet capped by two
short helices, as observed in other bacterial FabDs [47,48]. The active site is a gorge located at
the confluence of these two subdomains. The superpositioning of both the apicomplexan FabD
structures and their binding pockets are shown in S5 Fig. The two conserved motifs of FabD
family: -GQGXQ- and –GXSXG- were noted as –108GQGEQ112- and –191GYSLG195- in
PfFabD and -179GQGAQ183- and –265GLSLG269- in TgFabD, respectively. The five key
invariant amino acids viz. Q109, S193, R218, H305 and Q354 in PfFabD and Q180, S267,
R292, H399 and Q448 in TgFabD corresponding to those reported earlier in the FabDs of E.
coli,Helicobacter pylori, Streptomyces coelicolor,Mycobacterium tuberculosis, etc., were also
found to be structurally conserved in PfFabD and TgFabD [47,48,49,50]. The stereochemistry
of Ser-His dyad was well preserved through hydrogen bond between the side-chain hydroxyl
group of Ser and Nε-2 of His that stabilizes the dyad (Fig 2). The dyad was disrupted upon
binding to malonate consistent with the structure of EcFabD, thus endorsing the accuracy of
the constructed homology models [49].

According to Oefner et al., the entire gorge of the EcFabD binding site is involved during
malonyl transfer in the presence of holo-ACP [31]. Generally, the binding pocket of FabD har-
bours two regions—one for specific recognition of malonate and the other for holo-ACP
[49,50]. Hence, we investigated in detail the binding pockets of the four FabDs viz. apicom-
plexan, human and E. coli, by examining the 8Å region around bound malonate. The binding
pockets of apicomplexan FabDs shared 62.07% identities when compared to that of EcFabD or
HsFabD. PfFabD exhibited only 27.59% and 51.72% identities and TgFabD showed 56.67%
and 66.67% identities with EcFabD and HsFabD, respectively. S6 Fig shows multiple sequence
alignment of active site residues of the four FabDs. It was interesting to note that between
PfFabD and TgFabD, eighteen amino acid residues located at the base of the gorge connecting
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the two subdomains were identical, including the five key invariant residues found in FabD
family of proteins (Fig 3a). Furthermore, seven position-conserved amino acids substitutions
were identified in the holo-ACP binding site surrounding the upper gorge of the active site (Fig
3b), whereas, Glu111, Leu298 and Ser357 in PfFabD and Pro178, Thr228, Ser395 and Met455
in TgFabD located near the entrance of the binding pocket were unique to their respective
FabDs (Fig 3c). Similarly, the binding pockets of HsFabD and EcFabD were compared. The lat-
ter is a commensal in humans and both together serve as negative models for delineating the
relative differences in their active sites from that of the infective agents. While, eighteen amino
acids near malonate binding region were identical, ten residues showed position specific substi-
tutions in the ACP binding region adjacent to the entrance of the binding pocket and residues
Pro9 and Asn162 in HsFabD and Ser203 and Val229 in EcFabD were unique to them. This
indicated that the residues around malonyl-CoA binding site are highly conserved and confer
specificity towards selective recognition of the malonate moiety, while the environment of
holo-ACP binding site varied in a species-specific manner [51]. S1 Table provides a list of
amino acids lining the active sites of these FabDs based on (dis)similarities amongst them.

Identification of best hits compounds for apicomplexan FabDs
Compounds that are commercially available (Zdd), obtained from natural sources (Znd), or
are experimental compounds used in man (Zim) were considered for finding hits against api-
complexan FabDs. For these, three subsets of ZINC database were used, viz. Zdd constituting
2,924 compounds, Znd containing 30,793 compounds and Zim comprising 11,421 compounds
were tested for the druggablity of PfFabD and TgFabD. Prior to docking, the large dataset was
filtered by defining the acceptable range of physiochemical properties to obtain only the lead-
like compounds. Subsequent to the removal of redundant compounds, the final dataset com-
prised of 14,808 ligands. Since, malonyl-thioester-pantothenate represented the major pharma-
cophore of FabD susbtrate, it was also included in the final pool of ligands. Consensus scoring
functions and filters were applied intermittently with the docking simulations to retain positive

