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Analysis of the phosphoproteome by MS has become a key technology for the characterization
of dynamic regulatory processes in the cell, since kinase and phosphatase action underlie
many major biological functions. However, the addition of a phosphate group to a suitable
side chain often confounds informatic analysis by generating product ion spectra that are more
difficult to interpret (and consequently identify) relative to unmodified peptides. Collectively,
these challenges have motivated bioinformaticians to create novel software tools and pipelines
to assist in the identification of phosphopeptides in proteomic mixtures, and help pinpoint
or “localize” the most likely site of modification in cases where there is ambiguity. Here we
review the challenges to be met and the informatics solutions available to address them for
phosphoproteomic analysis, as well as highlighting the difficulties associated with using them
and the implications for data standards.
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1 Introduction

Phosphorylation is a PTM that is deeply embedded in the
cellular system architecture. Its role, either directly or indi-
rectly, is regulatory where it acts to relay external stimuli to
specific and carefully evolved cascades of events that evoke
appropriate biological responses. For example, a single ki-
nase, such as CDK1, can trigger hundreds of time-resolved
downstream events, all ultimately controlled by this mas-
ter regulator through independent phosphorylations [1]. The
prevalence of phosphorylation in signaling and regulatory
processes has been widely cited to affect 30% of the proteome
[2, 3]. However, with the growing volume and quality of data
being generated by the phosphoproteomics community, this
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long-standing estimate might well represent an underesti-
mate given the increasingly comprehensive annotation of the
total phosphoproteome [4].

The integral role of phosphorylation in mediating multi-
ple crucial biological events [4–9] has led to major effort into
methods and technologies capable of fully elucidating the
“phosphoproteome,” the site-level resolution of phosphory-
lation of the proteome under a given condition. Given the
advances in analytical capability in recent years and the in-
creasing interest in mapping the mechanistic detail of intra-
cellular signaling pathways, phosphoproteomics has become
an active field with many groups attempting to find candidate
targets for kinases and phosphatases of interest. Although
there are many individual studies based around antibodies
to monitor and validate phosphorylation status of individual
sites [10], for high-throughput and genome-wide studies the
analytical method of choice is typically MS (cf. [8, 11]). This
has been driven by the ever-improving instrumentation and
associated analytical chemistry, in particular MS augmented
by MS-compatible phosphorylation enrichment techniques
[12–14], which have made this strategy a key player in the
field, enabling high volumes of data to be produced with
high (and constantly improving) resolution and precision,
exemplified recently by some landmark studies [8,11,15,16].
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The increased prevalence of such studies has resulted in a del-
uge of data that in turn has supported the rapid expansion of
content contained within phosphorylation databases [17–20].
Notably, these databases have been an invaluable resource
in the development of phosphorylation site predictors, which
predict the phosphorylation status of candidate sites using in-
formation derived from the immediate surrounding residues
[21–23] or three-dimensional environment [24] where they
provide the necessary data required for building, training,
and optimization [25].

Although MS-based approaches are popular, like most
high-throughput technologies they also have their limitations.
In particular for phosphoproteomics, there are several key
challenges to be overcome in a MS-based experiment. First,
phosphopeptides captured by phosphorylation enrichment
need to be ionized and analyzed in the mass spectrometer to
generate MS/MS. The identities of the underlying sequence
for each of these MS/MS should then be deduced using com-
putational tools. Individual spectra generate multiple candi-
date peptide spectrum matches (PSMs), usually ranked by a
search engine score. Here, the principal issue is to associate
a unique peptide match to each spectrum with an associated
level of statistical significance (i.e., p-value or false discovery
rate (FDR)) in order to minimize false positives—this is the
so-called “identification” challenge. Redundancy is generated
from multiple PSMs to the same peptide sequence, and care
should be taken to estimate significance at the peptide as well
as PSM level. Equally, protein inference is also challenging
when peptide sequences map to multiple parent proteins,
leading to challenges when integrating scores and statistical
significance to the protein level.

Second, if a phosphopeptide has been confidently identi-
fied, then there may be ambiguity in the true site (or sites)
of phosphorylation as a given peptide may have multiple
residues that could be modified, and indeed in some cases,
it may be possible for multiple independent sites to be mod-
ified. Hence, it is often necessary to decide between differ-
ent phosphoisomers—this is the so-called “localisation” chal-
lenge.

Third, it is usually desirable to quantify the stoichiom-
etry of phosphorylation compared to other isoforms, since
subtle changes in phosphorylation level are believed to lead
to large changes in downstream signaling. This “quantifica-
tion” challenge is substantial, since ideally one would be able
to quantify not only the level of the phosphopeptide, but also
changes in this in the context of changes in the overall pro-
tein level and all its phosphoisoforms. This is evident when
considering such systems as cell-cycle control kinases where
different phosphoisoforms have different affinities for other
cyclin-kinase pairs and subtle shifts in these properties are
tightly couple to regulation of the cell cycle itself [1, 26].

Finally, this leads on to whether the phosphorylation sites
identified are truly functional. Presently, the most popu-
lar strategy employed to assign functional significance is
via SILAC, where the functional status of phosphosites is

typically assumed based on them meeting a minimal arbi-
trary fold-change in a quantitative experiment between ki-
nase/phosphatase active and inactive conditions [27–31].

In this review, we discuss the various issues involved in
applying informatic pipelines to identify and for analyzing ex-
perimental phosphoproteomic data. Our focus is to make the
reader aware of why identification and localization are such
daunting tasks and the remaining outstanding questions that
the field is presently working toward solving.

2 Benchmarking studies highlight
inconsistencies in phosphopeptide
informatics

The challenges presented by phosphoproteomics to infor-
matics tools were the focus of a 2010 study conducted by
the Proteome Informatics Research Group (iPRG) of the
Association of Biomolecular Resource Facilities (ABRF)
(http://www.abrf.org/index.cfm/group.show/Proteomics
InformaticsResearchGroup.53.htm#943). In this study,
several groups were provided with the same set of MS/MS
from an enriched phosphorylation sample derived from
different chromatography fractions and asked to analyze
and return the set of statistically significant identifications,
and if possible, confidently localized sites. No restrictions
on informatic tools and strategies were placed on groups
regarding how they analyze the data and it is this point that
was the main objective of the study, to assess the degree of
conformity between groups with regards to how the data
are handled and, more importantly, the identification and
localization outcomes. Although the precise identities of
the phosphopeptides and sites of phosphorylation were not
known a priori, the results were still highly variable. Indeed,
on average, a 57% agreement was found between the sets
of phosphorylated peptides identified between groups when
considered on a pairwise basis. However, perhaps more
worryingly, this level of agreement decreased substantially
to �38% consensus agreement when considering site
localization. These results are important, since although
it was not possible to judge the absolute accuracy of the
results there was clear disagreement between groups,
demonstrating that informatic workflows on the same data
following stringent statistical thresholds resulted in dramat-
ically different outcomes. Furthermore this represents a
“real-world” example where the only sources of variance are
the experience and knowledge of the researchers, and the
choice and method of applying informatics pipelines. The
study also highlighted that different groups using the same
basic pipelines can achieve different, conflicting results.
Given that these were largely expert groups, it suggests that
false-positive and false-negative rate in high-throughput
phosphoproteomic data sets could be substantial and that
best practice is still to be defined.
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3 Identification of phosphopeptides:
Challenges and issues

A typical shotgun or high-throughput proteomics experiment
targets the precursor ions eluting into the mass spectrome-
ter for fragmentation in order to generate product ions that
are characteristic of the precursor and which form the ba-
sis of peptide identification by sequence database search or
de novo sequencing. The peptides are first generated from
a digestion of the denatured proteins under study, typically
with the endopeptidase trypsin, prior to mass spectrometric
analysis. The subsequent identification step of the MS/MS
spectra generated relies on informatics tools, predominantly
database search engines (cf. [32–34]), as well as to a lesser ex-
tent de novo sequencers (cf. [35–37]) and search tools based on
spectral libraries [38]. For the majority of data-dependent ac-
quisition strategies in shotgun proteomics where the identity
of the peptides is not known a priori, database search engines
are the most widely used in phosphoproteomic analyses. A
large number of such tools exist, well-reviewed recently by
Eng and colleagues [39].

Unfortunately, because candidate PSMs from any identi-
fication tool will contain false matches, a measure of confi-
dence needs to be assigned to select true identifications while
avoiding those that are incorrect. Proteomics as a field has
generated a variety of means to assess the levels of poten-
tial false discovery, specifically in sets of PSMs. Presently,
the most widely used approaches compute a FDR or FDR-
related statistic such as q-values [40, 41], allowing the user to
control for the expected number of false-positive identifica-
tions. For most database search engines, empirical FDRs are
computed through the target-decoy strategy where MS/MS
are searched against the sequence database and a “decoy”
version of it [42, 43]. The formation of the “decoy” set is
most commonly done via direct reversal for simplicity, but
other methods exist (e.g., randomly shuffled, database gen-
erated from residue frequencies), and is either concatenated
with the target database or run separately. The precise struc-
ture of how to build the appropriate FDR model has been
subjected to vigorous assessment to find an optimal strategy
[43–45].