Fig 2. Occurrence of catalytic Ser-His dyad in the binding pockets of PfFabD (represented in purple) and TgFabD (represented in orange). (a)
Observed Ser-His dyad in the absence of malonate. (b) disruption of Ser-His dyad in the presence of malonate.

doi:10.1371/journal.pone.0141674.g002
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candidates exhibiting high affinity as well as good pharmacokinetic properties [52]. Initially,
the conformational space available for ligand binding in FabDs was explored using AUTO-
DOCKv4.2. The best pose of each ligand constituting the largest cluster with low binding free
energy was retrieved for assessing their binding affinities. Using the emprirical scoring function
of X-score, the four energy terms including van der Waals interaction, hydrogen bonding,
deformation penalty and hydrophobic effect were predicted for the retrieved FabD-ligand com-
plexes to provide an accurate estimate of binding free energies for rescoring those [53]. The X-
score value of malonyl-thioester-pantothenate was used as a threshold for culling only those
ligands, which performed better in PfFabD and TgFabD than the substrate, while reverse was
true for HsFabD. The cut-off values were determined as 4.51 and 4.73 for PfFabD and TgFabD,
respectively and 5.25 for HsFabD. Hence, a total of 3550 and 11683 compounds exhibited bet-
ter binding with PfFabD and TgFabD than the substrate, respectively. On the other hand, 6195
compounds were retrieved that possessed binding affinities higher than the threshold level i.e.
proved inefficient than the malonate-thioester-pantothenate in HsFabD. Consequently, a
reverse-match of respective ligand sets of apicomplexan FabDs and HsFabD has led to a total
of 160 and 3288 compounds for PfFabD and TgFabD, respectively. Further, a third filter was
based on pharmacokinetic properties of the scaffolds. The compounds were selected based on
Veber’s, Egan’s and drug-like properties of the orally active drugs, presence of heavy atoms,
number of rigid and flexible bonds, TPSA, number and maximum size of system rings and
presence of toxic or undesirable substructures. Finally, an ensemble of 60 ligands for PfFabD
and 131 ligands for TgFabD passed these ADMET filters.

Fig 3. Superposition of PfFabD and TgFabD homologymodels. Their active site architecture is shown as
surface with amino acid residues represented as lines and malonate as sticks. (a) The region of binding site
constituting highly conserved amino acid residues are shown in blue color. (b) Residues that exhibited
position-specific substitution are shown in orange color. (c) Residues that are unique to PfFabD are shown in
red color and TgFabD in green color.

doi:10.1371/journal.pone.0141674.g003
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To achieve an accurate prediction of high quality lead-like scaffolds, multi-stage docking
calculations were carried out. Initially shape complementarity method was implemented to
explore the geometric shape matching of these filtered ligands inside the binding pocket of
FabD receptors, followed by flexible docking via an incremental anchor and grow protocol.
The top ranked conformations corresponding to the best-docked energy score for each ligand
was selected for rescoring with Amber force field. The average value of Amber scores of each
FabD receptor was set as threshold to cross-match the ligands that possessed better score with
their respective apicomplexan FabD, but by contrast are insignificant in HsFabD. Thus, fifteen
lead-like compounds for each PfFabD and TgFabD were identified that, in addition to their
potency, showed target specific binding and possessed drug-like properties. We then checked
for significant differences between the binding free energies of shortlisted compounds of the
respective apicomplexan FabDs and HsFabD by applying one-way ANOVA F-statistic (α =
5%). The binding affinities varied significantly when compounds specific to PfFabD were also
docked to HsFabD (F(1,28) = 10.95; Fcrit = 4.19) and compounds specific to TgFabD were
docked to HsFabD (F(1,28) = 31.02; Fcrit = 4.19), (see S7a and S7b Fig). The S8a and S8b Fig
show the plots of Amber scores of the fifteen shortlisted best hits of PfFabD and TgFabD, rela-
tive to HsFabD. The S1 and S2 Schemas provide the details of the fifteen best-hit compounds
selected for PfFabD and TgFabD along with their molecular properties, which are well within
the range to be categorized as lead-like compounds [54–56]. We note that most of the best-hit
compounds were derivatives of natural products, except ZINC00001270, ZINC01529532,
ZINC01688939 and ZINC04899687 ligands of PfFabD and ZINC00002159, ZINC03860446 of
TgFabD, which are drugs already approved for use in man.