Another possible issue stems from the use of mixed sets of
both modified and unmodified peptide spectra when deter-
mining the FDR. This is relevant for phosphoproteomics and
has recently been discussed in the literature [46,47]. Here, it is
postulated that FDR calculations should formally consider the
phosphopopulation independently, reasoning that the under-
lying physicochemical properties of the phosphorylated pep-
tides are different from the nonphosphorylated ones leading
to different characteristic fragmentation behaviors (such as
dominant neutral loss of the phosphate described previously)
and by extension phosphospecific and nonphospho-specific
scoring distributions. However, although this could be a po-
tential issue, most phosphoproteomic studies are conducted
on highly enriched peptide sets where this is unlikely to be a
dominating factor.

Here we focus on issues that are specific to phosphopeptide
identification, which are additional challenges to the identifi-
cation and assessment of significance in mixed populations
of modified and unmodified peptides. A common issue is
that phosphorylation can hinder comprehensive identifica-
tion of a phosphopeptide by lowering the ionization efficiency
[3]. Here, the presence of the phosphate contributes a nega-
tive charge to an otherwise positively charged peptide (under
acidic conditions), which interferes with the ionization pro-
cess into the gas phase. This reduction in the phosphopeptide
population makes for a potent obstacle by proportionally re-
ducing the corresponding product ions required for success-
ful identification. Multiple phosphates can exacerbate this
issue [48] while multiple protons may rectify it [3].

The labile nature of the phosphate group itself is also an
issue, as it has a lower activation energy threshold than an
amide bond and is frequently lost as a neutral species from
the precursor ion during fragmentation in the gas phase.
This reduces the level of fragmentation in the peptide back-
bone, which in turn generates fewer informative ions to un-
ambiguously identify the peptide sequence. A related issue
results from the differential nature of this loss from the most
commonly modified amino acid side chains, namely serine,
threonine, and tyrosine. In principle, fragmentation can oc-
cur through three routes, via the intact ion, a neutral loss of
80 Da (HPO3), or a neutral loss of 98 Da (H3PO4 or HPO3

and H20) [49]. Typically, a loss of 98 Da (H3PO4) is observed
from serine and threonine residues, while phosphotyrosine
normally remains intact [50] but can suffer a neutral loss of
80 or 98 Da (HPO3 and H2O) should there be a nearby side
chain bearing a hydroxyl group. The latter neutral loss where
there is a concurrent loss of water is an especially difficult
situation because this loss can be derived from S/T, making
it difficult to distinguish whether the phosphate is present on
Y or S/T should there be insufficient product ions available.

Though these are not hard and fast rules, they are often
implemented in search engines such as Mascot [34]. Addi-
tionally, MS3 experiments are performed when neutral losses
from phosphopeptides are observed in MS/MS spectra, cre-
ating additional ion series from which inference can be made
[51]. Finally, it should not be forgotten that frequently the
phosphorylated isoform of a given protein might only be
present in relatively low amounts, as only low stoichiometries
may be necessary for downstream signaling effects. Thus, the
quality of signal may be close to or below the sensitivity of
the instrument, further hampering the ability of the search
engines to detect signal from noise. This was elegantly illus-
trated by Olsen and colleagues who showed that most phos-
phosites exhibit less than 10% occupancy during S-phase of
the mammalian cell cycle [15].

Knowledge of the relative level of phosphorylation and how
it varies in biological systems is therefore clearly valuable in-
formation, and quantitative methods are available for phos-
phoproteomics. Interested readers are referred to an excellent
recent review, which covers many of the identification issues
also dealt with here [52].
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Initially, the only common MS method available for frag-
mentation of peptides was CID, where precursor ions are
subjected to physical collisions, thereby providing the nec-
essary potential energy for fragmentation to occur. Because,
as noted, the phosphoester covalent bond is more labile than
that of the amide bond, there is a higher chance that the phos-
phate group is fragmented, hindering the necessary forma-
tion of sequence-informative ions. While the characteristic
dominant phosphate neutral loss ion is useful in identify-
ing that the precursor is indeed a phosphopeptide, it does
not yield enough ions to identify the underlying sequence.
Fortunately, alternative activation methods have been made
available, which help overcome some of these issues [53].

4 Activation methods that improve
phosphorylation analyses

Two relatively recent advances that are of utility to phospho-
proteomics include the collision-based, multistage activation
approach [54, 55], where the intact ion following loss of the
phosphorylation group is purposely reselected for fragmen-
tation, and high-energy collisional dissociation (HCD) where
higher energy is applied than conventional CID [56,57]. While
both have been shown to have positive benefits for phospho-
peptide identification [58], CID remains a staple activation
method in phosphoproteomics because of its superior acqui-
sition speeds that enable more comprehensive coverage of
a sample. Hence, with CID more spectra may be acquired,
but this does not necessarily lead to the highest number of
uniquely identified species, a trade-off between quantity and
quality of MS/MS [55, 59].

However, a real landmark in the field was the introduction
of electron-transfer dissociation (ETD) [60]. This method in-
volves the transfer of an electron to precursor (cat)ions via a
radical anion, which invokes the dissociation of amide bonds
[60–62].

The advantage over collision-based methods that ETD (and
its later derivatives) provides is the capability to bypass labile-
biased dissociations associated with some PTMs such as
phosphorylation, allowing the modification to remain intact
and available for localization calculations. There was, how-
ever, a potential downside from an informatics perspective
to the use of ETD; search engines were not optimized to
process this type of data. All algorithms were originally built
and developed with collision-based fragmentation methods
in mind and were made ETD compatible by adapting the al-
gorithms to look for c- and z-type fragment ions produced by
ETD. Unfortunately, the idiosyncrasies of ETD-derived data
such as dominant unreacted and/or charge-reduced precur-
sor ion peaks, which can affect ion selection for the search
engine and ETD-exclusive neutral losses were unknown and
therefore nullified the identification and subsequent localiza-
tion performance benefits of ETD [63,64]. Fortunately, many
ETD-related behaviors have now been better characterized al-
lowing notable improvements to be made in this area [63–66].
As a result of the combined efforts of the MS community,

ETD-based methods are an excellent complementary ap-
proach to their collisional counterparts in phosphoproteomic
experiments [67–69].

The effectiveness of these activation methods with respect
to site localization was recently studied by Savitski and col-
leagues [58] who assessed the performance of a search en-
gine difference score (Mascot Delta) on the identification
of a set of synthetic phosphopeptides under collision-based
(CID, multistage activation, and HCD) and ET-based (ETD
and electron-transfer dissociation with suppplemental acti-
vation [70]) activation methods. Here, they showed superior
identification and localization performance for data derived
from all the advanced activation methods, most notably HCD
and ETD, compared to conventional CID, conforming with
the rationale behind using the new activation methods above.
This was followed up with a more comprehensive study on a
larger peptide library, again confirming the potential for HCD
to identify more phosphopeptides and providing an excellent
resource for further algorithm development [71].

One can further attempt to enhance peptide identification
performance by applying complementary activation strate-
gies where the same precursor m/z is subject to alternate
sequential activation methods. These normally consist of
CID/ETD/HCD where any combination (or all) can be used
[72] and MS/MS can then be searched individually or merged
together for identification. However, the latter choice does ap-
parently present some problems where certain tools, namely
database search engines, are not well optimized to deal with
activation-composite MS/MS [73].

5 More advanced informatic approaches
to improve identification

The arsenal of informatic tools available for analyzing data
from phosphoproteomic studies could be considered simul-
taneously as a curse and blessing. With so many tools and
their own unique algorithms, one can acquire substantially
different results from the same mass spectral data. This was
shown in previous studies to affect protein identification in
proteomic experiments [74], but the outcome of the ABRF
study suggests it might be more severe in the phosphopro-
teomic realm. However, the variety of different underlying
algorithms applied by each search engine offers a parsimo-
nious way to take on this challenge where interrogating the
same data from different, orthogonal perspectives provides a
simple but robust solution. As noted, this concept has been
demonstrated many times in traditional proteomics studies
[74–76], and has also recently been shown to reduce of false-
positive identifications in phosphoproteomics by combining
the output from multiple informatic tools [77].

6 Site localization

Site localization appears to be a far more challenging task
compared to identification, as demonstrated by the iPRG

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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Figure 1. Ambiguity in site assignment of phosphopeptides. The phosphopeptide above generates a product ion spectrum from which it
is challenging to unambiguously determine the true site determining ions. In this particular case, two b ions highlighted in green boxes are
consistent with serine at position 7 in the peptide being modified, or alternately, the threonine at position 9 could be modified yielding a
characteristic y9 ion (green box, lower panel). Experts inspecting the spectrum were divided on which is the most likely interpretation. The
possibility that both peptides were present is also not excluded, since they would have the same precursor ion m/z value (figure adapted
from ABRF web site, http://www.abrf.org/index.cfm/group.show/ProteomicsInformaticsResearchGroup.53.htm).