Exploring protein-ligand molecular interactions
Binding affinity and the degree of selectivity towards a target receptor can be attributed to spe-
cific intermolecular interactions. Hence, hydrogen bonds, hydrophobic interactions, and π-cat-
ion interactions between the ADMET filtered ligands were analysed with their respective
apicomplexan FabD targets. The details of various intermolecular interactions in PfFabD and
TgFabD are provided in S2 and S3 Tables, respectively. A relative comparison of these molecu-
lar interactions with HsFabD that served as negative reference assisted in selecting target spe-
cific ligands. S4 and S5 Tables provide the list of residues involved in ligand interactions in
HsFabD with the respective hits of PfFabD and TgFabD. In PfFabD, the five compounds viz.,
ZINC00348080, ZINC00873422, ZINC01529532, ZINC03705320 and ZINC20357942 exhib-
ited relatively better binding affinity and hydrogen bonding interactions with functional resi-
dues like Gln109, Tyr192, Arg218 and Ser263, and ZINC03705320 also exhibited π-cation
interactions with Phe304. On the contrary, the same ligands proved to have low affinity for
HsFabD. Similarly, ZINC00002159, ZINC00154890, ZINC00226411, ZINC02981238,
ZINC04343210 and ZINC12955012 showed efficient binding for TgFabD, than to HsFabD. Fig
4 shows the intermolecular interactions of the best hit compounds in the active sites of apicom-
plexan FabDs.

PLSmodeling for understanding the FabD-ligand interaction space
Till date, PLS modeling has been feasible for only a few drug targets, due to the unavailability
of experimentally determined affinity data. However in this study, we made an effort to over-
come this drawback by using the interaction data computed through docking simulations in
terms of binding free energies and non-covalent interactions like electrostatic (ElecStat) and
van der Waal’s (VDW) energies that serve as important recognition forces of molecular com-
plexes [57]. Fig 5 shows the protein-ligand interaction space spanned by the sixty ligands for
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PfFabD. Four proteochemometric models, viz. All-FabD, Pathogenic-FabD, Apicomplexan
FabD and Host-FabD were generated to predict the contributions of different structural and
physiochemical properties of FabD receptor space and ligand space. Host-FabDs model com-
prising HsFabD and EcFabD served as negative model, because both these FabDs co-exist in
human body and shared high similarities in their active site architecture. In addition to proteo-
chemometric models, three distinct chemometric models for PfFabD, TgFabD and HsFabD
were generated to obtain an inimitable vision of the chemical landscape of the FabD enzyme.

Validation of model predictability. The prospective capabilities of these PLS models were
assessed by a combination of cross validation and response permutations [58]. Table 2 provides
the complete details of the statistical metrics for validation of the seven models. The robustness

Fig 4. The binding interactions of best hit compounds with apicompolexan FabDs are depicted.
Hydrogen bond interactions (green dashed lines) occurring between (a) ZINC01529532 and PfFabD. (b)
ZINC00154890 and TgFabD are shown.

doi:10.1371/journal.pone.0141674.g004

Fig 5. Representaion of the interaction space in PfFabD. The molecular interaction space of FabD protein
spanned by sixty ligands obtained from the pipeline of virtual screening process is represented as surface
(blue color) and are surrounded by the amino acid residues of active site of PfFabD (shown as inset. The
detailed list of active site residues are provided in Table 1.