ABRF study, because unambiguous site localization relies on
the presence of intact product ions in the product ion spec-
trum that are characteristic of a given candidate site. To make
the problem even worse, site localization becomes consider-
ably more difficult when candidate sites are found in close
proximity in the peptide sequence, generating fewer discrim-
inatory ions. As a final testament to difficulty of the problem,
the ABRF study highlighted a case where even experienced
manual curators could not agree with each other when given
the same MS/MS spectrum and the known sequence, shown
in Fig. 1.

7 Site localization algorithms

There are two classes of localization algorithms available to
the public: probability-based localizers (PBLs) and search en-
gine difference (SED) scores [78].

8 Probability-based localizers

The origin of many PBL tools stems from algorithms origi-
nally designed to process MS3 mass spectra [79], which were
subsequently then applied to the PTM problem [8]. The algo-
rithm designed by Olsen and Mann formulates the localiza-
tion problem as a binomial probability calculation, attempting
to calculate a probability for each candidate phosphosite. In
this equation, k is the total number of intact phosphorylated
ions successfully matched to theoretical ones for a candidate

site and n is the total number of ions possible. The choice
of using intact phosphorylation ions (and not others, such
as those derived from neutral loss) during peak annotation
is twofold. First, these ions are essential for determining the
precise site position and are therefore the most informative.
Second, inclusion of other ions may degrade the localization
problem by influencing the optimal peak-depth selection and
subsequent scoring [80].

The “PTM score” is then computed as the −10 × log10

transformation of P(x):

P(x) = (
n
k

) · pk · (1 − p)(n−k) (1)

The probability of matching a peak defines the value of p
in this model, and equates to 0.04 in this particular instance.
This is derived from the “peak depth,” the number of the
top most intense fragment ions considered in each 100 m/z
unit bin across the spectrum. In the PTM score algorithm,
a peak depth of 4 is used, presuming a 4 in 100 chance of a
random match across the 100 m/z range. This method was
employed in the large-scale phosphoproteome study char-
acterizing mammalian signaling networks [8], but was not
originally made easily available.

The Ascore algorithm developed a similar probabilistic ap-
proach and has become arguably the most well-known gold-
standard site localizer in the field [80]. Briefly, the Ascore
is composed of two core phases. The first follows Olsen’s
model, except that a cumulative binomial probability is calcu-
lated and the peak depth is selected automatically, attempting

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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to maximize the discrimination between true and false sites.
Here, peak depths from one to ten peaks per 100 m/z unit bins
are systematically tested to find which provides the largest in-
crease in discrimination between the first- and second-ranked
isoform. The logarithmic transformation of the binomial cal-
culations are termed “Peptide scores” instead of “PTM score”
used by Olsen [8]. The second phase applies the same basic
workflow to the first, but with one critical adaptation that
makes it more suitable for the localization problem, by us-
ing solely the “site-determining ions.” These are ions that
are exclusive to the phosphopeptide isoform in question and
therefore contain one of the candidate modified amino acids.
The Ascore is then computed as the difference in peptide
score between the first- and second-ranked site candidates.

Since then there have been several localization algorithms
based or building on this general principle, summarized
in Table 1. This includes SLoMo [81], whose most impor-
tant contribution to this field was that it was the first ET-
compatible localizer, highlighting the utility of alternate acti-
vation methods for phosphopeptide determination.

Another algorithm of note is PhosphoRS [82], which fur-
ther develops the concept of peak-depth determination. This
is an important aspect of site localization since the quality
of the peak annotation and subsequent selection of the most
suitable and informative ones underpin subsequent scoring
algorithms. This is an issue with all site localizers (and other
computational proteomic tools) that apply intensity-based fil-
ters to reduce chemical or instrumental noise but may inad-
vertently eliminate truly informative peaks [78]. In the con-
text of PBLs, all algorithms prior to PhosphoRS apply this
partitioned m/z unit strategy to annotate intact ions with a
predefined [8] or optimized but static peak depth [80, 81]. Be-
cause some areas in a theoretical MS/MS spectrum may be
denser, one should use a larger peak depth in denser regions
and vice versa in sparser ones. PhosphoRS addresses this
issue by allowing the peak depth to vary according to the lo-
cal peak density in regions of a MS/MS spectrum, resulting
in different estimates for probability p for matching a single
fragment ion in Eq. (1) for each spectrum considered. Equally,
it will vary according to instrument and fragmentation meth-
ods, supporting both low- and high-resolution instruments.
The search engine integrated in to the MaxQuant suite, An-
dromeda [32], also uses a similar approach to dynamically
select peaks, thereby improving spectrum annotation, and
applies this in their own version of the PTM score. The au-
thors suggest this leads to superior performance in detecting
multiply modified peptides.

9 SED scores

All search engines consider candidate PSMs in rank-ordered
lists to assign confidence and help determine the most likely
match. A key principle embodied in the first automatic spec-
trum search tool, SEQUEST, has been exploited for phospho-
proteomic localization purposes too, namely that the top hit

should score significantly higher than the second-ranked hit
if it is truly correct. The higher the quality, the greater the
score difference and more confident the identification (or in
this case, localization). SED scores are computed in the situa-
tion where multiple sites are possible for a given modification
and the first- and second-ranked candidates are PTM isomers
of each other.

These approaches have proven popular due to their sim-
plicity and can be applied, in principle, to any scoring method.
Indeed, most of the tools available to compute this type of
score are linked to particular search engines. Examples of
SEDs for localization include Mascot Delta [58] and site local-
ization in peptides (SLIP) [83], developed for the Mascot and
ProteinProspector search engines respectively, both of which
have been shown to offer good performance in distinguish-
ing alternative phosphorylation sites based on the search en-
gine scores [58, 66, 83]. Recently, a search engine indepen-
dent delta score named the “D-score” was published, which
converts search engine delta scores into posterior error prob-
abilities [84]. This approach has some practical advantages
over a single SED; first, standardizing a search engine spe-
cific localization delta score such as Mascot Delta and SLIP
will place them into a unified scoring framework, thereby
allowing direct and valid comparisons. The second is that
a standardized localization metric supports more advanced
combinatorial methods, similar to those already in use for
multiple search engine peptide identification purposes that
demonstrate improvements over single stand-alone search
engines [74, 75, 85]. It remains to be seen, however, whether
SED-based approaches can outperform the theoretically more
rigorous PBL methods.

10 The status of the false localization rate

An additional issue facing the proteomics practitioner under-
taking phosphoproteomics experiments is when to believe a
set of phosphosite assignments when ambiguity exists, that
is, in multisite peptides. For identifications, the field has de-
veloped FDR-based approaches, but as Chalkley and Klauser
pointed out [78], for site assignment we need a false local-
ization rate or FLR. The FLR is the localization equivalent
of the FDR for peptide identification; a method to estimate,
and therefore control, the proportion of falsely localized sites
through a target-decoy strategy. However, it is not imme-
diately obvious how to estimate such a rate. As noted by
Chalkley and Klauser [78], not only is the FLR sort after for
this reason but also because it would allow a direct and fair
comparison of different site localization tools, and provide a
universal metric to measure against (and potentially to inte-
grate multiple tools in a principled way).

At present, there is no universally accepted method to de-
termine the FLR. The key hurdle here being how to define
the decoy population from which a background, null distri-
bution of scores can be estimated, thereby enabling an FLR to
be estimated. PhosphoRS developed a tool-specific estimate

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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of this property, using synthetic peptides of known phospho-
rylation status to calculate empirical FLRs, and suggesting
a PhosphoRS probability of 0.99 equates to an FLR of 1%.
In more general terms, it has been proposed to generate de-
coy instances by theoretically phosphorylating residues that
do not carry this modification in nature. Here, Chalkley rea-
soned that appropriate decoy residues should have a similar
frequency and close proximity to real phosphorylatable (STY)
residues and suggests the use of proline and glutamic acid,
which correlate with serine and threonine, respectively, in the
general context of these criteria [78, 83].

In 2013, Fermin and colleagues achieved a milestone in
the field where they presented the LuciPHOr algorithm [86],
the first algorithm to include a formal FLR estimation. Using
a synthetic set of phosphopeptides [58], allowing the calcu-
lation of the true FLR, they demonstrate similar or superior
performance in terms of site assignment compared to Ascore
and Mascot Delta. Like other algorithms, LuciPHOr considers
all phosphorylatable residues as candidates, but also consid-
ers all non-native phosphorylation sites as decoys to estimate
an FLR rate. Their scoring procedure compares the relative
distributions of fragment ion intensity and mass accuracy
for the candidate, annotated phosphopeptide (for each given
phosphopermutation) to nonannotated (random) peaks. The
greater the separation between the two populations, the better
the score, which in this instance is a log-odds score generated
from the two. A delta score is then computed between the best
and second-best phosphopermutation. For the FLR calcula-
tion, the necessary target and decoy distributions are derived
from the best target and decoy LuciPHOr delta scores, respec-
tively. It will be interesting to note how this score performs
and whether the FLR can be influenced by database size and
nature, as has been noted for FDR (e.g. [87, 88]). The current
version of LuciPHOr is compatible with most of the popular
search engines and their scoring metrics, including Peptide-
Prophet (p-values), X!Tandem (translated e-values), Mascot
(ion scores), and SEQUEST/COMET (Xcorr), and presently
works with CID and HCD-derived MS/MS. It has been inte-
grated with the Trans-Proteomic Pipeline [89].