doi:10.1371/journal.pone.0141674.g005
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of the induced models was explored from the seven-fold cross validation of the training set and
their respective R2Y and Q2 values, which were found to be above 0.7 and 0.4 [43]. Also, over-
fitting of the models were tested by calculating the response permutations for R2Y and Q2 val-
ues through their intercepts iR2 and iQ2, which were smaller than R2 value and below zero,
respectively [44]. Thus, ruling-out the possibility that the models were predicted merely by
chance [44]. Also, CV-ANOVA for individual Y-response variables were performed and found
that the p-values were lesser than 0.05 for most of the models. However, significant correlation
with VDW was not observed in Pathogen-FabD, Apicomplexan-FabD and TgFabD models
[45]. This indicated the inability of X-descriptor variables to accurately predict the variations
in VDW interactions. Additionally, to confirm the accuracy and reliability of the PLS models,
we have evaluated the external predictability of these models using test sets that constituted
one-fourth of the total compounds that were excluded from the training set. The models were
regarded as significant, if the Q2ext was� 0.4 for at least two of the response-variables. The
correlation of predicted versus observed values of dG in All-FabD, VDW in PfFabD and Elec-
Stat in TgFabD models are shown in Fig 6. In chemometric models the variations in dG and
VDW Y-response variables were not well-explained by the variance in X-descriptor variables,
whereas prediction using Y-ElecStat were found to be more accurate and reliable. Considering
the individual R2 and cumulative R2Y and the overall predictability (Q2 values� 0.4) of train-
ing set, we conclude that it is appropriate to interpret the PCMmodels based on dG and Elec-
Stat, while only the latter was satisfactorily analyzed for chemometric PLS models.

Model based interpretation of target and ligand space. To interpret the biologic and
chemical space in terms of molecular and physiochemical descriptors of FabD active site and

Table 2. Details of the seven PLSmodels generated for FabD receptors and statistical metrics for model validate.

Models Components R2X R2Y Q2 Y-response variables Response
permutations

p-value
CV-ANOVA

R2 Training Q2ext

R2 Q2

dG 0.13 -0.43 4.42E-27 0.67 0.41

All-FabDs 10 0.87 0.7 0.42 ElecStat 0.12 -0.47 9.49E-38 0.69 0.55

VDW 0.14 -0.4 0.003475 0.73 0.33

dG 0.33 -0.47 8.81E-20 0.75 0.52

Pathogen-FabDs 7 0.5 0.75 0.43 ElecStat 0.34 -0.47 1.79E-18 0.76 0.64

VDW 0.33 -0.4 0.0488799 0.73 0.17

dG . . . . . . . . .

Host-FabDs 6 0.78 0.7 0.42 ElecStat 0.25 -0.59 0.004158 0.69 0.49

VDW 0.23 -0.63 3.45E-08 0.94 0.95

dG 0.41 -0.62 1.35E-07 0.84 0.54

Apicomplexan-FabDs 7 0.64 0.82 0.42 ElecStat 0.4 -0.61 4.55E-10 0.83 0.65

VDW 0.31 -0.39 0.0474655 0.8 0.09

dG 0.66 -0.48 0.08411 0.62 0.35

PfFabD 6 0.49 0.89 0.57 ElecStat 0.65 -0.57 0.000867 0.77 0.55

VDW 0.65 -0.59 0.000762 0.82 0.73

dG 0.34 -0.14 0.001702 0.75 0.22

TgFabD 3 0.48 0.76 0.41 ElecStat 0.3 -0.07 0.0164834 0.64 0.62

VDW 0.33 -0.11 0.18268 0.91 0.01

dG . . . . . . . . .

HsFabD 5 0.4 0.92 0.54 ElecStat 0.69 -0.46 0.126547 0.79 0.61

VDW 0.69 -0.54 3.34E-05 0.65 0.28

doi:10.1371/journal.pone.0141674.t002
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small organic compounds, we performed an in depth analysis of the PLS models. S6 and S7
Tables list the various ligand and protein descriptors that are capable of explaining the variance
in the seven PLS models.