11 Isomers and the problems they pose

The localization problem is further impeded by isomeric
species where the sequence and phosphorylation status are
identical but the location of the site is different, for exam-
ple, in the following two sequences: ANSLMSpSQFGK and
ANSLMpSSQFGK (where pS = phosphorylated serine). Not
only are the masses (or m/z values) of the isomers identi-
cal, but they are also likely to have identical physicochemical
properties, and fail to separate during the LC. Additionally,
it has been shown that phosphates can switch between side
groups in the gas phase under certain conditions, generating
artifactual isomer pairs [90]. In the former case, the isomers
are likely to coelute and in both cases lead to the genera-
tion of a chimeric MS/MS spectrum, the extent of which

depends on the severity of chromatographic overlap. This is
detrimental to localization on two accounts. First, the major-
ity of site localization algorithms are based on the assump-
tion that there is only one correct phosphorylated form and
employ a difference-based scoring scheme that relates the de-
viation between top-ranked candidates to assign confidence
in site localization. In the isomer situation where fragment
ions belonging to the true alternate sites coexist, confident
localization becomes far more difficult as they would natu-
rally diminish the delta. Fortunately, in the case of artifactual
isomer pairs, it appears this situation does not detrimen-
tally affect localization analysis because the event is relatively
rare resulting in fewer product ions derived from rearranged
species. As a result, such ions fail to pass the intensity-based
filters of localization algorithms [91].

The second problem is related to the standard instrumen-
tal setup of most phosphoproteomic experiments. In order
to maximize coverage and minimize redundancy, MS experi-
ments will typically exploit a dynamic exclusion period where
previously selected precursor ions are not reselected for frag-
mentation until a user-defined period of time has elapsed.
Depending on the degree of coelution between isomers, it is
possible that subsequent isomers are not selected for frag-
mentation if the exclusion window is long enough.

Fortunately, the occurrence of such species has been esti-
mated to be low, approximately 3–6% of all potential phos-
phopeptides [92]. However, although this value is low, there
are presently no publicly available localization algorithms
that integrate elution time information to detect potential
coeluting isomers into their scoring scheme, so such many
of these species may be lost and pass undetected through
the mass spectrometer. To counter this, Courcelles and col-
leagues have developed algorithms that help distinguish be-
tween separated, partially coeluted, and overlapping phos-
phorylation species, with some success [92]. They do suggest,
however, that ultimately targeted MS strategies will be nec-
essary to detect these additional isomeric species after pre-
liminary data-directed acquisition studies. It is also perhaps
worth noting that such isomeric species might also be func-
tionally indistinguishable in biological terms, reducing the
potential severity of this issue, if the effect is generated from
modification of either of two adjacent sites.

12 Computational phosphoproteomics in
practice

As noted here, there is a wide choice of algorithms on of-
fer for the problem of site localization. While each has been
of value to the field, one important aspect has not yet been
discussed; is it straightforward to acquire and implement
the algorithm? This is an important question to address for
the user community, where unless it has been adopted by a
vendor and incorporated directly into commercial software,
the algorithms may not be suitable for noninformaticians. In
particular, some tools may need to run via the command line

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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and have very specific prerequisites or dependencies, includ-
ing vendor-specific libraries, before they can be used. Typi-
cally, these include sequence identifications from a database
search engine and the MS/MS corresponding to said iden-
tifications (depending on the type of localizer), all of which
need to be provided in a specific format. Failure to meet any
of these criteria might prevent the tool from generating the
desired output, necessitating informatic support to provide
a fix. However, even with dedicated informatics support the
process of setting up and running software can be challeng-
ing, for example, when inadequate instructions for installa-
tion are supplied or where the software requires files whose
formats are now obsolete. Clearly, the use of standardized
and consistent, community-supported file formats [93] makes
this problem far simpler. A good example is the Transpro-
teomic pipeline (TPP) workflow, which contains executables
for converting Mascot, X!Tandem, COMET, OMSSA, and SE-
QUEST output into .pep.xml. One could envisage writing
a single parser that universally deals with .pep.xml to pro-
vide return delta scores from all these search engines. Sim-
ilarly, we recommend interested users explore some of the
following workflows packaged with user-friendly graphical
user interfaces for noninformaticians for handling PTM and
localization scores; notable examples include PeptideShaker
[94], MaxQuant [95], and PTMProphet [89]. Alternatively, one
can use web servers such as ProteinProspector whose ser-
vice provides the SLIP score where users can easily acquire
identification and localization scores in a tabulated format.