All-FabD PLS model: Taken together the six target proteins provided a comprehensive pic-
ture of the interaction space in FabDs. This model explains the variation in dG (Q2ext = 0.41)
and ElecStat (Q2ext = 0.55) parameters. Fig 7a and 7b representing the PLS regression coeffi-
cient plots shows the influence of different ligand and protein descriptors on the variation in
ElecStat Y-response variable, respectively. Based on the ligand descriptors, organic compounds
with nR09, nPyrroles, and nROH as functional groups and sulphur atoms (nS) are important
for electrostatic interactions (ElecStat) as well as for the affinity (dG). Contribution of other
descriptors is depicted as column plots in S9 Fig. Similarly, the active site residues at positions
157, 229, 231, 232, 233, 263, 265, 271, 297, 300, 301 and 359 (see Table 1 of methodology sec-
tion) contribute to the binding efficacy and electrostatic interactions in FabDs. Interestingly,
these amino acids are common in at least three of the six FabD receptors, which confirms that
this model presents the global features of the FabD-ligand interaction space.

Apicomplexan FabD PLS model: Since, the apicoplast in P. falciparum and T. gondii is of
bacterial origin and all of them possess Type-II fatty acid biosynthetic pathway [59], the api-
complexan, and pathogenic bacterial FabDs were integrated together in a group for modelling
(Pathogen-FabDs model). The PLS regression model was satisfactory in terms of dG
(Q2ext = 0.52) and ElecStat (Q2ext = 0.64), S10 Fig provides the contributions of ligand
descriptors that positively influenced the binding affinity. The ligands constituting ring struc-
tures (nCIC), especially pyridines, pyrroles, nR06, nR10, nCconj, nS, RBF, nROH were noticed
to enhance the binding affinity and electrostatic interactions. Since, the contributing amino
acid residues were found to be same as for All-FabD model, we analyzed the interaction space
of apicomplexan specific FabD. The variance in dG and ElecStat response variables was well
explained by the X-descriptor variables with Q2ext of 0.54 and 0.65, respectively. nPyrroles,
nPyridines, nR06 and nR09 among ring descriptors, nS, nO, nDB, Ms of constitutional indices,
nROH, nCrs, nCrt, nRCOOH, nHAcc, nCconj, nArCONHR and nCb- as functional groups
and others being Molar Refractivity (AMR), Moriguchi Octanol-water Partition Coefficient
and Wiener Index (WI) were noted as important to ligand descriptors specific to apicomplexan
FabDs. S11 Fig shows the descriptors of ligands that had an impact on the binding efficacy in
PLS model. When the receptor space was analyzed, five amino acids at positions 194, 235, 302,
303 and 304 were found to be identical in apicomplexan FabDs, while amino acids at positions
194 and 235 were common in all Pathogen-FabD model. Further, in addition to the twelve

Fig 6. The correlation plots of observed and predicted values derived from the PLSmodels. (a) All-
FabD, (b) TgFabD, (c) PfFabD based on dG, ElecStat, VDWY-response variables, respectively are shown.
The goodness of fit between the observed and predicted values are indicated by the regression lines for
training (red) and test (black) sets.

doi:10.1371/journal.pone.0141674.g006
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active site residues of All-FabD model, amino acids at positions 228 and 297 also contributed
to the interaction space of Apicomplexan FabDs.

Host-FabDs PLS model: Here, FabDs of human and E. coli were included under one group
in view of their binding site similarities as discussed before and because E. coli inhabits human
body as a commensal. Unlike other PLS models, Host-FabDs model was better predicted using
only two Y-response variables, i.e. ElecStat and VDW and inclusion of dG did not generate reli-
able model. Hence, model was generated using six PLS components with R2Y = 0.7, Q2 = 0.42
and Q2ext = 0.49 and 0.95 for ElecStat and VDW Y-responses, respectively. Further, model
interpretation revealed the contributing structural and functional descriptors of ligands, which
participate in non-covalent interactions for this model. These included nPyridines, nPyrroles,
nBnz, nR06, nCIR as ring descriptors; nArCONH2, nArCONHR, nCrs as functional groups;
Ms, Mv, nS, nC, RBF as descriptors of constitutional indices, and Molar Refractivity (AMR).
S12 Fig presents the coefficient plot of ElecStat and VDW for these ligand descriptors that

Fig 7. This figure show the coefficient plots depicting the relation between the ElecStat Y-response
variable and the (a) ligand descriptors (b) physiochemical properties of amino acid residues in the
active site of PfFabD enzyme.

doi:10.1371/journal.pone.0141674.g007
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enchance the binding affinity for the Host-FabD model. Subsequently, upon examining the
receptor space, we found that aminoacid residues—Thr, Met, Asn, Val, Pro, Val, Ser and Val at
positions 157, 233, 263, 271, 299, 300, 301 and 359, respectively, were the same in both HsFabD
and EcFabD. Hence, variance in ElecStat and VDW response variables were correlated using
residues at positions 192, 194, 228, 229, 231, 232, 235, 265, 296, 302, 303 and 304.

A comparative analysis of the chemical space of Apicomplexan-FabD and Host-FabD mod-
els revealed common descriptors in both the models, i.e. nPyrroles, nR06, nS, nCrs, nAr-
CONHR, AMR and Ms. While, the former differed from the latter by descriptors like
nPyrrolidines and nR09 of ring systems, nROH, nRCOOH, nHAcc, nCconj, nCrt of functional
group counts, nDB and nO belonging to constitutional indices and others like MLOGP and
WI. The uniqueness of Host-FabD model therefore can be attributed to the presence of nPyri-
dines, nBnz, nARCONH2, Mv, nC, RBF and nCIR as ligand descriptors.

Computing chemometric PLS models for individual FabDs. Understanding the struc-
tural and other physiochemical features of ligands is critical for designing drug molecules with
proper functional groups. Hence, chemometric PLS models of the chemical space in PfFabD
and TgFabD with respect to HsFabD were developed. In the chemometric PLS models, the
cumulative R2Y and Q2 were above the threshold range, i.e. 0.7 and 0.4, while the Q2ext for
ElecStat has alone qualified with�0.4. On the other hand, Q2ext values of dG and VDW were
lesser than 0.4. The entire descriptor details corresponding to the three Y-dependent variables
has been provided in S6 Table, in view of the above, these models are discussed in the context
of ElecStat Y-response variable only. Based on these models, the ligand space that was condu-
cive for the specificity for PfFabD and TgFabD are shown as column plots in S13 Fig. Further,
analysis of the descriptors, which describe the organic compounds and their functional groups
that enhance the binding interactions with respective apicomplexan FabD receptors are shown
in Fig 8. Upon comparison with HsFabD, it is noticed that average molecular weight (AMW),
mean atomic Sanderson electronegativity (Me), nCrs, nPyrrolidines, nArCONH2 as functional
groups, MLOGP and Weiner index (WI) render specificity of the given ligands for PfFabD
(S12a Fig). Similarly for TgFabD, ligand features influencing selectivity are AMW, Me, RBF,
SCBO, nCIC, ARR, nBM, nCar, nRCONR2, nArCONH2, nImidazole, MLOGP (S12b Fig).
Likewise, the contributing chemical descriptors that positively influence the electrostatic inter-
actions of HsFabD are shown as column plot in S14 Fig. The chemical space specific to HsFabD
relative to PfFabD was assessed and noted to consist of nCt, nCrt, nPyridines, hydrophilicity
and number of hydrogen donor atoms (N and O). Similarly, functional groups like nRCOOH,
nARCONHR, nCconj, nCrt, nDB, nO, nR = Cs, nR10, nPyrrolidines and hydrophilicity factor
(Hy) specifically contribute for HsFabD in competition with TgFabD.