13 Data standards supporting
phosphoproteomics

As noted above, file formats can be a barrier to integration
of proteomic data types and sharing with colleagues. This is
true for phosphoproteomic data too, and community-driven
standards present a useful way to surmount this barrier. The
Proteomics Standards Initiative (PSI) has been developing
standard data formats, as well as minimum reporting guide-
lines for proteomics for many years. Relevant standards in-
clude mzML for raw MS data or peak lists [96], mzIdentML
for peptide and protein identification data [97] (e.g., the out-
put of search engines), and mzQuantML for quantitative data
[98], used as an internal, input, or output format to quantita-
tive software. In this context, most search engines support
a search in mzML as input—which functions equally for
traditional as well as phosphoproteomics studies. In terms
of the output of search engines, several search engines na-
tively support an export of mzIdentML, and for many other
search engines, file format converters exist. The growing set
of implementations for mzIdentML (and mzML) is impor-
tant, since, as an example, ProteomeXchange consortium
databases support these PSI standards as an input and a
format for downloading results [99]. The standards also fa-
cilitate open source development, so that informatics groups
can build pipeline approaches, without needing to consider
writing many different file format converters.

The stable, supported release of mzIdentML is version 1.1.
Due to the design of the standard, scores or probabilities as-
sociated with modification site localization are challenging to
encode systematically in the format. The PSI working group
has been working toward an update to mzIdentML (version
1.2), which is undergoing the final stages of revision, and
will be released later in 2014—including updated guidelines
for protein inference [100] and solving various other open is-
sues with the standard. The mzIdentML 1.2 update will have
minimal changes to the core XML Schema of the standard,
but will provide a consistent way of representing site localiza-
tion scores using controlled vocabulary terms, which can be
checked by the validation software [101]. The update should be
of significant benefit to the informatics community working
on phosphoproteomics tools, since as mentioned above, there
are issues with stand-alone tools accepting incompatible file
formats. Once released, mzIdentML 1.2 can function as an
input and output format for such tools, as well as acting as an
output format from search engines that natively perform site
localization, for example, for upload into ProteomeXchange.
It is likely that the same mechanism for encoding site local-
ization scores will be adopted in mzQuantML, if sufficient
need arises to encode such ambiguity alongside quantitative
data about phosphopeptides (e.g.).

The three standards described (mzML, mzIdentML, and
mzQuantML) are all developed in XML (Extensible Markup
Language) and capture relative complex data about different
stages of a proteomics pipeline. While tutorials exist describ-
ing how lab scientists and developers can use the standards
[102], it is acknowledged by the PSI that the XML-based stan-
dards can be challenging to work with for nonexpert groups.
As such, the PSI has recently developed a text-based, tab-
separated standard called mzTab that is considerably simpler
than the other standards [103]. mzTab is designed for loading
directly into spreadsheet or statistical software, capturing a
summary of identification and quantification results, poten-
tially in the same file. mzTab has native support for capturing
site localization scores associated with a given peptide iden-
tification, and tools are starting to emerge that export into
mzTab format. It is likely that mzTab will be accepted as
an input to ProteomeXchange (and format for downloading
results) from ProteomeXchange in the near future.

14 Concluding remarks and future
outlook

The informatics analysis of phosphorylation sites in proteins
has proven to be a difficult task from both the identification
and, even more so, localization perspectives. However, con-
certed efforts from the field have helped develop a range of
integrated experimental and informatics solutions to enable
phosphoproteomics to capture snapshots of cellular regula-
tion via MS. Indeed, many labs are now able to generate fully
quantitative phosphoproteomic datasets [11,15], an aspect we
have not covered in this review.
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Experimentally, increasingly advanced activation methods
have been introduced that have greatly aided the field, each
by circumventing weaknesses associated with CID making
the informatics substantially more effective. Informatically,
while there has been an expansion in the number of localizer
tools available, they mostly employ the same logical scoring
schemes so limited progress has been made in this area. The
advent of a search engine independent score by Vaudel and
colleagues [84] advances the possibility of applying a multilo-
calizer approach, taking advantage of the inherited orthogo-
nality of each SED, and complementing multisearch engine
approaches already in evidence in standard high-throughput
proteomics.

Perhaps the most prominent remaining hurdle to over-
come is the lack of a widely accepted method to control for
false-positive localizations. The recent emergence of Fermin’s
work to compute the FLR maybe the necessary catalyst toward
solving this problem, either through the creation of a new
generation of site localizers or adoption of an FLR scheme
into existing tools.

In conclusion, although the informatics of phosphopro-
teomics remains challenging, sufficient progress and tools
are available to enable motivated scientists to characterize
and address their system of interest.
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