Thus, the above description of the chemical space that positively enhance target selectivity
and at the same time show less or no impact on HsFabD were taken into consideration for lead
optimization and improvement of binding specificity and efficacy. We then extrapolated the
above models to find the contributing factors of the best-hit compounds obtained through vir-
tual screening process for PfFabD and TgFabD. The diverse chemistry of these molecules
depicted as a heatmap for all the thirty leads is presented in Fig 9. Most of these compounds
lacked the ring structures like pyrroles, pyrrolidines, imidazoles, etc., and sulphur atoms, which
add to their target specificity.

Conclusions
In this work, we advance an idea for the preclinical drug discovery process to identify target
specific inhibitors for FabD enzymes of apicomplexan parasites through virtual screening and
mapping the pharmacophore space. PLS modeling of receptor-ligand interaction space in
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PfFabD and TgFabD in comparison with HsFabD has highlighted the amino acid environment
crucial for binding site and the complementary chemical space in terms of constitutional, topo-
logical, functional and other molecular property descriptors. This combinatorial approach
demonstrates the added value of mathematical modeling based on machine learning
approaches to illustrate its efficiency for finding ligands that are target specific and identifying
the specific pharmacophore fingerprints capable of improving binding affinity. We hope that
experimental validation of this approach will expand its scope for application to other unex-
plored drug-targets.

Fig 8. The key structural and functional descriptors obtained through PLSmodeling of chemical space in (a) PfFabD and (b) TgFabD. These are
crucial for rendering target-specificity of organic compounds are shown. The constitutional indices that form the major scaffolds are enclosed in a circle
(dashed line----) and the functional groups are presented around it.

doi:10.1371/journal.pone.0141674.g008

Fig 9. Heatmap of the ligand descriptors representing the diverse chemistry of the best hit
compounds obtained for PfFabD (compoundswith suffix ‘PF’) and TgFabD (compounds with suffix
‘TG’) via the virtual screening process.

doi:10.1371/journal.pone.0141674.g009
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S3 Fig. The RMSD computed for 30ns MD trajectory obtained during model refinement
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S4 Fig. RMSD plots calculated as a function of time for both PfFabD and TgFabD. (i) the
Cα-backbone coordinates represented in black and red colors, respectively, and (ii) binding
residues spanning 6Å region around malonate in its binding pocket represented in green and
blue colors, respectively.
(TIF)

S5 Fig. Superposition of PfFabD (purple) and TgFabD (orange) models (represented as
cartoons) with malonate (shown as sticks) in their binding pockets.
(TIF)

S6 Fig. Sequence alignment of binding site amino acid residues surrounding the 6 Å region
lining the active site of the four FabDs viz P. falciparum (PF); T. gondii (TG); E. coli (EC)
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andH. sapiens (HS).
(TIF)

S7 Fig. A notched boxplot depicting the binding free energies computed for the best-hit
compounds of each Apicomplexan FabDs incomparison with HsFabD; (a) PfFabD and (b)
TgFabD.
(TIF)

S8 Fig. Bar plots representing the Amber scores calculated for the fifteen best hits of
PfFabD (a) and TgFabD (b) relative to HsFabD.
(TIF)

S9 Fig. Coefficient Plots of X-descriptors correlated with dG and ElecStat of All-FabD PLS
model.
(TIF)

S10 Fig. Coefficient Plots of X-descriptors correlated with dG and ElecStat of Pathogen-
FabD PLS model.
(TIF)

S11 Fig. Coefficient Plots of X-descriptors correlated with dG and ElecStat of Apicom-
plexan-FabD PLS model.
(TIF)

S12 Fig. Coefficient Plots of X-descriptors correlated with dG and ElecStat of Host-FabD
PLS model.
(TIF)

S13 Fig. The column plots showing the regression coefficients of various ligand descriptors
that contribute positively towards electrostatic interaction energies for an enhanced bind-
ing affinity of (a) PfFabD and (b) TgFabD.
(TIF)

S14 Fig. The column plot showing the regression coefficients of various ligand descriptors
that contribute positively towards electrostatic interaction for an enhanced binding affinity
of HsFabD.
(TIF)

S1 File. Spreadsheet containing the data used in this study.
(XLSX)
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